Discover the SciOpen Platform and Achieve Your Research Goals with Ease.
Search articles, authors, keywords, DOl and etc.
Wind energy is a promising renewable energy source for a low-carbon society. This study is to develop a fully packaged vortex-induced vibration triboelectric nanogenerator (VIV-TENG) for scavenging wind energy. The VIV-TENG consists of a wind vane, internal power generation unit, an external frame, four springs, a square cylinder and a circular turntable. The internal power generation unit consists of polytetrafluoroethylene (PTFE) balls, a honeycomb frame and two copper electrodes. Different from most of the previous wind energy harvesting TENGs, the bouncing PTFE balls are fully packaged in the square cylinder. The distinct design separates the process of contact electrification from the external environment, and at the same time avoids the frictional wear of the ordinary wind energy harvesting TENGs. The corresponding VIV parameters are investigated to evaluate their influence on the vibration behaviors and the energy output. Resonant state of the VIV-TENG corresponds to the high output performance from the VIV-TENG. The distinct, robust structure ensures the full-packaged VIV-TENG can harvest wind energy from arbitrary directions and even in undesirable weather conditions. The study proposes a novel TENG configuration for harvesting wind energy and the VIV-TENG proves promising powering micro-electro-mechanical appliances.
Wang, J. L.; Zhao, G. F.; Zhang, M.; Zhang, Z. E. Efficient study of a coarse structure number on the bluff body during the harvesting of wind energy. Energy Sour. A 2018, 40, 1788–1797.
Scrosati, B. Power sources for portable electronics and hybrid cars: Lithium batteries and fuel cells. Chem. Rec. 2005, 5, 286–297.
Chen, Y.; Mu, X. J.; Wang, T.; Ren, W. W.; Yang, Y.; Wang, Z. L.; Sun, C. L.; Gu, A. Y. Flutter phenomenon in flow driven energy harvester-a unified theoretical model for “stiff” and “flexible” materials. Sci. Rep. 2016, 6, 35180.
Jiang, D. Y.; Xu, M. Y.; Dong, M.; Guo, F.; Liu, X. H.; Chen, G. J.; Wang, Z. L. Water-solid triboelectric nanogenerators: An alternative means for harvesting hydropower. Renew. Sust. Energy Rev. 2019, 115, 109366.
Maitra, A.; Bera, R.; Halder, L.; Bera, A.; Paria, S.; Karan, S. K.; Si, S. K.; De, A.; Ojha, S.; Khatua, B. B. Photovoltaic and triboelectrification empowered light-weight flexible self-charging asymmetric supercapacitor cell for self-powered multifunctional electronics. Renew. Sust. Energy Rev. 2021, 151, 111595.
Wu, M.; Gao, Z.; Yao, K.; Hou, S.; Liu, Y.; Li, D.; He, J.; Huang, X.; Song, E.; Yu, J. et al. Thin, soft, skin-integrated foam-based triboelectric nanogenerators for tactile sensing and energy harvesting. Mater. Today Energy 2021, 20, 100657.
Yang, Y. F.; Yu, X.; Meng, L. X.; Li, X.; Xu, Y. H.; Cheng, T. H.; Liu, S. M.; Wang, Z. L. Triboelectric nanogenerator with double rocker structure design for ultra-low-frequency wave full-stroke energy harvesting. Extreme Mech. Lett. 2021, 46, 101338.
Liu, L.; Shi, Q. F.; Lee, C. A hybridized electromagnetic-triboelectric nanogenerator designed for scavenging biomechanical energy in human balance control. Nano Res. 2021, 14, 4227–4235.
Pan, L.; Wang, J. Y.; Wang, P. H.; Gao, R. J.; Wang, Y. C.; Zhang, X. W.; Zou, J. J.; Wang, Z. L. Liquid-FEP-based U-tube triboelectric nanogenerator for harvesting water-wave energy. Nano Res. 2018, 11, 4062–4073.
Quan, T.; Yang, Y. Fully enclosed hybrid electromagnetic-triboelectric nanogenerator to scavenge vibrational energy. Nano Res. 2016, 9, 2226–2233.
Li, Y. H.; Zhang, Q.; Liu, Y.; Zhang, P. L.; Ren, C.; Zhang, H. D.; Cai, H.; Ding, G. F.; Yang, Z. Q.; Zhang, C. Regulation of nanocrystals structure for high-performance magnetic triboelectric nanogenerator. Nano Energy 2021, 89, 106390.
Liu, S.; Li, P.; Yang, Y. R. On the design of an electromagnetic aeroelastic energy harvester from nonlinear flutter. Meccanica 2018, 53, 2807–2831.
Datta, R.; Ranganathan, V. T. Direct power control of grid-connected wound rotor induction machine without rotor position sensors. IEEE Trans. Power Electr. 2002, 16, 390–399.
Zheng, H. W.; Zi, Y. L.; He, X.; Guo, H. Y.; Lai, Y. C.; Wang, J.; Zhang, S. L.; Wu, C. S.; Cheng, G.; Wang, Z. L. Concurrent harvesting of ambient energy by hybrid nanogenerators for wearable self-powered systems and active remote sensing. ACS Appl. Mater. Interfaces 2018, 10, 14708–14715.
Su, Y. J.; Xie, G. Z.; Xie, T.; Zhang, H. L.; Ye, Z. B.; Jing, Q. S.; Tai, H. L.; Du, X. S.; Jiang, Y. D. Wind energy harvesting and self-powered flow rate sensor enabled by contact electrification. J. Phys. D Appl. Phys. 2016, 49, 215601.
Phan, H.; Shin, D. M.; Jeon, S. H.; Kang, T. Y.; Han, P.; Kim, G. H.; Kim, H. K.; Kim, K.; Hwang, Y. H.; Hong, S. W. Aerodynamic and aeroelastic flutters driven triboelectric nanogenerators for harvesting broadband airflow energy. Nano Energy 2017, 33, 476–484.
Liu, L.; Guo, X. E.; Lee, C. Promoting smart cities into the 5G era with multi-field Internet of Things (IoT) applications powered with advanced mechanical energy harvesters. Nano Energy 2021, 88, 106304.
Wang, Y.; Wang, J. Y.; Xiao, X.; Wang, S. Y.; Kien, P. T.; Dong, J. L.; Mi, J. C.; Pan, X. X.; Wang, H. F.; Xu, M. Y. Multi-functional wind barrier based on triboelectric nanogenerator for power generation, self-powered wind speed sensing and highly efficient windshield. Nano Energy 2020, 73, 104736.
Sun, W. P.; Ding, Z.; Qin, Z. Y.; Chu, F. L.; Han, Q. K. Wind energy harvesting based on fluttering double-flag type triboelectric nanogenerators. Nano Energy 2020, 70, 104526.
Xu, M. Y.; Wang, Y. C.; Zhang, S. L.; Ding, W. B.; Cheng, J.; He, X.; Zhang, P.; Wang, Z. J.; Pan, X. X.; Wang, Z. L. An aeroelastic flutter based triboelectric nanogenerator as a self-powered active wind speed sensor in harsh environment. Extreme Mech. Lett. 2017, 15, 122–129.
Zhang, C. G.; Liu, Y. B.; Zhang, B. F.; Yang, O.; Yuan, W.; He, L. X.; Wei, X. L.; Wang, J.; Wang, Z. L. Harvesting wind energy by a triboelectric nanogenerator for an intelligent high-speed train system. ACS Energy Lett. 2021, 6, 1490–1499.
Chen, P. F.; An, J.; Shu, S.; Cheng, R. W.; Nie, J. H.; Jiang, T.; Wang, Z. L. Super-durable, low-wear, and high-performance fur-brush triboelectric nanogenerator for wind and water energy harvesting for smart agriculture. Adv. Energy Mater. 2021, 11, 2003066.
Shi, Q. F.; Zhang, Z. X.; He, T. Y. Y.; Sun, Z. D.; Wang, B. J.; Feng, Y. Q.; Shan, X. C.; Salam, B.; Lee, C. Deep learning enabled smart mats as a scalable floor monitoring system. Nat. Commun. 2020, 11, 4609.
Bae, J.; Lee, J.; Kim, S.; Ha, J.; Lee, B. S.; Park, Y.; Choong, C.; Kim, J. B.; Wang, Z. L.; Kim, H. Y. et al. Flutter-driven triboelectrification for harvesting wind energy. Nat. Commun. 2014, 5, 4929.
Zhang, Y.; Fu, S. C.; Chan, K. C.; Shin, D. M.; Chao, C. Y. H. Boosting power output of flutter-driven triboelectric nanogenerator by flexible flagpole. Nano Energy 2021, 88, 106284.
Hu, J.; Pu, X. J.; Yang, H. M.; Zeng, Q. X.; Tang, Q.; Zhang, D. Z.; Hu, C. G.; Xi, Y. A flutter-effect-based triboelectric nanogenerator for breeze energy collection from arbitrary directions and self-powered wind speed sensor. Nano Res. 2019, 12, 3018–3023.
Perez, M.; Boisseau, S.; Gasnier, P.; Willemin, J.; Reboud, J. L. An electret-based aeroelastic flutter energy harvester. Smart Mater. Struct. 2015, 24, 035004.
Xie, Y. N.; Wang, S. H.; Lin, L.; Jing, Q. S.; Lin, Z. H.; Niu, S. M.; Wu, Z. Y.; Wang, Z. L. Rotary triboelectric nanogenerator based on a hybridized mechanism for harvesting wind energy. ACS Nano 2013, 7, 7119–7125.
Wang, Y. Q.; Yu, X.; Yin, M. F.; Wang, J. L.; Gao, Q.; Yu, Y.; Cheng, T. H.; Wang, Z. L. Gravity triboelectric nanogenerator for the steady harvesting of natural wind energy. Nano Energy 2021, 82, 105740.
Ren, X. H.; Fan, H. Q.; Wang, C.; Ma, J. W.; Li, H.; Zhang, M. C.; Lei, S. H.; Wang, W. J. Wind energy harvester based on coaxial rotatory freestanding triboelectric nanogenerators for self-powered water splitting. Nano Energy 2018, 50, 562–570.
Yong, S.; Wang, J. Y.; Yang, L. J.; Wang, H. Q.; Luo, H.; Liao, R. J.; Wang, Z. L. Auto-switching self-powered system for efficient broad-band wind energy harvesting based on dual-rotation shaft triboelectric nanogenerator. Adv. Energy Mater. 2021, 11, 2101194.
Williamson, C. H. K.; Govardhan, R. Vortex-induced vibrations. Annu. Rev. Fluid Mech. 2004, 36, 413–455.
Xiao, X.; Zhang, X. Q.; Wang, S. Y.; Ouyang, H.; Chen, P. F.; Song, L. G.; Yuan, H. C.; Ji, Y. L.; Wang, P. H.; Li, Z. et al. Honeycomb structure inspired triboelectric nanogenerator for highly effective vibration energy harvesting and self-powered engine condition monitoring. Adv. Energy Mater. 2019, 9, 1902460.
Du, T. L.; Zuo, X. S.; Dong, F. Y.; Li, S. Q.; Mtui, A. E.; Zou, Y. J.; Zhang, P.; Zhao, J. H.; Zhang, Y. W.; Sun, P. T. et al. A self-powered and highly accurate vibration sensor based on bouncing-ball triboelectric nanogenerator for intelligent ship machinery monitoring. Micromachines 2021, 12, 218.
Niu, S. M.; Liu, Y.; Chen, X. Y.; Wang, S. H.; Zhou, Y. S.; Lin, L.; Xie, Y. N.; Wang, Z. L. Theory of freestanding triboelectric-layer-based nanogenerators. Nano Energy 2015, 12, 760–774.
Bernitsas, M. M.; Raghavan, K.; Ben-Simon, Y.; Garcia, E. M. H. VIVACE (Vortex induced vibration aquatic clean energy): A new concept in generation of clean and renewable energy from fluid flow. J. Offshore Mech. Arct. Eng. 2008, 130, 041101.
Khalak, A.; Williamson, C. H. K. Motions, forces and mode transitions in vortex-induced vibrations at low mass-damping. J. Fluids Struct. 1999, 13, 813–851.
Govardhan, R.; Williamson, C. H. K. Modes of vortex formation and frequency response of a freely vibrating cylinder. J. Fluid Mech. 2000, 420, 85–130.
Sarpkaya, T. A critical review of the intrinsic nature of vortex-induced vibrations. J. Fluids Struct. 2004, 19, 389–447.
Bernitsas, M. M.; Ben-Simon, Y.; Raghavan, K.; Garcia, E. M. H. The VIVACE converter: Model tests at high damping and reynolds number around 105. J. Offshore Mech. Arct. Eng. 2006, 131, 011102.
Zhou, T.; Razali, S. F. M.; Hao, Z.; Cheng, L. On the study of vortex-induced vibration of a cylinder with helical strakes. J. Fluids Struct. 2011, 27, 903–917.
Modir, A.; Goudarzi, N. Experimental investigation of Reynolds number and spring stiffness effects on vortex induced vibrations of a rigid circular cylinder. Eur. J. Mech. B Fluids 2019, 74, 34–40.
McCarty, L. S.; Whitesides, G. M. Electrostatic charging due to separation of ions at interfaces: Contact electrification of ionic electrets. Angew. Chem., Int. Ed. 2008, 47, 2188–2207.