AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article

High-voltage output triboelectric nanogenerator with DC/AC optimal combination method

Yuqi Wang1,2,§Tian Huang1,§Qi Gao1,§Jianping Li3Jianming Wen3( )Zhong Lin Wang1,4,5( )Tinghai Cheng1,2,4( )
Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing 101400, China
School of Mechatronic Engineering, Changchun University of Technology, Changchun 130012, China
The Institute of Precision Machinery and Smart Structure, Key Laboratory of Intelligent Operation and Maintenance Technology & Equipment for Urban Rail Transit of Zhejiang Province, College of Engineering, Zhejiang Normal University, Jinhua 321004, China
CUSTech Institute of Technology, Wenzhou 325024, China
School of Materials Science and Engineering, Georgia Institute of Technology, Atlanta, GA 30332-0245, USA

§ Yuqi Wang, Tian Huang, and Qi Gao contributed equally to this work.

Show Author Information

Graphical Abstract

The high-voltage output triboelectric nanogenerator (HVO-TENG) is proposed with direct current/alternating current (DC/AC) optimal combination method. The HVO-TENG can continuously illuminate more than 6,000 light emitting diodes (LEDs), which is enough to drive more possible applications of TENG.

Abstract

The high-voltage power source is one of the important research directions of triboelectric nanogenerator (TENG). In this paper, a high-voltage output TENG (HVO-TENG) is proposed with direct current/alternating current (DC/AC) optimal combination method for wind energy harvesting. Through the optimal design of a direct current generation unit (DCGU) and an alternating current generation unit (ACGU), the HVO-TENG can produce DC voltage of 21.5 kV and AC voltage of 200 V, simultaneously. The HVO-TENG can continuously illuminate more than 6,000 light emitting diodes (LEDs), which is enough to drive more possible applications of TENG. Besides, this paper explored application experiments on HVO-TENG. Demonstrative experiments indicate that the high-voltage DC output is used for producing ozone, while the AC output can light up ultraviolet (UV) LEDs. The HVO-TENG can increase the ozone concentration (C) in an airtight container to 3 parts per million (ppm) after 7 h and continuously light up UV LEDs. All these demonstrations verify that the HVO-TENG has important guiding significance for designing high performance TENG.

Electronic Supplementary Material

Video
12274_3956_ESM1.mp4
12274_3956_ESM2.mp4
Download File(s)
12274_2021_3956_MOESM1_ESM.pdf (432.8 KB)

References

1

Huang, K.; Li, K. L.; Shu, L.; Yang, X.; Gordon, T.; Wang, X. C. High voltage discharge exhibits severe effect on ZigBee-based device in solar insecticidal lamps internet of things. IEEE Wirel. Commun. 2020, 27, 140–145.

2

Dobrowolski, A.; Pieloth, D.; Wiggers, H.; Thommes, M. Electrostatic precipitation of submicron particles in a molten carrier. Pharmaceutics 2019, 11, 276.

3

Wu, C. S.; Wang, A. C.; Ding, W. B.; Guo, H. Y.; Wang, Z. L. Triboelectric nanogenerator: A foundation of the energy for the new era. Adv. Energy Mater. 2019, 9, 1802906.

4

Wang, Z. L.; Wang, A. C. On the origin of contact-electrification. Mater. Today 2019, 30, 34–51.

5

Wang, Z. L. Triboelectric nanogenerator (TENG)-sparking an energy and sensor revolution. Adv. Energy Mater. 2020, 10, 2000137.

6

Fan, F. R.; Tian, Z. Q.; Wang, Z. L. Flexible triboelectric generator. Nano Energy 2012, 1, 328–334.

7

Zhong, J. W.; Zhong, Q. Z.; Fan, F. R.; Zhang, Y.; Wang, S. H.; Hu, B.; Wang, Z. L.; Zhou, J. Finger typing driven triboelectric nanogenerator and its use for instantaneously lighting up LEDs. Nano Energy 2013, 2, 491–497.

8

Tang, Q.; Yeh, M. H.; Liu, G. L.; Li, S. M.; Chen, J.; Bai, Y.; Feng, L.; Lai, M. H.; Ho, K. C.; Guo, H. Y. et al. Whirligig-inspired triboelectric nanogenerator with ultrahigh specific output as reliable portable instant power supply for personal health monitoring devices. Nano Energy 2018, 47, 74–80.

9

Wang, P. H.; Pan, L.; Wang, J. Y.; Xu, M. Y.; Dai, G. Z.; Zou, H. Y.; Dong, K.; Wang, Z. L. An ultra-low-friction triboelectric-electromagnetic hybrid nanogenerator for rotation energy harvesting and self-powered wind speed sensor. ACS Nano 2018, 12, 9433–9440.

10

Tcho, I. W.; Jeon, S. B.; Park, S. J.; Kim, W. G.; Jin, I. K.; Han, J. K.; Kim, D.; Choi, Y. K. Disk-based triboelectric nanogenerator operated by rotational force converted from linear force by a gear system. Nano Energy 2018, 50, 489–496.

11

Wang, Z. L.; Zhu, G.; Yang, Y.; Wang, S. H.; Pan, C. F. Progress in nanogenerators for portable electronics. Mater. Today 2012, 15, 532–543.

12

Wang, Z. L. Triboelectric nanogenerators as new energy technology for self-powered systems and as active mechanical and chemical sensors. ACS Nano 2013, 7, 9533–9557.

13

Das, P. S.; Chhetry, A.; Maharjan, P.; Rasel, M. S.; Park, J. Y. A laser ablated graphene-based flexible self-powered pressure sensor for human gestures and finger pulse monitoring. Nano Res. 2019, 12, 1789–1795.

14

Wang, Z. L. Triboelectric nanogenerators as new energy technology and self-powered sensors—principles, problems and perspectives. Faraday Discuss. 2014, 176, 447–458.

15

Wang, Z. L.; Jiang, T.; Xu, L. Toward the blue energy dream by triboelectric nanogenerator networks. Nano Energy 2017, 39, 9–23.

16

Wang, Z. L. Entropy theory of distributed energy for internet of things. Nano Energy 2019, 58, 669–672.

17

Liu, L.; Shi, Q. F.; Lee, C. A hybridized electromagnetic–triboelectric nanogenerator designed for scavenging biomechanical energy in human balance control. Nano Res. 2021, 14, 4227–4235.

18

Luo, J. J.; Gao, W. C.; Wang, Z. L. The triboelectric nanogenerator as an Innovative technology toward Intelligent sports. Adv. Mater. 2021, 33, 2004178.

19

Lin, Z. M.; Zhang, B. B.; Guo, H. Y.; Wu, Z. Y.; Zou, H. Y.; Yang, J.; Wang, Z. L. Super-robust and frequency-multiplied triboelectric nanogenerator for efficient harvesting water and wind energy. Nano Energy 2019, 64, 103908.

20

Yang, X. D.; Xu, L.; Lin, P.; Zhong, W.; Bai, Y.; Luo, J. J.; Chen, J.; Wang, Z. L. Macroscopic self-assembly network of encapsulated high-performance triboelectric nanogenerators for water wave energy harvesting. Nano Energy 2019, 60, 404–412.

21

Wang, Z. L. On Maxwell′s displacement current for energy and sensors: The origin of nanogenerators. Mater. Today 2017, 20, 74–82.

22

Xu, Y. H.; Yang, W. X.; Yu, X.; Li, H. C.; Cheng, T. H.; Lu, X. H.; Wang, Z. L. Real-time monitoring system of automobile driver status and intelligent fatigue warning based on triboelectric nanogenerator. ACS Nano 2021, 15, 7271–7278.

23

Wang, Y.; Wang, J. Y.; Xiao, X.; Wang, S. Y.; Kien, P. T.; Dong, J. L.; Mi, J. C.; Pan, X. X.; Wang, H. F.; Xu, M. Y. Multi-functional wind barrier based on triboelectric nanogenerator for power generation, self-powered wind speed sensing and highly efficient windshield. Nano Energy 2020, 73, 104736.

24

Han, K.; Luo, J. J.; Feng, Y. W.; Lai, Q. S.; Bai, Y.; Tang, W.; Wang, Z. L. Wind-driven radial-engine-shaped triboelectric nanogenerators for self-powered absorption and degradation of NOX. ACS Nano 2020, 14, 2751–2759.

25

Leung, S. F.; Fu, H. C.; Zhang, M. L.; Hassan, A. H.; Jiang, T.; Salama, K. N.; Wang, Z. L.; He, J. H. Blue energy fuels: Converting ocean wave energy to carbon-based liquid fuels via CO2 reduction. Energy Environ. Sci. 2020, 13, 1300–1308.

26

Wang, Y. Q.; Yu, X.; Yin, M. F.; Wang, J. L.; Gao, Q.; Yu, Y.; Cheng, T. H.; Wang, Z. L. Gravity triboelectric nanogenerator for the steady harvesting of natural wind energy. Nano Energy 2021, 82, 105740.

27

Liu, S. M.; Li, X.; Wang, Y. Q.; Yang, Y. F.; Meng, L. X.; Cheng, T. H.; Wang, Z. L. Magnetic switch structured triboelectric nanogenerator for continuous and regular harvesting of wind energy. Nano Energy 2021, 83, 105851.

28

Yang, Y. F.; Yu, X.; Meng, L. X.; Li, X.; Xu, Y. H.; Cheng, T. H.; Liu, S. M.; Wang, Z. L. Triboelectric nanogenerator with double rocker structure design for ultra-low-frequency wave full-stroke energy harvesting. Extreme Mech. Lett. 2021, 46, 101338.

29

Liang, X.; Jiang, T.; Liu, G. X.; Feng, Y. W.; Zhang, C.; Wang, Z. L. Spherical triboelectric nanogenerator integrated with power management module for harvesting multidirectional water wave energy. Energy Environ. Sci. 2020, 13, 277–285.

30

Xia, K. Q.; Fu, J. M.; Xu, Z. W. Multiple-frequency high-output triboelectric nanogenerator based on a water balloon for all-weather water wave energy harvesting. Adv. Energy Mater. 2020, 10, 2000426.

31

Yin, M. F.; Lu, X. H.; Qiao, G. D.; Xu, Y. H.; Wang, Y. Q.; Cheng, T. H.; Wang, Z. L. Mechanical regulation triboelectric nanogenerator with controllable output performance for random energy harvesting. Adv. Energy Mater. 2020, 10, 2000627.

32

Lei, R.; Shi, Y. X.; Ding, Y. F.; Nie, J. H.; Li, S. Y.; Wang, F.; Zhai, H.; Chen, X. Y.; Wang, Z. L. Sustainable high-voltage source based on triboelectric nanogenerator with a charge accumulation strategy. Energy Environ. Sci. 2020, 13, 2178–2190.

33

Guo, H. Y.; Chen, J.; Wang, L. F.; Wang, A. C.; Li, Y. F.; An, C. H.; He, J. H.; Hu, C. G.; Hsiao, V. K. S.; Wang, Z. L. A highly efficient triboelectric negative air ion generator. Nat. Sustain. 2021, 4, 147–153.

34

Cheng, J.; Ding, W. B.; Zi, Y. L.; Lu, Y. J.; Ji, L. H.; Liu, F.; Wu, C. S.; Wang, Z. L. Triboelectric microplasma powered by mechanical stimuli. Nat. Commun. 2018, 9, 3733.

35

Wang, Z. Z.; Shi, Y. X.; Liu, F.; Wang, H.; Liu, X.; Sun, R. T.; Lu, Y. J.; Ji, L. H.; Wang, Z. L.; Cheng, J. Distributed mobile ultraviolet light sources driven by ambient mechanical stimuli. Nano Energy 2020, 74, 104910.

36

Luo, J. J.; Han, K.; Wu, X. Q.; Cai, H. H.; Jiang, T.; Zhou, H. B.; Wang, Z. L. Self-powered mobile sterilization and infection control system. Nano Energy 2021, 88, 106313.

37

Huo, Z. Y.; Kim, Y. J.; Suh, I. Y.; Lee, D. M.; Lee, J. H.; Du, Y.; Wang, S.; Yoon, H. J.; Kim, S. W. Triboelectrification induced self-powered microbial disinfection using nanowire-enhanced localized electric field. Nat. Commun. 2021, 12, 3693.

38

Chen, X. X.; Liu, B.; Chen, Q.; Liu, Y. X.; Duan, X. C. Application of combining ozone and UV-C sterilizations in the artificial drying of persimmon fruits. LWT 2020, 134, 110205.

39

Feng, H. Q.; Bai, Y.; Qiao, L.; Li, Z.; Wang, E. G.; Chao, S. Y.; Qu, X. C.; Cao, Y.; Liu, Z.; Han, X. et al. An ultra-simple charge supplementary strategy for high performance rotary triboelectric nanogenerators. Small 2021, 17, 2101430.

40

Cho, S.; Hanif, Z.; Yun, Y.; Khan, Z. A.; Jang, S.; Ra, Y.; Lin, Z. H.; La, M.; Park, S. J.; Choi, D. Triboelectrification-driven microbial inactivation in a conductive cellulose filter for affordable, portable, and efficient water sterilization. Nano Energy 2021, 88, 106228.

Nano Research
Pages 3239-3245
Cite this article:
Wang Y, Huang T, Gao Q, et al. High-voltage output triboelectric nanogenerator with DC/AC optimal combination method. Nano Research, 2022, 15(4): 3239-3245. https://doi.org/10.1007/s12274-021-3956-0
Topics:

936

Views

25

Crossref

17

Web of Science

24

Scopus

1

CSCD

Altmetrics

Received: 19 September 2021
Revised: 25 October 2021
Accepted: 25 October 2021
Published: 26 November 2021
© Tsinghua University Press and Springer-Verlag GmbH Germany, part of Springer Nature 2021
Return