AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Review Article

Two-dimensional noble transition-metal dichalcogenides for nanophotonics and optoelectronics: Status and prospects

Yingwei Wang§( )Li Zhou§Mianzeng ZhongYanping LiuSi XiaoJun He( )
Hunan Key Laboratory of Nanophotonics and Devices, School of Physics and Electronics, Central South University, Changsha 410083, China

§ Yingwei Wang and Li Zhou contributed equally to this work.

Show Author Information

Graphical Abstract

We systematically and comprehensively summarize the latest developments in the current research on two–dimensional noble-transition-metal dichalcogenides (NMDs). The structures, properties, synthesis, potential applications of NMDs and a perspective of expected future developments are discussed.

Abstract

An emerging subclass of transition-metal dichalcogenides (TMDs), noble-transition-metal dichalcogenides (NMDs), has led to an increase in nanoscientific research in two-dimensional (2D) materials. NMDs feature a unique structure and several useful properties. 2D NMDs are promising candidates for a broad range of applications in areas such as photodetectors, phototransistors, saturable absorbers, and meta optics. In this review, the state of the art of 2D NMDs research, their structures, properties, synthesis, and potential applications are discussed, and a perspective of expected future developments is provided.

References

1

Zhang, H. Ultrathin two-dimensional nanomaterials. ACS Nano 2015, 9, 9451–9469.

2

Wang, Y. W.; Qiu, M.; Won, M.; Jung, E.; Fan, T. J.; Xie, N.; Chi, S. G.; Zhang, H.; Kim, J. S. Emerging 2D material-based nanocarrier for cancer therapy beyond graphene. Coord. Chem. Rev. 2019, 400, 213041.

3

Tan, C. L.; Cao, X. H.; Wu, X. J.; He, Q. Y.; Yang, J.; Zhang, X.; Chen, J. Z.; Zhao, W.; Han, S. K.; Nam, G. H. et al. Recent advances in ultrathin two-dimensional nanomaterials. Chem. Rev. 2017, 117, 6225–6331.

4

Miró, P.; Audiffred, M.; Heine, T. An atlas of two-dimensional materials. Chem. Soc. Rev. 2014, 43, 6537–6554.

5

Xia, F. N.; Wang, H.; Xiao, D.; Dubey, M.; Ramasubramaniam, A. Two-dimensional material nanophotonics. Nat. Photonics 2014, 8, 899–907.

6

Zeng, H. L.; Cui, X. D. An optical spectroscopic study on two-dimensional group-VI transition metal dichalcogenides. Chem. Soc. Rev. 2015, 44, 2629–2642.

7

Kong, X. K.; Liu, Q. C.; Zhang, C. L.; Peng, Z. M.; Chen, Q. W. Elemental two-dimensional nanosheets beyond graphene. Chem. Soc. Rev. 2017, 46, 2127–2157.

8

Chhowalla, M.; Shin, H. S.; Eda, G.; Li, L. J.; Loh, K. P.; Zhang, H. The chemistry of two-dimensional layered transition metal dichalcogenide nanosheets. Nat. Chem. 2013, 5, 263–275.

9

Wang, Y. H.; Nie, Z. H.; Wang, F. Q. Modulation of photocarrier relaxation dynamics in two-dimensional semiconductors. Light:Sci. Appl. 2020, 9, 192.

10

Agarwal, V.; Chatterjee, K. Recent advances in the field of transition metal dichalcogenides for biomedical applications. Nanoscale 2018, 10, 16365–16397.

11

Zhang, S. L.; Guo, S. Y.; Chen, Z. F.; Wang, Y. L.; Gao, H. J.; Gómez-Herrero, J.; Ares, P.; Zamora, F.; Zhu, Z.; Zeng, H. B. Recent progress in 2D group-VA semiconductors: From theory to experiment. Chem. Soc. Rev. 2018, 47, 982–1021.

12

Qiao, J. S.; Kong, X. H.; Hu, Z. X.; Yang, F.; Ji, W. High-mobility transport anisotropy and linear dichroism in few-layer black phosphorus. Nat. Commun. 2014, 5, 4475.

13

Zhao, A. L.; Li, H.; Hu, X. J.; Wang, C.; Zhang, H.; Lu, J. G.; Ruan, S. C.; Zeng, Y. J. Review of 2D group VA material-based heterostructures. J. Phys. D:Appl. Phys. 2020, 53, 293002.

14

Rodenas, T.; Luz, I.; Prieto, G.; Seoane, B.; Miro, H.; Corma, A.; Kapteijn, F.; Llabres i Xamena, F. X.; Gascon, J. Metal-organic framework nanosheets in polymer composite materials for gas separation. Nat. Mater. 2015, 14, 48–55.

15

Zhao, M. T.; Huang, Y.; Peng, Y. W.; Huang, Z. Q.; Ma, Q. L.; Zhang, H. Two-dimensional metal-organic framework nanosheets: Synthesis and applications. Chem. Soc. Rev. 2018, 47, 6267–6295.

16

Yamamoto, K.; Sakata, Y.; Nohara, Y.; Takahashi, Y.; Tatsumi, T. Organic-inorganic hybrid zeolites containing organic frameworks. Science 2003, 300, 470–472.

17

Deng, H. X.; Doonan, C. J.; Furukawa, H.; Ferreira, R. B.; Towne, J.; Knobler, C. B.; Wang, B.; Yaghi, O. M. Multiple functional groups of varying ratios in metal-organic frameworks. Science 2010, 327, 846–850.

18

Anasori, B.; Lukatskaya, M. R.; Gogotsi, Y. 2D metal carbides and nitrides (MXenes) for energy storage. Nat. Rev. Mater. 2017, 2, 16098.

19

Shahzad, F.; Iqbal, A.; Kim, H.; Koo, C. M. 2D transition metal carbides (MXenes): Applications as an electrically conducting material. Adv. Mater. 2020, 32, 2002159.

20

Jhon, Y. I.; Jhon, Y. M.; Lee, J. H. Nonlinear optics of MXene in laser technologies. J. Phys. Mater. 2020, 3, 032004.

21

Wang, Y. F.; Xu, Y. H.; Hu, M. L.; Ling, H.; Zhu, X. MXenes: Focus on optical and electronic properties and corresponding applications. Nanophotonics 2020, 9, 1601–1620.

22

Lei, J. C.; Zhang, X.; Zhou, Z. Recent advances in MXene: Preparation, properties, and applications. Front. Phys. 2015, 10, 276–286.

23

Novoselov, K. S.; Fal′ko, V. I.; Colombo, L.; Gellert, P. R.; Schwab, M. G.; Kim, K. A roadmap for graphene. Nature 2012, 490, 192–200.

24

Wang, Q. H.; Kalantar-Zadeh, K.; Kis, A.; Coleman, J. N.; Strano, M. S. Electronics and optoelectronics of two-dimensional transition metal dichalcogenides. Nat. Nanotechnol. 2012, 7, 699–712.

25

Long, M. S.; Gao, A. Y.; Wang, P.; Xia, H.; Ott, C.; Pan, C.; Fu, Y. J.; Liu, E. F.; Chen, X. S.; Lu, W. et al. Room temperature high-detectivity mid-infrared photodetectors based on black arsenic phosphorus. Sci. Adv. 2017, 3, e1700589.

26

Coleman, J. N.; Lotya, M.; O'Neill, A.; Bergin, S. D.; King, P. J.; Khan, U.; Young, K.; Gaucher, A.; De, S.; Smith, R. J. et al. Two-dimensional nanosheets produced by liquid exfoliation of layered materials. Science 2011, 331, 568–571.

27

Güler, Ö.; Tekeli, M.; Taşkin, M.; Güler, S. H.; Yahia, I. S. The production of graphene by direct liquid phase exfoliation of graphite at moderate sonication power by using low boiling liquid media: The effect of liquid media on yield and optimization. Ceram. Int. 2021, 47, 521–533.

28

Cai, Z. Y.; Liu, B. L.; Zou, X. L.; Cheng, H. M. Chemical vapor deposition growth and applications of two-dimensional materials and their heterostructures. Chem. Rev. 2018, 118, 6091–6133.

29

Zheng, H. M.; Smith, R. K.; Jun, Y. W.; Kisielowski, C.; Dahmen, U.; Alivisatos, A. P. Observation of single colloidal platinum nanocrystal growth trajectories. Science 2009, 324, 1309–1312.

30

Najmaei, S.; Liu, Z.; Zhou, W.; Zou, X. L.; Shi, G.; Lei, S. D.; Yakobson, B. I.; Idrobo, J. C.; Ajayan, P. M.; Lou, J. Vapour phase growth and grain boundary structure of molybdenum disulphide atomic layers. Nat. Mater. 2013, 12, 754–759.

31

Ahn, C.; Lee, J.; Kim, H. U.; Bark, H.; Jeon, M.; Ryu, G. H.; Lee, Z.; Yeom, G. Y.; Kim, K.; Jung, J. et al. Low-temperature synthesis of large-scale molybdenum disulfide thin films directly on a plastic substrate using plasma-enhanced chemical vapor deposition. Adv. Mater. 2015, 27, 5223–5229.

32

Shaw, J. C.; Zhou, H.; Chen, Y.; Weiss, N. O.; Liu, Y.; Huang, Y.; Duan, X. Chemical vapor deposition growth of monolayer MoSe2 nanosheets. Nano Res. 2014, 7, 511–517.

33

Gao, Y.; Liu, Z. B.; Sun, D. M.; Huang, L.; Ma, L. P.; Yin, L. C.; Ma, T.; Zhang, Z. Y.; Ma, X. L.; Peng, L. M. et al. Large-area synthesis of high-quality and uniform monolayer WS2 on reusable Au foils. Nat. Commun. 2015, 6, 8569.

34

Tan, C. L.; Zhang, H. Wet-chemical synthesis and applications of non-layer structured two-dimensional nanomaterials. Nat. Commun. 2015, 6, 7873.

35

Mamaghani, A. H.; Haghighat, F.; Lee, C. S. Hydrothermal/solvothermal synthesis and treatment of TiO2 for photocatalytic degradation of air pollutants: Preparation, characterization, properties, and performance. Chemosphere 2019, 219, 804–825.

36

Yoo, D.; Kim, M.; Jeong, S.; Han, J.; Cheon, J. Chemical synthetic strategy for single-layer transition-metal chalcogenides. J. Am. Chem. Soc. 2014, 136, 14670–14673.

37

Xie, J. F.; Zhang, J. J.; Li, S.; Grote, F.; Zhang, X. D.; Zhang, H.; Wang, R. X.; Lei, Y.; Pan, B. C.; Xie, Y. Controllable disorder engineering in oxygen-incorporated MoS2 ultrathin nanosheets for efficient hydrogen evolution. J. Am. Chem. Soc. 2013, 135, 17881–17888.

38

Son, J. S.; Yu, J. H.; Kwon, S. G.; Lee, J.; Joo, J.; Hyeon, T. Colloidal synthesis of ultrathin two-dimensional semiconductor nanocrystals. Adv. Mater. 2011, 23, 3214–3219.

39

Mak, K. F.; Shan, J. Photonics and optoelectronics of 2D semiconductor transition metal dichalcogenides. Nat. Photonics 2016, 10, 216–226.

40

Eda, G.; Maier, S. A. Two-dimensional crystals: Managing light for optoelectronics. ACS Nano 2013, 7, 5660–5665.

41

Dai, Z. G.; Hu, G. W.; Ou, Q. D.; Zhang, L.; Xia, F. N.; Garcia-Vidal, F. J.; Qiu, C. W.; Bao, Q. L. Artificial metaphotonics born naturally in two dimensions. Chem. Rev. 2020, 120, 6197–6246.

42

Huang, T. Y.; Zhao, X.; Zeng, S. W.; Crunteanu, A.; Shum, P. P.; Yu, N. F. Planar nonlinear metasurface optics and their applications. Rep. Prog. Phys. 2020, 83, 126101.

43

So, S.; Badloe, T.; Noh, J.; Bravo-Abad, J.; Rho, J. Deep learning enabled inverse design in nanophotonics. Nanophotonics 2020, 9, 1041–1057.

44

Zhang, Y. C.; Jiang, Q. Q.; Lang, P.; Yuan, N. N.; Tang, J. G. Fabrication and applications of 2D black phosphorus in catalyst, sensing and electrochemical energy storage. J. Alloys Compd. 2021, 850, 156580.

45

Niu, P.; Zhang, L. L.; Liu, G.; Cheng, H. M. Graphene-like carbon nitride nanosheets for improved photocatalytic activities. Adv. Funct. Mater. 2012, 22, 4763–4770.

46

Li, H. N.; Li, Y.; Aljarb, A.; Shi, Y. M.; Li, L. J. Epitaxial growth of two-dimensional layered transition-metal dichalcogenides: Growth mechanism, controllability, and scalability. Chem. Rev. 2018, 118, 6134–6150.

47

Zhou, J. D.; Lin, J. H.; Huang, X. W.; Zhou, Y.; Chen, Y.; Xia, J.; Wang, H.; Xie, Y.; Yu, H. M.; Lei, J. C. et al. A library of atomically thin metal chalcogenides. Nature 2018, 556, 355–359.

48

Fiori, G.; Bonaccorso, F.; Iannaccone, G.; Palacios, T.; Neumaier, D.; Seabaugh, A.; Banerjee, S. K.; Colombo, L. Electronics based on two-dimensional materials. Nat. Nanotechnol. 2014, 9, 768–779.

49

Koppens, F. H. L.; Mueller, T.; Avouris, P.; Ferrari, A. C.; Vitiello, M. S.; Polini, M. Photodetectors based on graphene, other two-dimensional materials and hybrid systems. Nat. Nanotechnol. 2014, 9, 780–793.

50

Wang, Y. L.; Li, L. F.; Yao, W.; Song, S. R.; Sun, J. T.; Pan, J. B.; Ren, X.; Li, C.; Okunishi, E.; Wang, Y. Q. et al. Monolayer PtSe2, a new semiconducting transition-metal-dichalcogenide, epitaxially grown by direct selenization of Pt. Nano Lett. 2015, 15, 4013–4018.

51

Ciarrocchi, A.; Avsar, A.; Ovchinnikov, D.; Kis, A. Thickness-modulated metal-to-semiconductor transformation in a transition metal dichalcogenide. Nat. Commun. 2018, 9, 919.

52

Wang, Z. G.; Li, Q.; Besenbacher, F.; Dong, M. D. Facile synthesis of single crystal PtSe2 nanosheets for nanoscale electronics. Adv. Mater. 2016, 28, 10224–10229.

53

Miró, P.; Ghorbani-Asl, M.; Heine, T. Two dimensional materials beyond MoS2: Noble-transition-metal dichalcogenides. Angew. Chem., Int. Ed. 2014, 53, 3015–2018.

54

Oyedele, A. D.; Yang, S. Z.; Liang, L. B.; Puretzky, A. A.; Wang, K.; Zheng, J. J.; Yu, P.; Pudasaini, P. R.; Ghosh, A. W.; Liu, Z. et al. PdSe2: Pentagonal two-dimensional layers with high air stability for electronics. J. Am. Chem. Soc. 2017, 139, 14090–14097.

55

Chow, W. L.; Yu, P.; Liu, F. C.; Hong, J. H.; Wang, X. L.; Zeng, Q. S.; Hsu, C. H.; Zhu, C.; Zhou, J. D.; Wang, X. W. et al. High mobility 2D palladium diselenide field-effect transistors with tunable ambipolar characteristics. Adv. Mater. 2017, 29, 1602969.

56

Yu, X. C.; Yu, P.; Wu, D.; Singh, B.; Zeng, Q. S.; Lin, H.; Zhou, W.; Lin, J. H.; Suenaga, K.; Liu, Z. et al. Atomically thin noble metal dichalcogenide: A broadband mid-infrared semiconductor. Nat. Commun. 2018, 9, 1545.

57

Wu, D.; Guo, J. W.; Du, J.; Xia, C. X.; Zeng, L. H.; Tian, Y. Z.; Shi, Z. F.; Tian, Y. T.; Li, X. J.; Tsang, Y. H. et al. Highly polarization-sensitive, broadband, self-powered photodetector based on Graphene/PdSe2/Germanium heterojunction. ACS Nano 2019, 13, 9907–9917.

58

Long, M. S.; Wang, Y.; Wang, P.; Zhou, X. H.; Xia, H.; Luo, C.; Huang, S. Y.; Zhang, G. W.; Yan, H. G.; Fan, Z. Y. et al. Palladium diselenide long-wavelength infrared photodetector with high sensitivity and stability. ACS Nano 2019, 13, 2511–2519.

59

Yao, W.; Wang, E. Y.; Huang, H. Q.; Deng, K.; Yan, M. Z.; Zhang, K. N.; Miyamoto, K.; Okuda, T.; Li, L. F.; Wang, Y. L. et al. Direct observation of spin-layer locking by local Rashba effect in monolayer semiconducting PtSe2 film. Nat. Commun. 2017, 8, 14216.

60

Avsar, A.; Ciarrocchi, A.; Pizzochero, M.; Unuchek, D.; Yazyev, O. V.; Kis, A. Defect induced, layer-modulated magnetism in ultrathin metallic PtSe2. Nat. Nanotechnol. 2019, 14, 674–678.

61

Li, L.; Wang, W. K.; Chai, Y.; Li, H. Q.; Tian, M. L.; Zhai, T. Y. Few-layered PtS2 phototransistor on h-BN with high gain. Adv. Funct. Mater. 2017, 27, 1701011.

62

Zhao, Y. D.; Qiao, J. S.; Yu, Z. H.; Yu, P.; Xu, K.; Lau, S. P.; Zhou, W.; Liu, Z.; Wang, X. R.; Ji, W. et al. High-electron-mobility and air-stable 2D layered PtSe2 FETs. Adv. Mater. 2017, 29, 1604230.

63

Jiang, W.; Wang, X. D.; Chen, Y.; Wu, G. J.; Ba, K.; Xuan, N. N.; Sun, Y. Y.; Gong, P.; Bao, J. X.; Shen, H. et al. Large-area high quality PtSe2 thin film with versatile polarity. InfoMat 2019, 1, 260–267.

64

Yim, C.; Lee, K.; McEvoy, N.; O'Brien, M.; Riazimehr, S.; Berner, N. C.; Cullen, C. P.; Kotakoski, J.; Meyer, J. C.; Lemme, M. C. et al. High-performance hybrid electronic devices from layered PtSe2 films grown at low temperature. ACS Nano 2016, 10, 9550–9558.

65

Bao, Q. L.; Zhang, H.; Wang, Y.; Ni, Z. H.; Yan, Y. L.; Shen, Z. X.; Loh, K. P.; Tang, D. Y. Atomic-layer graphene as a saturable absorber for ultrafast pulsed lasers. Adv. Funct. Mater. 2009, 19, 3077–3083.

66

Zeng, L. H.; Lin, S. H.; Li, Z. J.; Zhang, Z. X.; Zhang, T. F.; Xie, C.; Mak, C. H.; Chai, Y.; Lau, S. P.; Luo, L. B. et al. Fast, self-driven, air-stable, and broadband photodetector based on vertically aligned PtSe2/GaAs heterojunction. Adv. Funct. Mater. 2018, 28, 1705970.

67

Zeng, L. H.; Wu, D.; Lin, S. H.; Xie, C.; Yuan, H. Y.; Lu, W.; Lau, S. P.; Chai, Y.; Luo, L. B.; Li, Z. J. et al. Controlled synthesis of 2D palladium diselenide for sensitive photodetector applications. Adv. Funct. Mater. 2019, 29, 1806878.

68

Chia, X.; Adriano, A.; Lazar, P.; Sofer, Z.; Luxa, J.; Pumera, M. Layered platinum dichalcogenides (PtS2, PtSe2, and PtTe2) electrocatalysis: Monotonic dependence on the chalcogen size. Adv. Funct. Mater. 2016, 26, 4306–4318.

69

Wang, Y. W.; Deng, Z. L.; Hu, D. J.; Yuan, J.; Ou, Q. D.; Qin, F.; Zhang, Y. N.; Ouyang, X.; Li, Y.; Peng, B. et al. Atomically thin noble metal dichalcogenides for phase-regulated meta-optics. Nano Lett. 2020, 20, 7811–7818.

70

Li, P. Y.; Zhang, J. T.; Zhu, C.; Shen, W. F.; Hu, C. G.; Fu, W.; Yan, L.; Zhou, L. J.; Zheng, L; Lei, H. X. et al. Penta-PdPSe: a new 2D pentagonal material with highly in-plane optical, electronic, and optoelectronic anisotropy. Adv. Mater. 2021, 33, 2102541.

71

Ge, J.; Luo, T. C.; Lin, Z. Z.; Shi, J. P.; Liu, Y. Z.; Wang, P. Y.; Zhang, Y. F.; Duan, W. H.; Wang, J. Magnetic moments induced by atomic vacancies in transition metal dichalcogenide flakes. Adv. Mater. 2021, 33, 2005465.

72

Wagner, S.; Yim, C.; McEvoy, N.; Kataria, S.; Yokaribas, V.; Kuc, A.; Pindl, S.; Fritzen, C. P.; Heine, T.; Duesberg, G. S. et al. Highly sensitive electromechanical piezoresistive pressure sensors based on large-area layered PtSe2 films. Nano Lett. 2018, 18, 3738–3745.

73

Yuan, J.; Mu, H. R.; Li, L.; Chen, Y.; Yu, W. Z.; Zhang, K.; Sun, B. Q.; Lin, S. H.; Li, S. J.; Bao, Q. L. Few-layer platinum diselenide as a new saturable absorber for ultrafast fiber lasers. ACS Appl. Mater. Interfaces 2018, 10, 21534–21540.

74

Yang, H.; Kim, S. W.; Chhowalla, M.; Lee, Y. H. Structural and quantum-state phase transitions in van der Waals layered materials. Nat. Phys. 2017, 13, 931–937.

75

Liu, C.; Lian, C. S.; Liao, M. H.; Wang, Y.; Zhong, Y.; Ding, C.; Li, W.; Song, C. L.; He, K.; Ma, X. C. et al. Two-dimensional superconductivity and topological states in PdTe2 thin films. Phys. Rev. Mater. 2018, 2, 094001.

76

Zhang, K. N.; Yan, M. Z.; Zhang, H. X.; Huang, H. Q.; Arita, M.; Sun, Z.; Duan, W. H.; Wu, Y.; Zhou, S. Y. Experimental evidence for type-II Dirac semimetal in PtSe2. Phys. Rev. B 2017, 96, 125102.

77

Cheng, P. K.; Tang, C. Y.; Wang, X. Y.; Ma, S. N.; Long, H.; Tsang, Y. H. Passively Q-switched Ytterbium-doped fiber laser based on broadband multilayer platinum ditelluride (PtTe2) saturable absorber. Sci. Rep. 2019, 9, 10106.

78

Yu, J.; Kuang, X. F.; Gao, Y. J.; Wang, Y. P.; Chen, K. Q.; Ding, Z. K.; Liu, J.; Cong, C. X.; He, J.; Liu, Z. W. et al. Direct observation of the linear dichroism transition in two-dimensional palladium diselenide. Nano Lett. 2020, 20, 1172–1182.

79

Liang, Q.; Wang, Q. X.; Zhang, Q.; Wei, J. X.; Lim, S. X.; Zhu, R.; Hu, J. X.; Wei, W.; Lee, C.; Sow, C. et al. High-performance, room temperature, ultra-broadband photodetectors based on air-stable PdSe2. Adv. Mater. 2019, 31, 1807609.

80

Cheng, P. K.; Tang, C. Y.; Wang, X. Y.; Zeng, L. H.; Tsang, Y. H. Passively Q-switched and femtosecond mode-locked erbium-doped fiber laser based on a 2D palladium disulfide (PdS2) saturable absorber. Photon. Res. 2020, 8, 511–518.

81

Ma, Y. F.; Zhang, S. C.; Ding, S. J.; Liu, X. X.; Yu, X.; Peng, F.; Zhang, Q. L. Passively Q-switched Nd: GdLaNbO4 laser based on 2D PdSe2 nanosheet. Opt. Laser Technol. 2020, 124, 105959.

82

Splendiani, A.; Sun, L.; Zhang, Y. B.; Li, T. S.; Kim, J.; Chim, C. Y.; Galli, G.; Wang, F. Emerging photoluminescence in monolayer MoS2. Nano Lett. 2010, 10, 1271–1275.

83

Zhao, Y. D.; Qiao, J. S.; Yu, P.; Hu, Z. X.; Lin, Z. Y.; Lau, S. P.; Liu, Z.; Ji, W.; Chai, Y. Extraordinarily strong interlayer interaction in 2D layered PtS2. Adv. Mater. 2016, 28, 2399–2407.

84

Villaos, R. A. B.; Crisostomo, C. P.; Huang, Z. Q.; Huang, S. M.; Padama, A. A. B.; Albao, M. A.; Lin, H.; Chuang, F. C. Thickness dependent electronic properties of Pt dichalcogenides. npj 2D Mater. Appl. 2019, 3, 2.

85

Zhang, W. X.; Huang, Z. S.; Zhang, W. L.; Li, Y. R. Two-dimensional semiconductors with possible high room temperature mobility. Nano Res. 2014, 7, 1731–1737.

86

Gu, Y. Y.; Cai, H.; Dong, J. C.; Yu, Y. L.; Hoffman, A. N.; Liu, C. Z.; Oyedele, A. D.; Lin, Y. C.; Ge, Z. Z.; Puretzky, A. A. et al. Two-dimensional palladium diselenide with strong in-plane optical anisotropy and high mobility grown by chemical vapor deposition. Adv. Mater. 2020, 32, 1906238.

87

Sun, J. F.; Shi, H. L.; Siegrist, T.; Singh, D. J. Electronic, transport, and optical properties of bulk and mono-layer PdSe2. Appl. Phys. Lett. 2015, 107, 153902.

88

Wang, X. Y.; Qarony, W.; Cheng, P. K.; Ismail, M.; Tsang, Y. H. Photoluminescence of PdS2 and PdSe2 quantum dots. RSC Adv. 2019, 9, 38077–38084.

89

Huang, B.; Clark, G.; Navarro-Moratalla, E.; Klein, D. R.; Cheng, R.; Seyler, K. L.; Zhong, D.; Schmidgall, E.; McGuire, M. A.; Cobden, D. H. et al. Layer-dependent ferromagnetism in a van der Waals crystal down to the monolayer limit. Nature 2017, 546, 270–273.

90

Deng, Y. J.; Yu, Y. J.; Song, Y. C.; Zhang, J. Z.; Wang, N. Z.; Sun, Z. Y.; Yi, Y. F.; Wu, Y. Z.; Wu, S. W.; Zhu, J. Y. et al. Gate-tunable room-temperature ferromagnetism in two-dimensional Fe3GeTe2. Nature 2018, 563, 94–99.

91

Huang, H. Q.; Zhou, S. Y.; Duan, W. H. Type-II Dirac fermions in the PtSe2 class of transition metal dichalcogenides. Phys. Rev. B 2016, 94, 121117.

92

Leng, H.; Ohmura, A.; Anh, L. N.; Ishikawa, F.; Naka, T.; Huang, Y. K.; de Visser, A. Superconductivity under pressure in the Dirac semimetal PdTe2. J. Phys.: Condens. Matter 2020, 32, 025603.

93

Li, K. L.; Wang, T. Y.; Wang, W. J.; Gao, X. G. Lattice vibration properties of MoS2/PtSe2 heterostructures. J. Alloys Compd. 2020, 820, 153192.

94

Avsar, A.; Cheon, C. Y.; Pizzochero, M.; Tripathi, M.; Ciarrocchi, A.; Yazyev, O. V.; Kis, A. Probing magnetism in atomically thin semiconducting PtSe2. Nat. Commun. 2020, 11, 4806.

95

Cheng, C.; Sun, J. T.; Liu, M.; Chen, X. R.; Meng, S. Tunable electron–phonon coupling superconductivity in platinum diselenide. Phys. Rev. Mater. 2017, 1, 074804.

96

Yuan, Y. H.; Duan, Y. X.; Wang, Z. W.; Sun, J. Filamentary superconductivity in wrinkled PtSe2. J. Phys. D:Appl. Phys. 2021, 54, 215302.

97

Zhu, R.; Gao, Z. B.; Liang, Q. J.; Hu, J. X.; Wang, J. S.; Qiu, C. W.; Wee, A. T. S. Observation of anisotropic magnetoresistance in layered nonmagnetic semiconducting PdSe2. ACS Appl. Mater. Interfaces 2021, 13, 37527–37534.

98

Xu, H.; Guo, C.; Zhang, J. Z.; Guo, W. L.; Kuo, C. N.; Lue, C. S.; Hu, W. D.; Wang, L.; Chen, G.; Politano, A. et al. PtTe2-based type-II Dirac semimetal and its van der Waals heterostructure for sensitive room temperature terahertz photodetection. Small 2019, 15, 1903362.

99

Anemone, G.; Garnica, M.; Zappia, M.; Aguilar, P. C.; Al Taleb, A.; Kuo, C. N.; Lue, C. S.; Politano, A.; Benedek, G.; de Parga, A. L. V. et al. Experimental determination of surface thermal expansion and electron–phonon coupling constant of 1T-PtTe2. 2D Mater. 2020, 7, 025007.

100

Xu, H.; Zhang, H. M.; Liu, Y. W.; Zhang, S. M.; Sun, Y. Y.; Guo, Z. X.; Sheng, Y. C.; Wang, X. D.; Luo, C.; Wu, X. et al. Controlled doping of wafer-scale PtSe2 films for device application. Adv. Funct. Mater. 2019, 29, 1805614.

101

Yi, M.; Shen, Z. G. A review on mechanical exfoliation for the scalable production of graphene. J. Mater. Chem. A 2015, 3, 11700–11715.

102

Sarkar, A. S.; Stratakis, E. Recent advances in 2D metal monochalcogenides. Adv. Sci. 2020, 7, 2001655.

103

Huang, J. W.; Dong, N. N.; McEvoy, N.; Wang, L.; Coileáin, C. Ó.; Wang, H. Q.; Cullen, C. P.; Chen, C. D.; Zhang, S. F.; Zhang, L. et al. Surface-state assisted carrier recombination and optical nonlinearities in bulk to 2D nonlayered PtS. ACS Nano 2019, 13, 13390–13402.

104

Wang, X. Y.; Cheng, P. K.; Tang, C. Y.; Long, H.; Yuan, H. Y.; Zeng, L. H.; Ma, S. N.; Qarony, W.; Tsang, Y. H. Laser Q-switching with PtS2 microflakes saturable absorber. Opt. Express 2018, 26, 13055–13060.

105

Hernandez, Y.; Nicolosi, V.; Lotya, M.; Blighe, F. M.; Sun, Z. Y.; De, S.; McGovern, I. T.; Holland, B.; Byrne, M.; Gun'ko, Y. K. et al. High-yield production of graphene by liquid-phase exfoliation of graphite. Nat. Nanotechnol. 2008, 3, 563–568.

106

Li, H.; Wu, J.; Yin, Z. Y.; Zhang, H. Preparation and applications of mechanically exfoliated single-layer and multilayer MoS2 and WSe2 nanosheets. Acc. Chem. Res. 2014, 47, 1067–1075.

107

Huo, C. X.; Yan, Z.; Song, X. F.; Zeng, H. B. 2D materials via liquid exfoliation: A review on fabrication and applications. Sci. Bull. 2015, 60, 1994–2008.

108

Xu, W. T.; Jiang, J. Y.; Ma, H. F.; Zhang, Z. W.; Li, J.; Zhao, B.; Wu, R. X.; Yang, X. D.; Zhang, H. M.; Li, B. L. et al. Vapor phase growth of two-dimensional PdSe2 nanosheets for high-photoresponsivity near-infrared photodetectors. Nano Res. 2020, 13, 2091–2097.

109

Azadmanjiri, J.; Berndt, C. C.; Wang, J.; Kapoor, A.; Srivastava, V. K. Nanolaminated composite materials: Structure, interface role and applications. RSC Adv. 2016, 6, 109361–109385.

110

Tang, H. W.; Zhang, H. M.; Chen, X. Y.; Wang, Y.; Zhang, X. Z.; Cai, P. Y.; Bao, W. Z. Recent progress in devices and circuits based on wafer-scale transition metal dichalcogenides. Sci. China Inf. Sci. 2019, 62, 220401.

111

Zhan, Y. J.; Liu, Z.; Najmaei, S.; Ajayan, P. M.; Lou, J. Large-area vapor-phase growth and characterization of MoS2 atomic layers on a SiO2 substrate. Small 2012, 8, 966–971.

112

Wang, Z.; Wang, P.; Wang, F.; Ye, J. F.; He, T.; Wu, F.; Peng, M.; Wu, P. S.; Chen, Y. F.; Zhong, F. et al. A noble metal dichalcogenide for high-performance field-effect transistors and broadband photodetectors. Adv. Funct. Mater. 2020, 30, 1907945.

113

Wu, J.; Zhao, Y. S.; Sun, M. L.; Zheng, M. R.; Zhang, G.; Liu, X. K.; Chi, D. Z. Enhanced photoresponse of highly air-stable palladium diselenide by thickness engineering. Nanophotonics 2020, 9, 2467–2474.

114

Zhong, J. H.; Yu, J.; Cao, L. K.; Zeng, C.; Ding, J. N.; Cong, C. X.; Liu, Z. W.; Liu, Y. P. High-performance polarization-sensitive photodetector based on a few-layered PdSe2 nanosheet. Nano Res. 2020, 13, 1780–1786.

115

Long, H.; Tang, C. Y.; Cheng, P. K.; Wang, X. Y.; Qarony, W.; Tsang, Y. H. Ultrafast laser pulses generation by using 2D layered PtS2 as a saturable absorber. J. Lightwave Technol. 2019, 37, 1174–1179.

116

Hoffman, A. N.; Gu, Y. Y.; Liang, L. B.; Fowlkes, J. D.; Xiao, K.; Rack, P. D. Exploring the air stability of PdSe2 via electrical transport measurements and defect calculations. npj 2D Mater. Appl. 2019, 3, 50.

117

Jiang, S. L.; Xie, C. Y.; Gu, Y.; Zhang, Q. H.; Wu, X. X.; Sun, Y. L.; Li, W.; Shi, Y. P.; Zhao, L. Y.; Pan, S. Y. et al. Anisotropic growth and scanning tunneling microscopy identification of ultrathin even-layered PdSe2 ribbons. Small 2019, 15, 1902789.

118

Yuan, J.; Sun, T.; Hu, Z. X.; Yu, W. Z.; Ma, W. L.; Zhang, K.; Sun, B. Q.; Lau, S. P.; Bao, Q. L.; Lin, S. H. et al. Wafer-scale fabrication of two-dimensional PtS2/PtSe2 heterojunctions for efficient and broad band photodetection. ACS Appl. Mater. Interfaces 2018, 10, 40614–40622.

119

Zhao, D. H.; Xie, S.; Wang, Y.; Zhu, H.; Chen, L.; Sun, Q. Q.; Zhang, D. W. Synthesis of large-scale few-layer PtS2 films by chemical vapor deposition. AIP Adv. 2019, 9, 025225.

120

Ansari, L.; Monaghan, S.; McEvoy, N.; Coileáin, C. Ó.; Cullen, C. P.; Lin, J.; Siris, R.; Stimpel-Lindner, T.; Burke, K. F.; Mirabelli, G. et al. Quantum confinement-induced semimetal-to-semiconductor evolution in large-area ultra-thin PtSe2 films grown at 400 °C. npj 2D Mater. Appl. 2019, 3, 33.

121

Yim, C.; Passi, V.; Lemme, M. C.; Duesberg, G. S.; Coileáin, C. Ó.; Pallecchi, E.; Fadil, D.; McEvoy, N. Electrical devices from top-down structured platinum diselenide films. npj 2D Mater. Appl. 2018, 2, 5.

122

Wang, L.; Zhang, S. F.; McEvoy, N.; Sun, Y. Y.; Huang, J. W.; Xie, Y. F.; Dong, N. N.; Zhang, X. Y.; Kislyakov, I. M.; Nunzi, J. M. et al. Nonlinear optical signatures of the transition from semiconductor to semimetal in PtSe2. Laser Photon. Rev. 2019, 13, 1900052.

123

Zeng, L. H.; Lin, S. H.; Lou, Z. H.; Yuan, H. Y.; Long, H.; Li, Y. Y.; Lu, W.; Lau, S. P.; Wu, D.; Tsang, Y. H. Ultrafast and sensitive photodetector based on a PtSe2/silicon nanowire array heterojunction with a multiband spectral response from 200 to 1550 nm. NPG Asia Mater. 2018, 10, 352–362.

124

Wu, D.; Wang, Y. G.; Zeng, L. H.; Jia, C.; Wu, E. P.; Xu, T. T.; Shi, Z. F.; Tian, Y. T.; Li, X. J.; Tsang, Y. H. Design of 2D layered PtSe2 heterojunction for the high-performance, room-temperature, broadband, infrared photodetector. ACS Photonics 2018, 5, 3820–3827.

125

Zhang, Z. X.; Zeng, L. H.; Tong, X. W.; Gao, Y.; Xie, C.; Tsang, Y. H.; Luo, L. B.; Wu, Y. C. Ultrafast, Self-driven, and air-stable photodetectors based on multilayer PtSe2/perovskite heterojunctions. J. Phys. Chem. Lett. 2018, 9, 1185–1194.

126

Xie, C.; Zeng, L. H.; Zhang, Z. X.; Tsang, Y. H.; Luo, L. B.; Lee, J. H. High-performance broadband heterojunction photodetectors based on multilayered PtSe2 directly grown on a Si substrate. Nanoscale 2018, 10, 15285–15293.

127

Tao, L. L.; Huang, X. W.; He, J. S.; Lou, Y. J.; Zeng, L. H.; Li, Y. H.; Long, H.; Li, J. B.; Zhang, L.; Tsang, Y. H. Vertically standing PtSe2 film: A saturable absorber for a passively mode-locked Nd: LuVO4 laser. Photon. Res. 2018, 6, 750–755.

128

Luo, L. B.; Wang, D.; Xie, C.; Hu, J. G.; Zhao, X. Y.; Liang, F. X. PdSe2 multilayer on germanium nanocones array with light trapping effect for sensitive infrared photodetector and image sensing application. Adv. Funct. Mater. 2019, 29, 1900849.

129

Zhang, K. N.; Wang, M.; Zhou, X.; Wang, Y.; Shen, S. C.; Deng, K.; Peng, H. N.; Li, J. H.; Lai, X. B.; Zhang, L. W. et al. Growth of large scale PtTe, PtTe2 and PtSe2 films on a wide range of substrates. Nano Res. 2020, 14, 1663–1667.

130

Yan, M. Z.; Wang, E. Y.; Zhou, X.; Zhang, G. Q.; Zhang, H. Y.; Zhang, K. N.; Yao, W.; Lu, N. P.; Yang, S. Z.; Wu, S. L. et al. High quality atomically thin PtSe2 films grown by molecular beam epitaxy. 2D Mater. 2017, 4, 045015.

131

Xiong, K. C.; Hilse, M.; Li, L.; Göritz, A.; Lisker, M.; Wietstruck, M.; Kaynak, M.; Engel-Herbert, R.; Madjar, A.; Hwang, J. C. M. Large-scale fabrication of submicrometer-gate-length MOSFETs with a trilayer PtSe2 channel grown by molecular beam epitaxy. IEEE Trans. Electron Devices 2020, 67, 796–801.

132

Li, E.; Zhang, R. Z.; Li, H.; Liu, C.; Li, G.; Wang, J. O.; Qian, T.; Ding, H.; Zhang, Y. Y.; Du, S. X. et al. High quality PdTe2 thin films grown by molecular beam epitaxy. Chin. Phys. B 2018, 27, 086804.

133

Li, E.; Wang, D. F.; Fan, P.; Zhang, R. Z.; Zhang, Y. Y.; Li, G.; Mao, J. H.; Wang, Y. L.; Lin, X.; Du, S. X. et al. Construction of bilayer PdSe2 on epitaxial graphene. Nano Res. 2018, 11, 5858–5865.

134

Nguyen, D. A.; Park, D. Y.; Lee, J.; Duong, N. T.; Park, C.; Nguyen, D. H.; Le, T. S.; Suh, D.; Yang, H.; Jeong, M. S. Patterning of type-II Dirac semimetal PtTe2 for optimized interface of tellurene optoelectronic device. Nano Energy 2021, 86, 106049.

135

Poh, S. M.; Zhao, X. X.; Tan, S. J. R.; Fu, D. Y.; Fei, W. W.; Chu, L. Q.; Jiadong, D.; Zhou, W.; Pennycook, S. J.; Neto, A. H. C. et al. Molecular beam epitaxy of highly crystalline MoSe2 on hexagonal boron nitride. ACS Nano 2018, 12, 7562–7570.

136

Gordon, R. A.; Yang, D.; Crozier, E. D.; Jiang, D. T.; Frindt, R. F. Structures of exfoliated single layers of WS2, MoS2, and MoSe2 in aqueous suspension. Phys. Rev. B 2002, 65, 125407.

137

Kirmayer, S.; Aharon, E.; Dovgolevsky, E.; Kalina, M.; Frey, G. L. Self-assembled lamellar MoS2, SnS2 and SiO2 semiconducting polymer nanocomposites. Philos. Trans. A Math. Phy. Eng. Sci. 2007, 365, 1489–1508.

138

Wang, Y. D.; Wang, Y. Y.; Chen, K. Q.; Qi, K.; Xue, T. Y.; Zhang, H.; He, J.; Xiao, S. Niobium carbide MXenes with broad-band nonlinear optical response and ultrafast carrier dynamics. ACS Nano 2020, 14, 10492–40502.

139

Zhang, H.; Lu, S. B.; Zheng, J.; Du, J.; Wen, S. C.; Tang, D. Y.; Loh, K. P. Molybdenum disulfide (MoS2) as a broadband saturable absorber for ultra-fast photonics. Opt. Express 2014, 22, 7249–7260.

140

Mao, D.; Wang, Y. D.; Ma, C. J.; Han, L.; Jiang, B. Q.; Gan, X. T.; Hua, S. J.; Zhang, W. D.; Mei, T.; Zhao, J. L. WS2 mode-locked ultrafast fiber laser. Sci. Rep. 2015, 5, 7965.

141

Mu, H. R.; Lin, S. H.; Wang, Z. C.; Xiao, S.; Li, P. F.; Chen, Y.; Zhang, H.; Bao, H. F.; Lau, S. P.; Pan, C. X. et al. Black phosphorus-polymer composites for pulsed lasers. Adv. Opt. Mater. 2015, 3, 1447–1453.

142

Luo, Z. Q.; Wu, D. D.; Xu, B.; Xu, H. Y.; Cai, Z. P.; Peng, J.; Weng, J.; Xu, S.; Zhu, C. H.; Wang, F. Q. et al. Two-dimensional material-based saturable absorbers: Towards compact visible-wavelength all-fiber pulsed lasers. Nanoscale 2016, 8, 1066–1072.

143

Yu, J.; Kuang, X. F.; Li, J. Z.; Zhong, J. H.; Zeng, C.; Cao, L. K.; Liu, Z. W.; Zeng, Z. X. S.; Luo, Z. Y.; He, T. C. et al. Giant nonlinear optical activity in two-dimensional palladium diselenide. Nat. Commun. 2021, 12, 1083.

144

Han, J.; Wang, Y. W.; He, J.; Lu, H.; Li, X. P.; Gu, M.; Zhang, Y. N. Fabry-Perot cavity enhanced three-photon luminescence of atomically thin platinum diselenide. Nanoscale 2021, 13, 9031–9038.

145

Khan, K.; Tareen, A. K.; Aslam, M.; Wang, R. H.; Zhang, Y. P.; Mahmood, A.; Ouyang, Z. B.; Zhang, H.; Guo, Z. Y. Recent developments in emerging two-dimensional materials and their applications. J. Mater. Chem. C 2020, 8, 387–440.

146

Syedmoradi, L.; Ahmadi, A.; Norton, M. L.; Omidfar, K. A review on nanomaterial-based field effect transistor technology for biomarker detection. Microchim. Acta 2019, 186, 739.

147

Radisavljevic, B.; Radenovic, A.; Brivio, J.; Giacometti, V.; Kis, A. Single-layer MoS2 transistors. Nat. Nanotechnol. 2011, 6, 147–150.

148

Kaasbjerg, K.; Thygesen, K. S.; Jacobsen, K. W. Phonon-limited mobility in n-type single-layer MoS2 from first principles. Phys. Rev. B 2012, 85, 115317.

149

Xue, Y. Z.; Zhang, Y. P.; Liu, Y.; Liu, H. T.; Song, J. C.; Sophia, J.; Liu, J. Y.; Xu, Z. Q.; Xu, Q. Y.; Wang, Z. Y. et al. Scalable production of a few-layer MoS2/WS2 vertical heterojunction array and its application for photodetectors. ACS Nano 2016, 10, 573–580.

150

Wood, J. D.; Wells, S. A.; Jariwala, D.; Chen, K. S.; Cho, E.; Sangwan, V. K.; Liu, X. L.; Lauhon, L. J.; Marks, T. J.; Hersam, M. C. Effective passivation of exfoliated black phosphorus transistors against ambient degradation. Nano Lett. 2014, 14, 6964–6970.

151

Dean, C. R.; Young, A. F.; Meric, I.; Lee, C.; Wang, L.; Sorgenfrei, S.; Watanabe, K.; Taniguchi, T.; Kim, P.; Shepard, K. L. et al. Boron nitride substrates for high-quality graphene electronics. Nat. Nanotechnol. 2010, 5, 722–726.

152

Cui, X.; Lee, G. H.; Kim, Y. D.; Arefe, G.; Huang, P. Y.; Lee, C. H.; Chenet, D. A.; Zhang, X.; Wang, L.; Ye, F. et al. Multi-terminal transport measurements of MoS2 using a van der Waals heterostructure device platform. Nat. Nanotechnol. 2015, 10, 534–540.

153

Li, L. K.; Yang, F. Y.; Ye, G. J.; Zhang, Z. C.; Zhu, Z. W.; Lou, W. K.; Zhou, X. Y.; Li, L.; Watanabe, K.; Taniguchi, T. et al. Quantum Hall effect in black phosphorus two-dimensional electron system. Nat. Nanotechnol. 2016, 11, 593–597.

154

Liang, F. X.; Zhao, X. Y.; Jiang, J. J.; Hu, J. G.; Xie, W. Q.; Lv, J.; Zhang, Z. X.; Wu, D.; Luo, L. B. Light confinement effect induced highly sensitive, self-driven near-infrared photodetector and image sensor based on multilayer PdSe2/pyramid Si heterojunction. Small 2019, 15, 1903831.

155

Son, J. G.; Son, M.; Moon, K. J.; Lee, B. H.; Myoung, J. M.; Strano, M. S.; Ham, M. H.; Ross, C. A. Sub-10 nm graphene nanoribbon array field-effect transistors fabricated by block copolymer lithography. Adv. Mater. 2013, 25, 4723–4728.

156

Amani, M.; Regan, E.; Bullock, J.; Ahn, G. H.; Javey, A. Mid-wave infrared photoconductors based on black phosphorus-arsenic alloys. ACS Nano 2017, 11, 11724–11731.

157

Zeng, L. H.; Wu, D.; Jie, J. S.; Ren, X. Y.; Hu, X.; Lau, S. P.; Chai, Y.; Tsang, Y. H. Van der Waals epitaxial growth of mosaic-like 2D platinum ditelluride layers for room-temperature mid-infrared photodetection up to 10. 6 µm. Adv. Mater. 2020, 32, 2004412.

158

Liu, Q. F.; Cook, B.; Gong, M. G.; Gong, Y. P.; Ewing, D.; Casper, M.; Stramel, A.; Wu, J. Printable transfer-free and wafer-size MoS2/graphene van der Waals heterostructures for high-performance photodetection. ACS Appl. Mater. Interfaces 2017, 9, 12728–12733.

159

Song, X. F.; Liu, X. H.; Yu, D. J.; Huo, C. X.; Ji, J. P.; Li, X. M.; Zhang, S. L.; Zou, Y. S.; Zhu, G. Y.; Wang, Y. J. et al. Boosting two-dimensional MoS2/CsPbBr3 photodetectors via enhanced light absorbance and interfacial carrier separation. ACS Appl. Mater. Interfaces 2018, 10, 2801–2809.

160

Pi, L. J.; Li, L.; Liu, K. L.; Zhang, Q. F.; Li, H. Q.; Zhai, T. Y. Recent progress on 2D noble-transition-metal dichalcogenides. Adv. Funct. Mater. 2019, 29, 1904932.

161

Li, Z. Q.; Li, R.; Pang, C.; Dong, N. N.; Wang, J.; Yu, H. H.; Chen, F. 8. 8 GHz Q-switched mode-locked waveguide lasers modulated by PtSe2 saturable absorber. Opt. Express 2019, 27, 8727–8737.

162

Huang, B.; Du, L.; Yi, Q.; Yang, L. L.; Li, J.; Miao, L. L.; Zhao, C. J.; Wen, S. C. Bulk-structured PtSe2 for femtosecond fiber laser mode-locking. Opt. Express 2019, 27, 2604–2611.

163

Yan, B. Z.; Zhang, B. T.; Nie, H. K.; Li, G. R.; Liu, J. T.; Shi, B. N.; Yang, K. J.; He, J. L. Bilayer platinum diselenide saturable absorber for 2. 0 μm passively Q-switched bulk lasers. Opt. Express 2018, 26, 31657–31663.

164

Zhang, K.; Feng, M.; Ren, Y. Y.; Liu, F.; Chen, X. S.; Yang, J.; Yan, X. Q.; Song, F.; Tian, J. G. Q-switched and mode-locked Er-doped fiber laser using PtSe2 as a saturable absorber. Photon. Res. 2018, 6, 893–899.

165

Cui, N.; Zhang, F.; Zhao, Y. Q.; Yao, Y. P.; Wang, Q. G.; Dong, L. L.; Zhang, H. Y.; Liu, S. D.; Xu, J. L.; Zhang, H. The visible nonlinear optical properties and passively Q-switched laser application of a layered PtSe2 material. Nanoscale 2020, 12, 1061–1066.

166

Cheng, P. K.; Tang, C. Y.; Ahmed, S.; Qiao, J. P.; Zeng, L. H.; Tsang, Y. H. Utilization of group 10 2D TMDs-PdSe2 as a nonlinear optical material for obtaining switchable laser pulse generation modes. Nanotechnology 2021, 32, 055201.

167

Xu, N. N.; Wang, H. F.; Zhang, H. N.; Guo, L. G.; Shang, X. X.; Jiang, S. Z.; Li, D. W. Palladium diselenide as a direct absorption saturable absorber for ultrafast mode-locked operations: From all anomalous dispersion to all normal dispersion. Nanophotonics 2020, 9, 4295–4306.

168

Zhang, H. N.; Ma, P. F.; Zhu, M. X.; Zhang, W. F.; Wang, G. M.; Fu, S. G. Palladium selenide as a broadband saturable absorber for ultra-fast photonics. Nanophotonics 2020, 9, 2557–2567.

169

Su, T. Y.; Medina, H.; Chen, Y. Z.; Wang, S. W.; Lee, S. S.; Shih, Y. C.; Chen, C. W.; Kuo, H. C.; Chuang, F. C.; Chueh, Y. L. Phase-engineered PtSe2 -layered films by a plasma-assisted selenization process toward all PtSe2 -based field effect transistor to highly sensitive, flexible, and wide-spectrum photoresponse photodetectors. Small 2018, 14, 1800032.

170

Yang, Y. J.; Jang, S. K.; Choi, H.; Xu, J.; Lee, S. Homogeneous platinum diselenide metal/semiconductor coplanar structure fabricated by selective thickness control. Nanoscale 2019, 11, 21068–21073.

171

Lu, L. S.; Chen, G. H.; Cheng, H. Y.; Chuu, C. P.; Lu, K. C.; Chen, C. H.; Lu, M. Y.; Chuang, T. H.; Wei, D. H.; Chueh, W. C. et al. Layer-dependent and in-plane anisotropic properties of low-temperature synthesized few-layer PdSe2 single crystals. ACS Nano 2020, 14, 4963–4972.

172

Walmsley, T. S.; Andrews, K.; Wang, T. J.; Haglund, A.; Rijal, U.; Bowman, A.; Mandrus, D.; Zhou, Z. X.; Xu, Y. Q. Near-infrared optical transitions in PdSe2 phototransistors. Nanoscale 2019, 11, 14410–14416.

173

Afzal, A. M.; Iqbal, M. Z.; Dastgeer, G.; ul Ahmad, A.; Park, B. Highly sensitive, ultrafast, and broadband photo-detecting field-effect transistor with transition-metal dichalcogenide van der Waals heterostructures of MoTe2 and PdSe2. Adv. Sci. 2021, 8, 2003713.

174

Tan, C. Y.; Yin, S. Q.; Chen, J. W.; Lu, Y.; Wei, W. S.; Du, H. F.; Liu, K. K.; Wang, F. K.; Zhai, T. Y.; Li, L. Broken-gap PtS2/WSe2 van der Waals heterojunction with ultrahigh reverse rectification and fast photoresponse. ACS Nano 2021, 15, 8328–8337.

175

Zhuo, R. R.; Zeng, L. H.; Yuan, H. Y.; Wu, D.; Wang, Y. G.; Shi, Z. F.; Xu, T. T.; Tian, Y. T.; Li, X. J.; Tsang, Y. H. In-situ fabrication of PtSe2/GaN heterojunction for self-powered deep ultraviolet photodetector with ultrahigh current on/off ratio and detectivity. Nano Res. 2019, 12, 183–189.

176

Wang, Y.; Yu, Z. J.; Tong, Y. Y.; Sun, B. L.; Zhang, Z. Y.; Xu, J. B.; Sun, X. K.; Tsang, H. K. High-speed infrared two-dimensional platinum diselenide photodetectors. Appl. Phys. Lett. 2020, 116, 211101.

177

Wang, Z.; Xia, H.; Wang, P.; Zhou, X. H.; Liu, C. S.; Zhang, Q. H.; Wang, F.; Huang, M. L.; Chen, S. Y.; Wu, P. S. et al. Controllable doping in 2D layered materials. Adv. Mater. 2021, 2104942.

178

Lin, Z. P.; Xiao, B. B.; Wang, Z. P.; Tao, W. Y.; Shen, S. J.; Huang, L. G.; Zhang, J. T.; Meng, F. Q.; Zhang, Q. H.; Gu, L. et al. Planar-coordination PdSe2 nanosheets as highly active electrocatalyst for hydrogen evolution reaction. Adv. Funct. Mater. 2021, 31, 2102321.

179

Wei, K. K.; Li, D. L.; Lin, Z. T.; Cheng, Z.; Yao, Y. H.; Guo, J.; Wang, Y. Z.; Zhang, Y. P.; Dong, J. J.; Zhang, H. et al. All-optical PtSe2 silicon photonic modulator with ultra-high stability. Photon. Res. 2020, 8, 1189–1196.

180

Chung, C. C.; Yeh, H.; Wu, P. H.; Lin, C. C.; Li, C. S.; Yeh, T. T.; Chou, Y.; Wei, C. Y.; Wen, C. Y.; Chou, Y. C. et al. Atomic-layer controlled interfacial band engineering at two-dimensional layered PtSe2/Si heterojunctions for efficient photoelectrochemical hydrogen production. ACS Nano 2021, 15, 4627–4635.

181

Kireev, D.; Okogbue, E.; Jayanth, R. T.; Ko, T. J.; Jung, Y.; Akinwande, D. Multipurpose and reusable ultrathin electronic tattoos based on PtSe2 and PtTe2. ACS Nano 2021, 15, 2800–2811.

182

Ping, X. F.; Liang, D.; Wu, Y. Y.; Yan, X. X.; Zhou, S. X.; Hu, D. K.; Pan, X. Q.; Lu, P. F.; Jiao, L. Y. Activating a two-dimensional PtSe2 basal plane for the hydrogen evolution reaction through the simultaneous generation of atomic vacancies and Pt clusters. Nano Lett. 2021, 21, 3857–3863.

Nano Research
Pages 3675-3694
Cite this article:
Wang Y, Zhou L, Zhong M, et al. Two-dimensional noble transition-metal dichalcogenides for nanophotonics and optoelectronics: Status and prospects. Nano Research, 2022, 15(4): 3675-3694. https://doi.org/10.1007/s12274-021-3979-6
Topics:

1055

Views

33

Crossref

34

Web of Science

34

Scopus

4

CSCD

Altmetrics

Received: 20 July 2021
Revised: 28 September 2021
Accepted: 05 November 2021
Published: 13 December 2021
© Tsinghua University Press and Springer-Verlag GmbH Germany, part of Springer Nature 2021
Return