AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article

Exploring ternary organic photovoltaics for the reduced nonradiative recombination and improved efficiency over 17.23% with a simple large-bandgap small molecular third component

Huanran Feng1( )Yvjie Dai1Lihao Guo1Di Wang2Hao Dong2Zhihui Liu1Lu Zhang1Yvjin Zhu1Chen Su1Yongsheng Chen3Weiwei Wu1( )
School of Advanced Materials and Nanotechnology, Interdisciplinary Research Center of Smart Sensors, Xidian University, Shaanxi 710126, China
Intelligent Perception Research Institute, Zhejiang Lab, Hangzhou 311100, China
State Key Laboratory and Institute of Elemento-Organic Chemistry, Key Laboratory of Functional Polymer Materials, College of Chemistry, Nankai University, Tianjin 300071, China
Show Author Information

Graphical Abstract

A simple small molecule BR1 with high crystallinity is used as the third component in the construction of ternary organic photovoltaic cells for further improving the photovoltaic performance of PM6:Y6 systems through regulating molecular packing and aggregation and enhancing electroluminescence emission. Based on more efficient charge transport, suppressed recombination, and reduced energy loss (Eloss), the PM6:Y6:BR1 based ternary cells contribute a much higher power conversion efficiency of 17.23% with all simultaneously improvedphotovoltaic parameters.

Abstract

Ternary strategy is one of the most effective methods to further boost the power conversion efficiency (PCE) of organic photovoltaic cells (OPVs). In terms of high-efficiency PM6:Y6 binary systems, there is still room to further reduce energy loss (Eloss) through regulating molecular packing and aggregation by introducing a third component in the construction of ternary OPVs. Here we introduce a simple molecule BR1 based on an acceptor-donor-acceptor (A-D-A) structure with a wide bandgap and high crystallinity into PM6:Y6-based OPVs. It is proved that BR1 can be selectively dispersed into the donor phase in the PM6:Y6 and reduce disorder in the ternary blends, thus resulting in lower Eloss,non-rad and Eloss. Furthermore, the mechanism study reveals well-develop phase separation morphology and complemented absorption spectra in the ternary blends, leading to higher charge mobility, suppressed recombination, which concurrently contributes to the significantly improved PCE of 17.23% for the ternary system compared with the binary ones (16.21%). This work provides an effective approach to improve the performance of the PM6:Y6-based OPVs by adopting a ternary strategy with a simple molecule as the third component.

Electronic Supplementary Material

Download File(s)
12274_2021_3945_MOESM1_ESM.pdf (618.8 KB)

References

1

Meng, L. X.; Zhang, Y. M.; Wan, X. J.; Li, C. X.; Zhang, X.; Wang, Y. B.; Ke, X.; Xiao, Z.; Ding, L. M.; Xia, R. X. et al. Organic and solution-processed tandem solar cells with 17.3% efficiency. Science 2018, 361, 1094–1098.

2

Yu, G.; Gao, J.; Hummelen, J. C.; Wudl, F.; Heeger, A. J. Polymer photovoltaic cells: Enhanced efficiencies via a network of internal donor-acceptor heterojunctions. Science 1995, 270, 1789–1791.

3

Kan, B.; Ershad, F.; Rao, Z. Y.; Yu, C. J. Flexible organic solar cells for biomedical devices. Nano Res. 2021, 14, 2891–2903.

4

Cheng, P.; Li, G.; Zhan, X. W.; Yang, Y. Next-generation organic photovoltaics based on non-fullerene acceptors. Nat. Photonics 2018, 12, 131–142.

5

Zhang, Q.; Wan, X. J.; Xing, F.; Huang, L.; Long, G. K.; Yi, N. B.; Ni, W.; Liu, Z. B.; Tian, J. G.; Chen, Y. S. Solution-processable graphene mesh transparent electrodes for organic solar cells. Nano Res. 2013, 6, 478–484.

6

Wang, J. Y.; Zhan, X. W. Fused-ring electron acceptors for photovoltaics and beyond. Acc. Chem. Res. 2021, 54, 132–143.

7

Wadsworth, A.; Moser, M.; Marks, A.; Little, M. S.; Gasparini, N.; Brabec, C. J.; Baran, D.; McCulloch, I. Critical review of the molecular design progress in non-fullerene electron acceptors towards commercially viable organic solar cells. Chem. Soc. Rev. 2019, 48, 1596–1625.

8

Yang, Y.; Feng, E. M.; Li, H. Y.; Shen, Z. C.; Liu, W. R.; Guo, J. B.; Luo, Q.; Zhang, J. D.; Lu, G. H.; Ma, C. Q. et al. Layer-by-layer slot-die coated high-efficiency organic solar cells processed using twin boiling point solvents under ambient condition. Nano Res. 2021, 14, 4236–4242.

9

Mishra, A. Material perceptions and advances in molecular heteroacenes for organic solar cells. Energy Environ. Sci. 2020, 13, 4738–4793.

10

Zhang, D. Y.; Fan, P.; Shi, J. Y.; Zheng, Y. F.; Zhong, J.; Yu, J. S. Control of vertical phase separation in high performance non-fullerene organic solar cell by introducing oscillating stratification preprocessing. Nano Res. 2021, 14, 1319–1325.

11

Guo, Q.; Guo, Q.; Geng, Y. F.; Tang, A. L.; Zhang, M. J.; Du, M. Z.; Sun, X. N.; Zhou, E. J. Recent advances in PM6: Y6-based organic solar cells. Mater. Chem. Front. 2021, 5, 3257–3280.

12

Yuan, J.; Zhang, Y. Q.; Zhou, L. Y.; Zhang, G. C.; Yip, H. L.; Lau, T. K.; Lu, X. H.; Zhu, C.; Peng, H. J.; Johnson, P. A. et al. Single-junction organic solar cell with over 15% efficiency using fused-ring acceptor with electron-deficient core. Joule 2019, 3, 1140–1151.

13

Li, S. X.; Li, C. Z.; Shi, M. M.; Chen, H. Z. New phase for organic solar cell research: Emergence of Y-series electron acceptors and their perspectives. ACS Energy Lett. 2020, 5, 1554–1567.

14

Bi, P. Q.; Zhang, S. Q.; Chen, Z. C.; Xu, Y.; Cui, Y.; Zhang, T.; Ren, J. Z.; Qin, J. Z.; Hong, L.; Hao, X. T. et al. Reduced non-radiative charge recombination enables organic photovoltaic cell approaching 19% efficiency. Joule 2021, 5, 2408–2419.

15

Li, C.; Zhou, J. D.; Song, J. L.; Xu, J. Q.; Zhang, H. T.; Zhang, X. N.; Guo, J.; Zhu, L.; Wei, D. H.; Han, G. C. et al. Non-fullerene acceptors with branched side chains and improved molecular packing to exceed 18% efficiency in organic solar cells. Nat. Energy 2021, 6, 605–613.

16

Liu, Q. S.; Jiang, Y. F.; Jin, K.; Qin, J. Q.; Xu, J. G.; Li, W. T.; Xiong, J.; Liu, J. F.; Xiao, Z.; Sun, K. et al. 18% Efficiency organic solar cells. Sci. Bull. 2020, 65, 272–275.

17

Liu, F.; Zhou, L.; Liu, W. R.; Zhou, Z. C.; Yue, Q. H.; Zheng, W. Y.; Sun, R.; Liu, W. Y.; Xu, S. J.; Fan, H. J. et al. Organic solar cells with 18% efficiency enabled by an alloy acceptor: A two-in-one strategy. Adv. Mater. 2021, 33, 2100830.

18

Ma, X. L.; Gao, W.; Yu, J. S.; An, Q. S.; Zhang, M.; Hu, Z. H.; Wang, J. X.; Tang, W. H.; Yang, C. L.; Zhang, F. J. Ternary nonfullerene polymer solar cells with efficiency > 13.7% by integrating the advantages of the materials and two binary cells. Energy Environ. Sci. 2018, 11, 2134–2141.

19

Zhang, H.; Yao, H. F.; Hou, J. X.; Zhu, J.; Zhang, J. Q.; Li, W. N.; Yu, R. N.; Gao, B. W.; Zhang, S. Q.; Hou, J. H. Over 14% efficiency in organic solar cells enabled by chlorinated nonfullerene small-molecule acceptors. Adv. Mater. 2018, 30, 1800613.

20

Zhou, D.; You, W.; Xu, H. T.; Tong, Y. F.; Hu, B.; Xie, Y.; Chen, L. Recent progress in ternary organic solar cells based on solution-processed non-fullerene acceptors. J. Mater. Chem. A 2020, 8, 23096–23122.

21

Yang, W. T.; Ye, L.; Yao, F. F.; Jin, C. H.; Ade, H.; Chen, H. Z. Black phosphorus nanoflakes as morphology modifier for efficient fullerene-free organic solar cells with high fill-factor and better morphological stability. Nano Res. 2019, 12, 777–783.

22

Zhang, S. H.; Shah, M. N.; Liu, F.; Zhang, Z. Q.; Hu, Q.; Russell, T. P.; Shi, M. M.; Li, C. Z.; Chen, H. Z. Efficient and 1, 8-diiodooctane-free ternary organic solar cells fabricated via nanoscale morphology tuning using small-molecule dye additive. Nano Res. 2017, 10, 3765–3774.

23

Hou, J. H.; Inganäs, O.; Friend, R. H.; Gao, F. Organic solar cells based on non-fullerene acceptors. Nat. Mater. 2018, 17, 119–128.

24

Qian, D. P.; Zheng, Z. L.; Yao, H. F.; Tress, W.; Hopper, T. R.; Chen, S. L.; Li, S. S.; Liu, J.; Chen, S. S.; Zhang, J. B. et al. Design rules for minimizing voltage losses in high-efficiency organic solar cells. Nat. Mater. 2018, 17, 703–709.

25

Liu, J.; Chen, S. S.; Qian, D. P.; Gautam, B.; Yang, G. F.; Zhao, J. B.; Bergqvist, J.; Zhang, F. L.; Ma, W.; Ade, H. et al. Fast charge separation in a non-fullerene organic solar cell with a small driving force. Nat. Energy 2016, 1, 16089.

26

Vandewal, K.; Albrecht, S.; Hoke, E. T.; Graham, K. R.; Widmer, J.; Douglas, J. D.; Schubert, M.; Mateker, W. R.; Bloking, J. T.; Burkhard, G. F. et al. Efficient charge generation by relaxed charge-transfer states at organic interfaces. Nat. Mater. 2014, 13, 63–68.

27

Vandewal, K.; Tvingstedt, K.; Gadisa, A.; Inganäs, O.; Manca, J. V. On the origin of the open-circuit voltage of polymer-fullerene solar cells. Nat. Mater. 2009, 8, 904–909.

28

Benduhn, J.; Tvingstedt, K.; Piersimoni, F.; Ullbrich, S.; Fan, Y. L.; Tropiano, M.; McGarry, K. A.; Zeika, O.; Riede, M. K.; Douglas, C. J. et al. Intrinsic non-radiative voltage losses in fullerene-based organic solar cells. Nat. Energy 2017, 2, 17053.

29

Vandewal, K.; Tvingstedt, K.; Gadisa, A.; Inganäs, O.; Manca, J. V. Relating the open-circuit voltage to interface molecular properties of donor: Acceptor bulk heterojunction solar cells. Phys. Rev. B 2010, 81, 125204.

30

Liu, S. H.; Jiang, R. B.; You, P.; Zhu, X. Z.; Wang, J. F.; Yan, F. Au/Ag core-shell nanocuboids for high-efficiency organic solar cells with broadband plasmonic enhancement. Energy Environ. Sci. 2016, 9, 898–905.

31

Qin, Y. P.; Zhang, S. Q.; Xu, Y.; Ye, L.; Wu, Y.; Kong, J. Y.; Xu, B. W.; Yao, H. F.; Ade, H.; Hou, J. H. Reduced nonradiative energy loss caused by aggregation of nonfullerene acceptor in organic solar cells. Adv. Energy Mater. 2019, 9, 1901823.

32

Xie, Y. P.; Li, T. F.; Guo, J.; Bi, P. Q.; Xue, X. N.; Ryu, H. S.; Cai, Y. H.; Min, J.; Huo, L. J.; Hao, X. T. et al. Ternary organic solar cells with small nonradiative recombination loss. ACS Energy Lett. 2019, 4, 1196–1203.

33

Xu, X. P.; Feng, K.; Lee, Y. W.; Woo, H. Y.; Zhang, G. J.; Peng, Q. Subtle polymer donor and molecular acceptor design enable efficient polymer solar cells with a very small energy loss. Adv. Funct. Mater. 2020, 30, 1907570.

34

Ma, R. J.; Liu, T.; Luo, Z. H.; Gao, K.; Chen, K.; Zhang, G. Y.; Gao, W.; Xiao, Y. Q.; Lau, T. K.; Fan, Q. P. et al. Adding a third component with reduced miscibility and higher LUMO level enables efficient ternary organic solar cells. ACS Energy Lett. 2020, 5, 2711–2720.

35

Chen, S. H.; Yan, T. T.; Fanady, B.; Song, W.; Ge, J. F.; Wei, Q.; Peng, R. X.; Chen, G. H.; Zou, Y. P.; Ge, Z. Y. High efficiency ternary organic solar cells enabled by compatible dual-donor strategy with planar conjugated structures. Sci. China Chem. 2020, 63, 917–923.

36

Ma, Y. L.; Zhou, X. B.; Cai, D. D.; Tu, Q. S.; Ma, W.; Zheng, Q. D. A minimal benzo[c][1, 2, 5]thiadiazole-based electron acceptor as a third component material for ternary polymer solar cells with efficiencies exceeding 16.0%.Mater. Horiz. 2020, 7, 117–124.

37

Wang, H. T.; Yang, L. Q.; Lin, P. C.; Chueh, C. C.; Liu, X.; Qu, S. Y.; Guang, S.; Yu, J. S.; Tang, W. H. A simple dithieno[3, 2-b: 2′, 3′-d]pyrrol-rhodanine molecular third component enables over 16. 7% efficiency and stable organic solar cells. Small 2021, 17, 2007746.

38

Xu, L. Y.; Tao, W. X.; Liu, H.; Ning, J. H.; Huang, M. H.; Zhao, B.; Lu, X. H.; Tan, S. T. Achieving 17.38% efficiency of ternary organic solar cells enabled by a large-bandgap donor with noncovalent conformational locking. J. Mater. Chem. A 2021, 9, 11734–11740.

39

Lee, S. M.; Kumari, T.; Lee, B.; Cho, Y.; Lee, J.; Oh, J.; Jeong, M.; Jung, S.; Yang, C. Horizontal-, vertical-, and cross-conjugated small molecules: Conjugated pathway-performance correlations along operation mechanisms in ternary non-fullerene organic solar cells. Small 2020, 16, 1905309.

40

Ma, X. L.; Wang, J.; Gao, J. H.; Hu, Z. H.; Xu, C. Y.; Zhang, X. L.; Zhang, F. J. Achieving 17.4% efficiency of ternary organic photovoltaics with two well-compatible nonfullerene acceptors for minimizing energy loss. Adv. Energy Mater. 2020, 10, 2001404.

41

Cui, Y.; Yao, H. F.; Zhang, J. Q.; Zhang, T.; Wang, Y. M.; Hong, L.; Xian, K. H.; Xu, B. W.; Zhang, S. Q.; Peng, J. et al. Over 16% efficiency organic photovoltaic cells enabled by a chlorinated acceptor with increased open-circuit voltages. Nat. Commun. 2019, 10, 2515.

42

Liu, S.; Yuan, J.; Deng, W. Y.; Luo, M.; Xie, Y.; Liang, Q. B.; Zou, Y. P.; He, Z. C.; Wu, H. B.; Cao, Y. High-efficiency organic solar cells with low non-radiative recombination loss and low energetic disorder. Nat. Photonics 2020, 14, 300–305.

43

Ma, Q.; Jia, Z. R.; Meng, L.; Zhang, J. Y.; Zhang, H. T.; Huang, W. C.; Yuan, J.; Gao, F.; Wan, Y.; Zhang, Z. J. et al. Promoting charge separation resulting in ternary organic solar cells efficiency over 17.5%. Nano Energy 2020, 78, 105272.

44

Blom, P. W. M.; Mihailetchi, V. D.; Koster, L. J. A.; Markov, D. E. Device physics of polymer: Fullerene bulk heterojunction solar cells. Adv. Mater. 2007, 19, 1551–1566.

45

Honda, S.; Ohkita, H.; Benten, H.; Ito, S. Selective dye loading at the heterojunction in polymer/fullerene solar cells. Adv. Energy Mater. 2011, 1, 588–598.

46

Cheng, T. W.; Keskkula, H.; Paul, D. R. Property and morphology relationships for ternary blends of polycarbonate, brittle polymers and an impact modifier. Polymer 1992, 33, 1606–1619.

47

Li, D.; Neumann, A. W. A reformulation of the equation of state for interfacial tensions. J. Colloid Interface Sci. 1990, 137, 304–307.

48

Nilsson, S.; Bernasik, A.; Budkowski, A.; Moons, E. Morphology and phase segregation of spin-casted films of polyfluorene/PCBM blends. Macromolecules 2007, 40, 8291–8301.

49

Clint, J. H. Adhesion and components of solid surface energies. Curr. Opin. Colloid Interface Sci. 2001, 6, 28–33.

50

Makkonen, L. Young’s equation revisited. J. Phys. :Condens. Matter 2016, 28, 135001.

51

Adil, M. A.; Zhang, J. Q.; Wang, Y. H.; Yu, J. D.; Yang, C.; Lu, G. H.; Wei, Z. X. Regulating the phase separation of ternary organic solar cells via 3D architectured AIE molecules. Nano Energy 2020, 68, 104271.

52

Ye, L.; Hu, H. W.; Ghasemi, M.; Wang, T. H.; Collins, B. A.; Kim, J. H.; Jiang, K.; Carpenter, J. H.; Li, H.; Li, Z. K. et al. Quantitative relations between interaction parameter, miscibility and function in organic solar cells. Nat. Mater. 2018, 17, 253–260.

53

Fan, H. Y.; Yang, H.; Wu, Y.; Yildiz, O.; Zhu, X. M.; Marszalek, T.; Blom, P. W. M.; Cui, C. H.; Li, Y. F. Anthracene-assisted morphology optimization in photoactive layer for high-efficiency polymer solar cells. Adv. Funct. Mater. 2021, 31, 2103944.

54

Zhang, X. Q.; Liu, M. Y.; Yang, B.; Zhang, X. Y.; Chi, Z. G.; Liu, S. W.; Xu, J. R.; Wei, Y. Cross-linkable aggregation induced emission dye based red fluorescent organic nanoparticles and their cell imaging applications. Polym. Chem. 2013, 4, 5060–5064.

Nano Research
Pages 3222-3229
Cite this article:
Feng H, Dai Y, Guo L, et al. Exploring ternary organic photovoltaics for the reduced nonradiative recombination and improved efficiency over 17.23% with a simple large-bandgap small molecular third component. Nano Research, 2022, 15(4): 3222-3229. https://doi.org/10.1007/s12274-021-3945-3
Topics:

837

Views

20

Crossref

19

Web of Science

19

Scopus

1

CSCD

Altmetrics

Received: 27 September 2021
Revised: 16 October 2021
Accepted: 21 October 2021
Published: 04 December 2021
© Tsinghua University Press and Springer-Verlag GmbH Germany, part of Springer Nature 2021
Return