Discover the SciOpen Platform and Achieve Your Research Goals with Ease.
Search articles, authors, keywords, DOl and etc.
Electrochemical CO2 reduction (ECR) is one of the most effective methods to obtain carbonaceous chemicals and reduce greenhouse gases passingly under the ambient condition. However, efficient electrocatalysts featured with high selectivity and stability are still lacking. A novel molecule-mediated Ag electrocatalyst with capped thiols is rationally designed for high-performance ECR. The thiol-capped and carbon-supported Ag nanostructures (Ag-TC) are formed by in situ electrochemical reduction from three-dimentional (3D) Ag-thiol metal-organic compound with cysteine as the anchor agent and carbon source. Ag-TC exhibits high selectivity and stability for CO2 conversion to CO (86.7%), which is more catalytically active than that of common Ag nanoparticles. The function of thiols for ECR is proved by replacing cysteine with alanine without thiol group. Meanwhile, alternatively replacing and removing the surface molecules on the Ag foil further demonstrate the effct of thiols. This work enlightens the promise of in situ construction method for molecule capped metal electrocatalyst towards selective and stable ECR.
Jiao, J. Q.; Lin, R.; Liu, S. J.; Cheong, W. C.; Zhang, C.; Chen, Z.; Pan, Y.; Tang, J. G.; Wu, K. L.; Hung, S. F. et al. Copper atom-pair catalyst anchored on alloy nanowires for selective and efficient electrochemical reduction of CO2. Nat. Chem. 2019, 11, 222–228.
Chen, S. H.; Wang, B. Q.; Zhu, J. X.; Wang, L. Q.; Ou, H. H.; Zhang, Z. D.; Liang, X.; Zheng, L. R.; Zhou, L.; Su, Y. Q. et al. Lewis acid site-promoted single-atomic Cu catalyzes electrochemical CO2 methanation. Nano Lett. 2021, 21, 7325–7331.
Hu, Z.; Xie, Y. Y.; Yu, D. S.; Liu, Q. N.; Zhou, L. M.; Zhang, K.; Li, P.; Hu, F.; Li, L. L.; Chou, S. L. et al. Hierarchical Ti3C2Tx MXene/Carbon nanotubes for low overpotential and long-life Li-CO2 batteries. ACS Nano 2021, 15, 8407–8417.
Hu, F.; Abeyweera, S. C.; Yu, J.; Zhang, D. T.; Wang, Y.; Yan, Q. M.; Sun, Y. G. Quantifying electrocatalytic reduction of CO2 on twin boundaries. Chem 2020, 6, 3007–3021.
Shang, H. S.; Wang, T.; Pei, J. J.; Jiang, Z. L.; Zhou, D. N.; Wang, Y.; Li, H. J.; Dong, J. C.; Zhuang, Z. B.; Chen, W. X. et al. Design of a single-atom indiumδ+-N4 interface for efficient electroreduction of CO2 to formate. Angew. Chem., Int. Ed. 2020, 59, 22465–22469.
Gao, D. F.; Cai, F.; Wang, G. X.; Bao, X. H. Nanostructured heterogeneous catalysts for electrochemical reduction of CO2. Curr. Opin. Green Sustain. Chem. 2017, 3, 39–44.
Kim, C.; Eom, T.; Jee, M. S.; Jung, H.; Kim, H.; Min, B. K.; Hwang, Y. J. Insight into electrochemical CO2 reduction on surface-molecule-mediated Ag nanoparticles. ACS Catal. 2017, 7, 779–785.
Sun, X. H.; Tuo, Y. X.; Ye, C. L.; Chen, C.; Lu, Q.; Li, G. N.; Jiang, P.; Chen, S. H.; Zhu, P.; Ma, M. et al. Phosphorus induced electron localization of single Iron sites for boosted CO2 electroreduction reaction. Angew. Chem., Int. Ed. 2021, 133, 23806–23810.
Chen, Y. H.; Li, C. W.; Kanan, M. W. Aqueous CO2 reduction at very low overpotential on oxide-derived Au nanoparticles. J. Am. Chem. Soc. 2012, 134, 19969–19972.
Choi, C.; Cai, J.; Lee, C.; Lee, H. M.; Xu, M. J.; Huang, Y. Intimate atomic Cu-Ag interfaces for high CO2RR selectivity towards CH4 at low over potential. Nano Res. 2021, 14, 3497–3501.
Ma, M.; Trześniewski, B. J.; Xie, J.; Smith, W. A. Selective and efficient reduction of carbon dioxide to carbon monoxide on oxide-derived nanostructured silver electrocatalysts. Angew. Chem., Int. Ed. 2016, 55, 9748–9752.
He, Z. Q.; Liu, T.; Tang, J. T.; Zhou, C. Y.; Wen, L. S.; Chen, J. M.; Song, S. Highly active, selective and stable electroreduction of carbon dioxide to carbon monoxide on a silver catalyst with truncated hexagonal bipyramidal shape. Electrochim. Acta 2016, 222, 1234–1242.
Martić, N.; Reller, C.; Macauley, C.; Löffler, M.; Reichert, A. M.; Reichbauer, T.; Vetter, K. M.; Schmid, B.; McLaughlin, D.; Leidinger, P. et al. Ag2Cu2O3 — A catalyst template material for selective electroreduction of CO to C2+ products. Energy Environ. Sci. 2020, 13, 2993–3006.
Hsieh, Y. C.; Senanayake, S. D.; Zhang, Y.; Xu, W. Q.; Polyansky, D. E. Effect of chloride anions on the synthesis and enhanced catalytic activity of silver nanocoral electrodes for CO2 electroreduction. ACS Catal. 2015, 5, 5349–5356.
Jiang, K.; Kharel, P.; Peng, Y. D.; Gangishetty, M. K.; Lin, H. Y. G.; Stavitski, E.; Attenkofer, K.; Wang, H. T. Silver nanoparticles with surface-bonded oxygen for highly selective CO2 reduction. ACS Sustainable Chem. Eng. 2017, 5, 8529–8534.
Qiu, J. P.; Tang, J. T.; Shen, J.; Wu, C. W.; Qian, M. Q.; He, Z. Q.; Chen, J. M.; Shuang. S. Preparation of a silver electrode with a three-dimensional surface and its performance in the electrochemical reduction of carbon dioxide. Electrochim. Acta 2016, 203, 99–108.
Zhang, Y.; Ji, L.; Qiu, W. B.; Shi, X. F.; Asiri, A. M.; Sun, X. P. Iodide-derived nanostructured silver promotes selective and efficient carbon dioxide conversion into carbon monoxide. Chem. Commun. 2018, 54, 2666–2669.
Zhang, N. Q.; Zhang, X. X.; Kang, Y. K.; Ye, C. L.; Jin, R.; Yan, H.; Lin, R.; Yang, J. R.; Xu, Q.; Wang, Y. et al. A supported Pd2 dual-atom site catalyst for efficient electrochemical CO2 reduction. Angew. Chem., Int. Ed. 2021, 60, 13388–13393.
Yun, H.; Kim, J.; Choi, W.; Han, M. H.; Park, J. H.; Oh, H. S.; Won, D. H.; Kwak, K.; Hwang, Y. J. Understanding morphological degradation of Ag nanoparticle during electrochemical CO2 reduction reaction by identical location observation. Electrochim. Acta 2021, 371, 137795.
Sun, K.; Wu, L. N.; Qin, W.; Zhou, J. G.; Hu, Y. F.; Jiang, Z. H.; Shen, B. Z.; Wang, Z. J. Enhanced electrochemical reduction of CO2 to CO on Ag electrocatalysts with increased unoccupied density of state. J. Mater. Chem. A 2016, 4, 12616–12623.
Lu, Q.; Rosen, J.; Zhou, Y.; Hutchings, G. S.; Kimmel, Y. C.; Chen, J. G.; Jiao, F. A selective and efficient electrocatalyst for carbon dioxide reduction. Nat. Commun. 2014, 5, 3242.
Mou, S. Y.; Li, Y. H.; Yue, L. C.; Liang, J.; Luo, Y. L.; Liu, Q.; Li, T. S.; Lu, S. Y.; Asiri, A. M.; Xiong, X. L. et al. Cu2Sb decorated Cu nanowire arrays for selective electrocatalytic CO2 to CO conversion. Nano Res. 2021, 14, 2831–2836.
Cao, Z.; Derrick, J. S.; Xu, J.; Gao, R.; Gong, M.; Nichols, E. M.; Smith, P. T.; Liu, X. W.; Wen, X. D.; Copéret, C. et al. Chelating N-heterocyclic carbene ligands enable tuning of electrocatalytic CO2 reduction to formate and carbon monoxide: Surface organometallic chemistry. Angew. Chem., Int. Ed. 2018, 57, 4981–4985.
Qu, Q. Y.; Ji, S. F.; Chen, Y. J.; Wang, D. S.; Li, Y. D. The atomic-level regulation of single-atom site catalysts for the electrochemical CO2 reduction reaction. Chem. Sci. 2021, 12, 4201–4215.
Elgrishi, N.; Chambers, M. B.; Wang, X.; Fontecave, M. Molecular polypyridine-based metal complexes as catalysts for the reduction of CO2. Chem. Soc. Rev. 2017, 46, 761–796.
Elouarzaki, K.; Kannan, V.; Jose, V.; Sabharwal, H. S.; Lee, J. M. Recent trends, benchmarking, and challenges of electrochemical reduction of CO2 by molecular catalysts. Adv. Energy Mater. 2019, 9, 1900090.
Zhu, M. H.; Chen, J. C.; Huang, L. B.; Ye, R. Q.; Xu, J.; Han, Y. F. Covalently grafting cobalt porphyrin onto carbon nanotubes for efficient CO2 electroreduction. Angew. Chem., Int. Ed. 2019, 58, 6595–6599.
Xie, M. S.; Xia, B. Y.; Li, Y. W.; Yan, Y. H.; Yang, Y. H.; Sun, Q.; Chan, S. H.; Fisher, A.; Wang, X. Amino acid modified copper electrodes for the enhanced selective electroreduction of carbon dioxide towards hydrocarbons. Energy Environ. Sci. 2016, 9, 1687–1695.
Kim, C.; Jeon, H. S.; Eom, T.; Jee, M. S.; Kim, H.; Friend, C. M.; Min, B. K.; Hwang, Y. J. Achieving selective and efficient electrocatalytic activity for CO2 reduction using immobilized silver nanoparticles. J. Am. Chem. Soc. 2015, 137, 13844–13850.
Cui, Y. Y.; Wang, Y. L.; Zhao, L. N. Cysteine-Ag cluster hydrogel confirmed by experimental and numerical studies. Small 2015, 11, 5118–5125.
Luc, W.; Jiao, F. Nanoporous metals as electrocatalysts: State-of-the-art, opportunities, and challenges. ACS Catal. 2017, 7, 5856–5861.
Yan, S. L.; Chen, C. Z.; Zhang, F. H.; Mahyoub, S. A.; Cheng, Z. M. High-density Ag nanosheets for selective electrochemical CO2 reduction to CO. Nanotechnology 2021, 32, 165705.
Meng, Y. T.; Zhang, X.; Hung, W. H.; He, J. K.; Tsai, Y. S.; Kuang, Y.; Kenney, M. J.; Shyue, J. J.; Liu, Y. J.; Stone, K. H. et al. Highly active oxygen evolution integrated with efficient CO2 to CO electroreduction. Proc. Natl. Acad. Sci. USA 2019, 116, 23915–23922.
Huang, J. F.; Wu, Y. C. Tunable Ag micromorphologies show high activities for electrochemical H2 evolution and CO2 electrochemical reduction. ACS Sustainable Chem. Eng. 2019, 7, 6352–6359.
Abeyweera, S. C.; Yu, J.; Perdew, J. P.; Yan, Q. M.; Sun, Y. G. Hierarchically 3D porous Ag nanostructures derived from silver benzenethiolate nanoboxes: Enabling CO2 reduction with a near-unity selectivity and mass-specific current density over 500 A/g. Nano Lett. 2020, 20, 2806–2811.
Daiyan, R.; Lu, X. Y.; Ng, Y. H.; Amal, R. Highly selective conversion of CO2 to CO achieved by a three-dimensional porous silver electrocatalyst. ChemistrySelect 2017, 2, 879–884.
Zhou, L. Q.; Ling, C.; Jones, M.; Jia, H. F. Selective CO2 reduction on a polycrystalline Ag electrode enhanced by anodization treatment. Chem. Commun. 2015, 51, 17704–17707.
Vishnevetskii, D. V.; Adamyan, A. N.; Laguseva, V. S.; Ivanova, A. I.; Khizhnyak, S. D.; Pakhomov, P. M. Self-organization processes in aqueous solution of polyvinyl alcohol, L-cysteine, and silver nitrate. Polym. Sci. Ser. A 2019, 61, 96–104.
Luu, T. H. T.; Duong, D. L.; Lee, T. H.; Pham, D. T.; Sahoo, R.; Han, G.; Kim, Y. M.; Lee, Y. H. Monodispersed SnS nanoparticles anchored on carbon nanotubes for high-retention sodium-ion batteries. J. Mater. Chem. A 2020, 8, 7861–7869.
Zhang, N. Q.; Zhang, X. X.; Tao, L.; Jiang, P.; Ye, C. L.; Lin, R.; Huang, Z. W.; Li, A.; Pang, D. W.; Yan, H. et al. Silver single-atom catalyst for efficient electrochemical CO2 reduction synthesized from thermal transformation and surface reconstruction. Angew. Chem., Int. Ed. 2021, 60, 6170–6176.
van der Linden, M.; van Bunningen, A. J.; Delgado-Jaime, M. U.; Detlefs, B.; Glatzel, P.; Longo, A.; de Groot, F. M. F. Insights into the synthesis mechanism of Ag29 nanoclusters. J. Phys. Chem. C 2018, 122, 28351–28361.
Padmos, J. D.; Boudreau, R. T. M.; Weaver, D. F.; Zhang, P. Impact of protecting ligands on surface structure and antibacterial activity of silver nanoparticles. Langmuir 2015, 31, 3745–3752.
Mistry, H.; Choi, Y. W.; Bagger, A.; Scholten, F.; Bonifacio, C. S.; Sinev, I.; Divins, N. J.; Zegkinoglou, I.; Jeon, H. S.; Kisslinger, K. et al. Enhanced carbon dioxide electroreduction to carbon monoxide over defect-rich plasma-activated silver catalysts. Angew. Chem., Int. Ed. 2017, 56, 11394–11398.
Fang, Y. X.; Flake, J. C. Electrochemical reduction of CO2 at functionalized Au electrodes. J. Am. Chem. Soc. 2017, 139, 3399–3405.