Graphical Abstract

Covalent organic frameworks (COFs) have been broadly investigated for energy storage systems. However, many COF-based anode materials suffer from low utilization of redox-active sites and sluggish ions/electrons transport caused by their densely stacked layers. Thus, it is still a great challenge to obtain COF-based anode materials with fast ions/electrons transport and thus superior rate performance. Herein, a redox-active piperazine-terephthalaldehyde (PA-TA) COF with ultra-large interlayer distance is designed and synthesized for high-rate anode material, which contains piperazine units adopting a chair-shaped conformation with the nonplanar linkages of a tetrahedral configuration. This unique structure renders PA-TA COF an ultra-large interlayer distance of 6.2 Å, and further enables it to achieve outstanding rate and cycling performance. With a high specific capacity of 543 mAh·g−1 even after 400 cycles at 1.0 A·g−1, it still could afford a specific capacity of 207 mAh·g−1 even at a high current density of 5.0 A·g−1. Our study indicates that expanding the interlayer distance of COFs by rational molecular design would be of great importance to develop high-rate electrode materials for lithium-ion batteries.
Li, M.; Lu, J.; Chen, Z. W.; Amine, K. 30 years of lithium-ion batteries. Adv. Mater. 2018, 30, 1800561.
Wu, F. X.; Maier, J.; Yu, Y. Guidelines and trends for next-generation rechargeable lithium and lithium-ion batteries. Chem. Soc. Rev. 2020, 49, 1569–1614.
Kim, H.; Choi, W.; Yoon, J.; Um, J. H.; Lee, W.; Kim, J.; Cabana, J.; Yoon, W. S. Exploring anomalous charge storage in anode materials for next-generation Li rechargeable batteries. Chem. Rev. 2020, 120, 6934–6976.
Lu, Y.; Zhang, Q.; Chen, J. Recent progress on lithium-ion batteries with high electrochemical performance. Sci. China Chem. 2019, 62, 533–548.
Zuo, X. X.; Zhu, J.; Müller-Buschbaum, P.; Cheng, Y. J. Silicon based lithium-ion battery anodes: A chronicle perspective review. Nano Energy 2017, 31, 113–143.
Aravindan, V.; Lee, Y. S.; Madhavi, S. Research progress on negative electrodes for practical Li-ion batteries: Beyond carbonaceous anodes. Adv. Energy Mater. 2015, 5, 1402225.
Lee, S.; Kwon, G.; Ku, K.; Yoon, K.; Jung, S. K.; Lim, H. D.; Kang, K. Recent progress in organic electrodes for Li and Na rechargeable batteries. Adv. Mater. 2018, 30, 1704682.
Schon, T. B.; McAllister, B. T.; Li, P. F.; Seferos, D. S. The rise of organic electrode materials for energy storage. Chem. Soc. Rev. 2016, 45, 6345–6404.
Muench, S.; Wild, A.; Friebe, C.; Häupler, B.; Janoschka, T.; Schubert, U. S. Polymer-based organic batteries. Chem. Rev. 2016, 116, 9438–9484.
Zhao, Y.; Wu, M. M.; Chen, H. B.; Zhu, J.; Liu, J.; Ye, Z. T.; Zhang, Y.; Zhang, H. T.; Ma, Y. F.; Li, C. X. et al. Balance cathode-active and anode-active groups in one conjugated polymer towards high-performance all-organic lithium-ion batteries. Nano Energy 2021, 86, 106055.
Wu, J. S.; Rui, X. H.; Wang, C. Y.; Pei, W. B.; Lau, R.; Yan, Q. Y.; Zhang, Q. C. Nanostructured conjugated ladder polymers for stable and fast lithium storage anodes with high capacity. Adv. Energy Mater. 2015, 5, 1402189.
Han, X. Y.; Qing, G. Y.; Sun, J. T.; Sun, T. L. How many lithium ions can be inserted onto fused C6 aromatic ring systems? Angew. Chem., Int. Ed. 2012, 51, 5147–5151.
Wu, J. S.; Rui, X. H.; Long, G. K.; Chen, W. Q.; Yan, Q. Y.; Zhang, Q. C. Pushing up lithium storage through nanostructured polyazaacene analogues as anode. Angew. Chem., Int. Ed. 2015, 54, 7354–7358.
Lin, Z. Q.; Xie, J.; Zhang, B. W.; Li, J. W.; Weng, J. N.; Song, R. B.; Huang, X.; Zhang, H.; Li, H.; Liu, Y. et al. Solution-processed nitrogen-rich graphene-like holey conjugated polymer for efficient lithium ion storage. Nano Energy 2017, 41, 117–127.
Yao, C. J.; Wu, Z. Z.; Xie, J.; Yu, F.; Guo, W.; Xu, Z. J.; Li, D. S.; Zhang, S. Q.; Zhang, Q. C. Two-dimensional (2D) covalent organic framework as efficient cathode for binder-free lithium-ion battery. ChemSusChem. 2020, 13, 2457–2463.
Lei, Z. D.; Chen, X. D.; Sun, W. W.; Zhang, Y.; Wang, Y. Exfoliated triazine-based covalent organic nanosheets with multielectron redox for high-performance lithium organic batteries. Adv. Energy Mater. 2019, 9, 1801010.
Chen, X. D.; Li, Y. S.; Wang, L.; Xu, Y.; Nie, A. M.; Li, Q. Q.; Wu, F.; Sun, W. W.; Zhang, X.; Vajtai, R. et al. High-lithium-affinity chemically exfoliated 2D covalent organic frameworks. Adv. Mater. 2019, 31, 1901640.
Lei, Z. D.; Yang, Q. S.; Xu, Y.; Guo, S. Y.; Sun, W. W.; Liu, H.; Lv, L. P.; Zhang, Y.; Wang, Y. Boosting lithium storage in covalent organic framework via activation of 14-electron redox chemistry. Nat. Commun. 2018, 9, 576.
Wu, M. M.; Zhao, Y.; Sun, B. Q.; Sun, Z. H.; Li, C. X.; Han, Y.; Xu, L. Q.; Ge, Z.; Ren, Y. X.; Zhang, M. T. et al. A 2D covalent organic framework as a high-performance cathode material for lithium-ion batteries. Nano Energy 2020, 70, 104498.
Xie, H. Y.; Hao, Q.; Jin, H. C.; Xie, S.; Sun, Z. W.; Ye, Y. D.; Zhang, C. H.; Wang, D.; Ji, H. X.; Wan, L. J. Redistribution of Li-ions using covalent organic frameworks towards dendrite-free lithium anodes: A mechanism based on a Galton board. Sci. China Chem. 2020, 63, 1306–1314.
Zhao, X. J.; Pachfule, P.; Thomas, A. Covalent organic frameworks (COFs) for electrochemical applications. Chem. Soc. Rev. 2021, 50, 6871–6913.
Zhou, L. M.; Jo, S.; Park, M.; Fang, L.; Zhang, K.; Fan, Y. P.; Hao, Z. M.; Kang, Y. M. Structural engineering of covalent organic frameworks for rechargeable batteries. Adv. Energy Mater. 2021, 11, 2003054.
Li, J.; Jing, X. C.; Li, Q. Q.; Li, S. W.; Gao, X.; Feng, X.; Wang, B. Bulk COFs and COF nanosheets for electrochemical energy storage and conversion. Chem. Soc. Rev. 2020, 49, 3565–3604.
Sun, T.; Xie, J.; Guo, W.; Li, D. S.; Zhang, Q. C. Covalent-organic frameworks: Advanced organic electrode materials for rechargeable batteries. Adv. Energy Mater. 2020, 10, 1904199.
Wang, S.; Wang, Q. Y.; Shao, P. P.; Han, Y. Z.; Gao, X.; Ma, L.; Yuan, S.; Ma, X. J.; Zhou, J. W.; Feng, X. et al. Exfoliation of covalent organic frameworks into few-layer redox-active nanosheets as cathode materials for lithium-ion batteries. J. Am. Chem. Soc. 2017, 139, 4258–4261.
Jiang, S. Y.; Gan, S. X.; Zhang, X.; Li, H.; Qi, Q. Y.; Cui, F. Z.; Lu, J.; Zhao, X. Aminal-linked covalent organic frameworks through condensation of secondary amine with aldehyde. J. Am. Chem. Soc. 2019, 141, 14981–14986.
Peng, Y. W.; Huang, Y.; Zhu, Y. H.; Chen, B.; Wang, L. Y.; Lai, Z. C.; Zhang, Z. C.; Zhao, M. T.; Tan, C. L.; Yang, N. L. et al. Ultrathin two-dimensional covalent organic framework nanosheets: Preparation and application in highly sensitive and selective DNA detection. J. Am. Chem. Soc. 2017, 139, 8698–8704.
Xu, S. Q.; Wang, G.; Biswal, B. P.; Addicoat, M.; Paasch, S.; Sheng, W. B.; Zhuang, X. D.; Brunner, E.; Heine, T.; Berger, R. et al. A nitrogen-rich 2D sp2-carbon-linked conjugated polymer framework as a high-performance cathode for lithium-ion batteries. Angew. Chem., Int. Ed. 2019, 58, 849–853.
Zhao, G. F.; Zhang, Y. H.; Gao, Z. H.; Li, H. N.; Liu, S. M.; Cai, S.; Yang, X. F.; Guo, H.; Sun, X. L. Dual active site of the azo and carbonyl-modified covalent organic framework for high-performance Li storage. ACS Energy Lett. 2020, 5, 1022–1031.
Sun, R. M.; Hou, S.; Luo, C.; Ji, X.; Wang, L. N.; Mai, L. Q.; Wang, C. S. A covalent organic framework for fast-charge and durable rechargeable Mg storage. Nano Lett. 2020, 20, 3880–3888.
Wang, G.; Chandrasekhar, N.; Biswal, B. P.; Becker, D.; Paasch, S.; Brunner, E.; Addicoat, M.; Yu, M. H.; Berger, R.; Feng, X. L. A crystalline, 2D polyarylimide cathode for ultrastable and ultrafast Li storage. Adv. Mater. 2019, 31, 1901478.
Wang, Y. R.; Liu, Z. T.; Wang, C. X.; Hu, Y.; Lin, H. N.; Kong, W. H.; Ma, J.; Jin, Z. π-Conjugated polyimide-based organic cathodes with extremely-long cycling life for rechargeable magnesium batteries. Energy Storage Mater. 2020, 26, 494–502.
Wu, C. G.; Hu, M. J.; Yan, X. R.; Shan, G. C.; Liu, J. Z.; Yang, J. Azo-linked covalent triazine-based framework as organic cathodes for ultrastable capacitor-type lithium-ion batteries. Energy Storage Mater. 2021, 36, 347–354.
Han, C. P.; Tong, J.; Tang, X.; Zhou, D.; Duan, H.; Li, B. H.; Wang, G. X. Boost anion storage capacity using conductive polymer as a pseudocapacitive cathode for high-energy and flexible lithium ion capacitors. ACS Appl. Mater. Interfaces 2020, 12, 10479–10489.