AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article

In situ construction of thiol-silver interface for selectively electrocatalytic CO2 reduction

Ying Chen1Feng Hu1,4( )Yanan Hao1Yonghan Wang1Yaoyi Xie1Hui Wang1Lijie Yin1Deshuang Yu1Hongchao Yang2Jun Ma1Dan Kai3Linlin Li1Shengjie Peng1( )
College of Materials Science and Technology, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, China
CAS Key Laboratory of Nano-Bio Interface, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou 215123, China
Institute of Materials Research and Engineering (IMRE), Singapore 138634, Singapore
Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education), College of Chemistry, Nankai University, Tianjin 300071, China
Show Author Information
An erratum to this article is available online at:

Graphical Abstract

In situ electrochemically reduced from three-dimensional (3D) Ag-thiol metal–organic compound with cysteine as the anchor agent and carbon source, the obtained thiol-capped and carbon-supported Ag nanostructures enable an efficient conversion from CO2 to CO.

Abstract

Electrochemical CO2 reduction (ECR) is one of the most effective methods to obtain carbonaceous chemicals and reduce greenhouse gases passingly under the ambient condition. However, efficient electrocatalysts featured with high selectivity and stability are still lacking. A novel molecule-mediated Ag electrocatalyst with capped thiols is rationally designed for high-performance ECR. The thiol-capped and carbon-supported Ag nanostructures (Ag-TC) are formed by in situ electrochemical reduction from three-dimentional (3D) Ag-thiol metal-organic compound with cysteine as the anchor agent and carbon source. Ag-TC exhibits high selectivity and stability for CO2 conversion to CO (86.7%), which is more catalytically active than that of common Ag nanoparticles. The function of thiols for ECR is proved by replacing cysteine with alanine without thiol group. Meanwhile, alternatively replacing and removing the surface molecules on the Ag foil further demonstrate the effct of thiols. This work enlightens the promise of in situ construction method for molecule capped metal electrocatalyst towards selective and stable ECR.

Electronic Supplementary Material

Download File(s)
12274_2021_3978_MOESM1_ESM.pdf (1.8 MB)

References

1

Jiao, J. Q.; Lin, R.; Liu, S. J.; Cheong, W. C.; Zhang, C.; Chen, Z.; Pan, Y.; Tang, J. G.; Wu, K. L.; Hung, S. F. et al. Copper atom-pair catalyst anchored on alloy nanowires for selective and efficient electrochemical reduction of CO2. Nat. Chem. 2019, 11, 222–228.

2

Chen, S. H.; Wang, B. Q.; Zhu, J. X.; Wang, L. Q.; Ou, H. H.; Zhang, Z. D.; Liang, X.; Zheng, L. R.; Zhou, L.; Su, Y. Q. et al. Lewis acid site-promoted single-atomic Cu catalyzes electrochemical CO2 methanation. Nano Lett. 2021, 21, 7325–7331.

3

Hu, Z.; Xie, Y. Y.; Yu, D. S.; Liu, Q. N.; Zhou, L. M.; Zhang, K.; Li, P.; Hu, F.; Li, L. L.; Chou, S. L. et al. Hierarchical Ti3C2Tx MXene/Carbon nanotubes for low overpotential and long-life Li-CO2 batteries. ACS Nano 2021, 15, 8407–8417.

4

Hu, F.; Abeyweera, S. C.; Yu, J.; Zhang, D. T.; Wang, Y.; Yan, Q. M.; Sun, Y. G. Quantifying electrocatalytic reduction of CO2 on twin boundaries. Chem 2020, 6, 3007–3021.

5

Shang, H. S.; Wang, T.; Pei, J. J.; Jiang, Z. L.; Zhou, D. N.; Wang, Y.; Li, H. J.; Dong, J. C.; Zhuang, Z. B.; Chen, W. X. et al. Design of a single-atom indiumδ+-N4 interface for efficient electroreduction of CO2 to formate. Angew. Chem., Int. Ed. 2020, 59, 22465–22469.

6

Gao, D. F.; Cai, F.; Wang, G. X.; Bao, X. H. Nanostructured heterogeneous catalysts for electrochemical reduction of CO2. Curr. Opin. Green Sustain. Chem. 2017, 3, 39–44.

7

Kim, C.; Eom, T.; Jee, M. S.; Jung, H.; Kim, H.; Min, B. K.; Hwang, Y. J. Insight into electrochemical CO2 reduction on surface-molecule-mediated Ag nanoparticles. ACS Catal. 2017, 7, 779–785.

8

Sun, X. H.; Tuo, Y. X.; Ye, C. L.; Chen, C.; Lu, Q.; Li, G. N.; Jiang, P.; Chen, S. H.; Zhu, P.; Ma, M. et al. Phosphorus induced electron localization of single Iron sites for boosted CO2 electroreduction reaction. Angew. Chem., Int. Ed. 2021, 133, 23806–23810.

9

Chen, Y. H.; Li, C. W.; Kanan, M. W. Aqueous CO2 reduction at very low overpotential on oxide-derived Au nanoparticles. J. Am. Chem. Soc. 2012, 134, 19969–19972.

10

Choi, C.; Cai, J.; Lee, C.; Lee, H. M.; Xu, M. J.; Huang, Y. Intimate atomic Cu-Ag interfaces for high CO2RR selectivity towards CH4 at low over potential. Nano Res. 2021, 14, 3497–3501.

11

Ma, M.; Trześniewski, B. J.; Xie, J.; Smith, W. A. Selective and efficient reduction of carbon dioxide to carbon monoxide on oxide-derived nanostructured silver electrocatalysts. Angew. Chem., Int. Ed. 2016, 55, 9748–9752.

12
Guo, W.; Shim, K.; Odongo Ngome, F. O.; Moon, Y. H.; Choi, S. Y.; Kim, Y. T. Highly active coral-like porous silver for electrochemical reduction of CO2 to CO. J. CO2 Util. 2020, 41, 101242.
13

He, Z. Q.; Liu, T.; Tang, J. T.; Zhou, C. Y.; Wen, L. S.; Chen, J. M.; Song, S. Highly active, selective and stable electroreduction of carbon dioxide to carbon monoxide on a silver catalyst with truncated hexagonal bipyramidal shape. Electrochim. Acta 2016, 222, 1234–1242.

14

Martić, N.; Reller, C.; Macauley, C.; Löffler, M.; Reichert, A. M.; Reichbauer, T.; Vetter, K. M.; Schmid, B.; McLaughlin, D.; Leidinger, P. et al. Ag2Cu2O3 — A catalyst template material for selective electroreduction of CO to C2+ products. Energy Environ. Sci. 2020, 13, 2993–3006.

15
Wang, Y.; Zheng, X. B.; Wang, D. S. Design concept for electrocatalysts. Nano Res. 2021, in press, DOI: 10.1007/s12274-021-3794-0.
16

Hsieh, Y. C.; Senanayake, S. D.; Zhang, Y.; Xu, W. Q.; Polyansky, D. E. Effect of chloride anions on the synthesis and enhanced catalytic activity of silver nanocoral electrodes for CO2 electroreduction. ACS Catal. 2015, 5, 5349–5356.

17

Jiang, K.; Kharel, P.; Peng, Y. D.; Gangishetty, M. K.; Lin, H. Y. G.; Stavitski, E.; Attenkofer, K.; Wang, H. T. Silver nanoparticles with surface-bonded oxygen for highly selective CO2 reduction. ACS Sustainable Chem. Eng. 2017, 5, 8529–8534.

18

Qiu, J. P.; Tang, J. T.; Shen, J.; Wu, C. W.; Qian, M. Q.; He, Z. Q.; Chen, J. M.; Shuang. S. Preparation of a silver electrode with a three-dimensional surface and its performance in the electrochemical reduction of carbon dioxide. Electrochim. Acta 2016, 203, 99–108.

19

Zhang, Y.; Ji, L.; Qiu, W. B.; Shi, X. F.; Asiri, A. M.; Sun, X. P. Iodide-derived nanostructured silver promotes selective and efficient carbon dioxide conversion into carbon monoxide. Chem. Commun. 2018, 54, 2666–2669.

20

Zhang, N. Q.; Zhang, X. X.; Kang, Y. K.; Ye, C. L.; Jin, R.; Yan, H.; Lin, R.; Yang, J. R.; Xu, Q.; Wang, Y. et al. A supported Pd2 dual-atom site catalyst for efficient electrochemical CO2 reduction. Angew. Chem., Int. Ed. 2021, 60, 13388–13393.

21

Yun, H.; Kim, J.; Choi, W.; Han, M. H.; Park, J. H.; Oh, H. S.; Won, D. H.; Kwak, K.; Hwang, Y. J. Understanding morphological degradation of Ag nanoparticle during electrochemical CO2 reduction reaction by identical location observation. Electrochim. Acta 2021, 371, 137795.

22

Sun, K.; Wu, L. N.; Qin, W.; Zhou, J. G.; Hu, Y. F.; Jiang, Z. H.; Shen, B. Z.; Wang, Z. J. Enhanced electrochemical reduction of CO2 to CO on Ag electrocatalysts with increased unoccupied density of state. J. Mater. Chem. A 2016, 4, 12616–12623.

23
He, C. H.; Duan, D. L.; Low, J.; Bai, Y.; Jiang, Y. W.; Wang, X. Y.; Chen, S. M.; Long, R.; Song, L.; Xiong, Y. J. Cu2−xS derived copper nanoparticles: A platform for unraveling the role of surface reconstruction in efficient electrocatalytic CO2-to-C2H4 conversion. Nano Res. 2021, in press, DOI: 10.1007/s12274-021-3532-7.
24

Lu, Q.; Rosen, J.; Zhou, Y.; Hutchings, G. S.; Kimmel, Y. C.; Chen, J. G.; Jiao, F. A selective and efficient electrocatalyst for carbon dioxide reduction. Nat. Commun. 2014, 5, 3242.

25
Liu, J. Z.; Li, Y. H.; Wang, Y. T.; Xiao, C. Q.; Liu, M. M.; Zhou, X. D.; Jiang, H.; Li, C. Z. Isolated ultrasmall Bi nanosheets for efficient CO2-to-formate electroreduction. Nano Res. 2021, in press, DOI: 10.1007/s12274-021-3677-4.
26

Mou, S. Y.; Li, Y. H.; Yue, L. C.; Liang, J.; Luo, Y. L.; Liu, Q.; Li, T. S.; Lu, S. Y.; Asiri, A. M.; Xiong, X. L. et al. Cu2Sb decorated Cu nanowire arrays for selective electrocatalytic CO2 to CO conversion. Nano Res. 2021, 14, 2831–2836.

27

Cao, Z.; Derrick, J. S.; Xu, J.; Gao, R.; Gong, M.; Nichols, E. M.; Smith, P. T.; Liu, X. W.; Wen, X. D.; Copéret, C. et al. Chelating N-heterocyclic carbene ligands enable tuning of electrocatalytic CO2 reduction to formate and carbon monoxide: Surface organometallic chemistry. Angew. Chem., Int. Ed. 2018, 57, 4981–4985.

28

Qu, Q. Y.; Ji, S. F.; Chen, Y. J.; Wang, D. S.; Li, Y. D. The atomic-level regulation of single-atom site catalysts for the electrochemical CO2 reduction reaction. Chem. Sci. 2021, 12, 4201–4215.

29

Elgrishi, N.; Chambers, M. B.; Wang, X.; Fontecave, M. Molecular polypyridine-based metal complexes as catalysts for the reduction of CO2. Chem. Soc. Rev. 2017, 46, 761–796.

30

Elouarzaki, K.; Kannan, V.; Jose, V.; Sabharwal, H. S.; Lee, J. M. Recent trends, benchmarking, and challenges of electrochemical reduction of CO2 by molecular catalysts. Adv. Energy Mater. 2019, 9, 1900090.

31

Zhu, M. H.; Chen, J. C.; Huang, L. B.; Ye, R. Q.; Xu, J.; Han, Y. F. Covalently grafting cobalt porphyrin onto carbon nanotubes for efficient CO2 electroreduction. Angew. Chem., Int. Ed. 2019, 58, 6595–6599.

32

Xie, M. S.; Xia, B. Y.; Li, Y. W.; Yan, Y. H.; Yang, Y. H.; Sun, Q.; Chan, S. H.; Fisher, A.; Wang, X. Amino acid modified copper electrodes for the enhanced selective electroreduction of carbon dioxide towards hydrocarbons. Energy Environ. Sci. 2016, 9, 1687–1695.

33

Kim, C.; Jeon, H. S.; Eom, T.; Jee, M. S.; Kim, H.; Friend, C. M.; Min, B. K.; Hwang, Y. J. Achieving selective and efficient electrocatalytic activity for CO2 reduction using immobilized silver nanoparticles. J. Am. Chem. Soc. 2015, 137, 13844–13850.

34

Cui, Y. Y.; Wang, Y. L.; Zhao, L. N. Cysteine-Ag cluster hydrogel confirmed by experimental and numerical studies. Small 2015, 11, 5118–5125.

35

Luc, W.; Jiao, F. Nanoporous metals as electrocatalysts: State-of-the-art, opportunities, and challenges. ACS Catal. 2017, 7, 5856–5861.

36

Yan, S. L.; Chen, C. Z.; Zhang, F. H.; Mahyoub, S. A.; Cheng, Z. M. High-density Ag nanosheets for selective electrochemical CO2 reduction to CO. Nanotechnology 2021, 32, 165705.

37

Meng, Y. T.; Zhang, X.; Hung, W. H.; He, J. K.; Tsai, Y. S.; Kuang, Y.; Kenney, M. J.; Shyue, J. J.; Liu, Y. J.; Stone, K. H. et al. Highly active oxygen evolution integrated with efficient CO2 to CO electroreduction. Proc. Natl. Acad. Sci. USA 2019, 116, 23915–23922.

38

Huang, J. F.; Wu, Y. C. Tunable Ag micromorphologies show high activities for electrochemical H2 evolution and CO2 electrochemical reduction. ACS Sustainable Chem. Eng. 2019, 7, 6352–6359.

39

Abeyweera, S. C.; Yu, J.; Perdew, J. P.; Yan, Q. M.; Sun, Y. G. Hierarchically 3D porous Ag nanostructures derived from silver benzenethiolate nanoboxes: Enabling CO2 reduction with a near-unity selectivity and mass-specific current density over 500 A/g. Nano Lett. 2020, 20, 2806–2811.

40

Daiyan, R.; Lu, X. Y.; Ng, Y. H.; Amal, R. Highly selective conversion of CO2 to CO achieved by a three-dimensional porous silver electrocatalyst. ChemistrySelect 2017, 2, 879–884.

41

Zhou, L. Q.; Ling, C.; Jones, M.; Jia, H. F. Selective CO2 reduction on a polycrystalline Ag electrode enhanced by anodization treatment. Chem. Commun. 2015, 51, 17704–17707.

42

Vishnevetskii, D. V.; Adamyan, A. N.; Laguseva, V. S.; Ivanova, A. I.; Khizhnyak, S. D.; Pakhomov, P. M. Self-organization processes in aqueous solution of polyvinyl alcohol, L-cysteine, and silver nitrate. Polym. Sci. Ser. A 2019, 61, 96–104.

43

Luu, T. H. T.; Duong, D. L.; Lee, T. H.; Pham, D. T.; Sahoo, R.; Han, G.; Kim, Y. M.; Lee, Y. H. Monodispersed SnS nanoparticles anchored on carbon nanotubes for high-retention sodium-ion batteries. J. Mater. Chem. A 2020, 8, 7861–7869.

44

Zhang, N. Q.; Zhang, X. X.; Tao, L.; Jiang, P.; Ye, C. L.; Lin, R.; Huang, Z. W.; Li, A.; Pang, D. W.; Yan, H. et al. Silver single-atom catalyst for efficient electrochemical CO2 reduction synthesized from thermal transformation and surface reconstruction. Angew. Chem., Int. Ed. 2021, 60, 6170–6176.

45

van der Linden, M.; van Bunningen, A. J.; Delgado-Jaime, M. U.; Detlefs, B.; Glatzel, P.; Longo, A.; de Groot, F. M. F. Insights into the synthesis mechanism of Ag29 nanoclusters. J. Phys. Chem. C 2018, 122, 28351–28361.

46

Padmos, J. D.; Boudreau, R. T. M.; Weaver, D. F.; Zhang, P. Impact of protecting ligands on surface structure and antibacterial activity of silver nanoparticles. Langmuir 2015, 31, 3745–3752.

47

Mistry, H.; Choi, Y. W.; Bagger, A.; Scholten, F.; Bonifacio, C. S.; Sinev, I.; Divins, N. J.; Zegkinoglou, I.; Jeon, H. S.; Kisslinger, K. et al. Enhanced carbon dioxide electroreduction to carbon monoxide over defect-rich plasma-activated silver catalysts. Angew. Chem., Int. Ed. 2017, 56, 11394–11398.

48

Fang, Y. X.; Flake, J. C. Electrochemical reduction of CO2 at functionalized Au electrodes. J. Am. Chem. Soc. 2017, 139, 3399–3405.

Nano Research
Pages 3283-3289
Cite this article:
Chen Y, Hu F, Hao Y, et al. In situ construction of thiol-silver interface for selectively electrocatalytic CO2 reduction. Nano Research, 2022, 15(4): 3283-3289. https://doi.org/10.1007/s12274-021-3978-7
Topics:

720

Views

27

Crossref

26

Web of Science

25

Scopus

5

CSCD

Altmetrics

Received: 15 October 2021
Revised: 01 November 2021
Accepted: 02 November 2021
Published: 18 December 2021
© Tsinghua University Press and Springer-Verlag GmbH Germany, part of Springer Nature 2021
Return