Discover the SciOpen Platform and Achieve Your Research Goals with Ease.
Search articles, authors, keywords, DOl and etc.
The catalytic conversion of carbon dioxide (CO2) into high value-added chemicals is of great significance to address the pressing carbon cycle issues. Reticular chemistry of metal-organic frameworks (MOFs)-based materials exhibits great potential and effectiveness to face CO2 challenge from capture to conversion. To date, the integrated nanocomposites of nanostructure and MOF have emerged as a powerful heterogeneous catalysts featured with multifold advantages including synergistic effects between the two interfaces, confinement effect of meso- and micropores, tandem reaction triggered by multiple active sites, high stability and dispersion, and so on. Given burgeoning carbon cycle and nanostructure@MOFs, this review highlights some of important advancements to provide a full understanding on the synthesis and design of nanostructure@MOFs composites to facilitate carbon cycle through CO2 photocatalytic, electrocatalytic, and thermal conversion. Afterward, the catalytic applications of some representative nanostructure@MOFs composites are categorized, in which the origin of activity or structure-activity relationship is summarized. Finally, the opportunities and challenges are proposed for inspiring the future development of nanostructure@MOFs composites for carbon cycle.
Ding, M. L.; Flaig, R. W.; Jiang, H. L.; Yaghi, O. M. Carbon capture and conversion using metal-organic frameworks and MOF-based materials. Chem. Soc. Rev. 2019, 48, 2783–2828.
Trickett, C. A.; Helal, A.; Al-Maythalony, B. A.; Yamani, Z. H.; Cordova, K. E.; Yaghi, O. M. The chemistry of metal-organic frameworks for CO2 capture, regeneration and conversion. Nat. Rev. Mater. 2017, 2, 17045.
Göttle, A. J.; Koper, M. T. M. Proton-coupled electron transfer in the electrocatalysis of CO2 reduction: Prediction of sequential vs. concerted pathways using DFT. Chem. Sci. 2017, 8, 458–465.
Wang, L. M.; Chen, W. L.; Zhang, D. D.; Du, Y. P.; Amal, R.; Qiao, S. Z.; Wu, J. B.; Yin, Z. Y. Surface strategies for catalytic CO2 reduction: From two-dimensional materials to nanoclusters to single atoms. Chem. Soc. Rev. 2019, 48, 5310–5349.
Gao, D. F.; Arán-Ais, R. M.; Jeon, H. S.; Roldan Cuenya, B. Rational catalyst and electrolyte design for CO2 electroreduction towards multicarbon products. Nat. Catal. 2019, 2, 198–210.
Ni, B.; Shi, Y.; Wang, X. The sub-nanometer scale as a new focus in nanoscience. Adv. Mater. 2018, 30, 1802031.
Kortlever, R.; Peters, I.; Balemans, C.; Kas, R.; Kwon, Y.; Mul, G.; Koper, M. T. M. Palladium-gold catalyst for the electrochemical reduction of CO2 to C1-C5 hydrocarbons. Chem. Commun. 2016, 52, 10229–10232.
Heuer-Jungemann, A.; Feliu, N.; Bakaimi, I.; Hamaly, M.; Alkilany, A.; Chakraborty, I.; Masood, A.; Casula, M. F.; Kostopoulou, A.; Oh, E. et al. The role of ligands in the chemical synthesis and applications of inorganic nanoparticles. Chem. Rev. 2019, 119, 4819–4880.
Zhu, Y. T.; Cui, X. Y.; Liu, H. L.; Guo, Z. G.; Dang, Y. F.; Fan, Z. X.; Zhang, Z. C.; Hu, W. P. Tandem catalysis in electrochemical CO2 reduction reaction. Nano Res. 2021, 14, 4471–4486.
Yang, C. H.; Li, S. Y.; Zhang, Z. C.; Wang, H. Q.; Liu, H. L.; Jiao, F.; Guo, Z. G.; Zhang, X. T.; Hu, W. P. Organic-inorganic hybrid nanomaterials for electrocatalytic CO2 reduction. Small 2020, 16, 2001847.
Birdja, Y. Y.; Pérez-Gallent, E.; Figueiredo, M. C.; Göttle, A. J.; Calle-Vallejo, F.; Koper, M. T. M. Advances and challenges in understanding the electrocatalytic conversion of carbon dioxide to fuels. Nat. Energy 2019, 4, 732–745.
Nam, D. H.; De Luna, P.; Rosas-Hernández, A.; Thevenon, A.; Li, F. W.; Agapie, T.; Peters, J. C.; Shekhah, O.; Eddaoudi, M.; Sargent, E. H. Molecular enhancement of heterogeneous CO2 reduction. Nat. Mater. 2020, 19, 266–276.
Wakerley, D.; Lamaison, S.; Ozanam, F.; Menguy, N.; Mercier, D.; Marcus, P.; Fontecave, M.; Mougel, V. Bio-inspired hydrophobicity promotes CO2 reduction on a Cu surface. Nat. Mater. 2019, 18, 1222–1227.
Liang, Z. B.; Qu, C.; Guo, W. H.; Zou, R. Q.; Xu, Q. Pristine metal-organic frameworks and their composites for energy storage and conversion. Adv. Mater. 2018, 30, 1702891.
Li, D. D.; Kassymova, M.; Cai, X. C.; Zang, S. Q.; Jiang, H. L. Photocatalytic CO2 reduction over metal-organic framework-based materials. Coordin. Chem. Rev. 2020, 412, 213262.
Yang, H. Z.; Yang, D. R.; Zhou, Y.; Wang, X. Polyoxometalate interlayered zinc-metallophthalocyanine molecular layer sandwich as photocoupled electrocatalytic CO2 reduction catalyst. J. Am. Chem. Soc. 2021, 143, 13721–13730.
Li, R.; Zhang, W.; Zhou, K. Metal-organic-framework-based catalysts for photoreduction of CO2. Adv. Mater. 2018, 30, 1705512.
Sun, L. B.; Reddu, V.; Fisher, A. C.; Wang, X. Electrocatalytic reduction of carbon dioxide: Opportunities with heterogeneous molecular catalysts. Energy Environ. Sci. 2020, 13, 374–403.
Wang, N.; Miao, R. K.; Lee, G.; Vomiero, A.; Sinton, D.; Ip, A. H.; Liang, H. Y.; Sargent, E. H. Suppressing the liquid product crossover in electrochemical CO2 reduction. SmartMat 2021, 2, 12–16.
Kumar, N.; Mukherjee, S.; Bezrukov, A. A.; Vandichel, M.; Shivanna, M.; Sensharma, D.; Bajpai, A.; Gascón, V.; Otake, K. I.; Kitagawa, S. et al. A square lattice topology coordination network that exhibits highly selective C2H2/CO2 separation performance. SmartMat 2020, 1, e1008.
Wang, Y. R.; Huang, Q.; He, C. T.; Chen, Y. F.; Liu, J.; Shen, F. C.; Lan, Y. Q. Oriented electron transmission in polyoxometalate-metalloporphyrin organic framework for highly selective electroreduction of CO2. Nat. Commun. 2018, 9, 4466.
Chen, X. H.; Wei, Q.; Hong, J. D.; Xu, R.; Zhou, T. H. Bifunctional metal-organic frameworks toward photocatalytic CO2 reduction by post-synthetic ligand exchange. Rare Met. 2019, 38, 413–419.
Yang, C. H.; Nosheen, F.; Zhang, Z. C. Recent progress in structural modulation of metal nanomaterials for electrocatalytic CO2 reduction. Rare Met. 2021, 40, 1412–1430.
Centi, G. Smart catalytic materials for energy transition. SmartMat 2020, 1, e1005.
An, B.; Zhang, J. Z.; Cheng, K.; Ji, P. F.; Wang, C.; Lin, W. B. Confinement of ultrasmall Cu/ZnOx nanoparticles in metal-organic frameworks for selective methanol synthesis from catalytic hydrogenation of CO2. J. Am. Chem. Soc. 2017, 139, 3834–3840.
Gutterød, E. S.; Lazzarini, A.; Fjermestad, T.; Kaur, G.; Manzoli, M.; Bordiga, S.; Svelle, S.; Lillerud, K. P.; Skúlason, E.; Øien-Ødegaard, S. et al. Hydrogenation of CO2 to methanol by Pt nanoparticles encapsulated in UiO-67: Deciphering the role of the metal-organic framework. J. Am. Chem. Soc. 2020, 142, 999–1009.
Yuan, S.; Feng, L.; Wang, K. C.; Pang, J. D.; Bosch, M.; Lollar, C.; Sun, Y. J.; Qin, J. S.; Yang, X. Y.; Zhang, P. et al. Stable metal-organic frameworks: Design, synthesis, and applications. Adv. Mater. 2018, 30, 1704303.
Dissegna, S.; Epp, K.; Heinz, W. R.; Kieslich, G.; Fischer, R. A. Defective metal-organic frameworks. Adv. Mater. 2018, 30, 1704501.
Falcaro, P.; Ricco, R.; Yazdi, A.; Imaz, I.; Furukawa, S.; Maspoch, D.; Ameloot, R.; Evans, J. D.; Doonan, C. J. Application of metal and metal oxide nanoparticles@MOFs. Coordin. Chem. Rev. 2016, 307, 237–254.
Hermes, S.; Schröter, M. K.; Schmid, R.; Khodeir, L.; Muhler, M.; Tissler, A.; Fischer, R. W.; Fischer, R. A. Metal@MOF: Loading of highly porous coordination polymers host lattices by metal organic chemical vapor deposition. Angew. Chem., Int. Ed. 2005, 44, 6237–6241.
Müller, M.; Hermes, S.; Kähler, K.; van den Berg, M. W. E.; Muhler, M.; Fischer, R. A. Loading of MOF-5 with Cu and ZnO nanoparticles by gas-phase infiltration with organometallic precursors: Properties of Cu/ZnO@MOF-5 as catalyst for methanol synthesis. Chem. Mater. 2008, 20, 4576–4587.
An, B.; Li, Z.; Song, Y.; Zhang, J. Z.; Zeng, L. Z.; Wang, C.; Lin, W. B. Cooperative copper centres in a metal-organic framework for selective conversion of CO2 to ethanol. Nat. Catal. 2019, 2, 709–717.
Zhao, M. T.; Deng, K.; He, L. C.; Liu, Y.; Li, G. D.; Zhao, H. J.; Tang, Z. Y. Core-shell palladium nanoparticle@metal-organic frameworks as multifunctional catalysts for cascade reactions. J. Am. Chem. Soc. 2014, 136, 1738–1741.
He, L. C.; Liu, Y.; Liu, J. Z.; Xiong, Y. S.; Zheng, J. Z.; Liu, Y. L.; Tang, Z. Y. Core-shell noble-metal@metal-organic-framework nanoparticles with highly selective sensing property. Angew. Chem., Int. Ed. 2013, 52, 3741–3745.
Reboul, J.; Furukawa, S.; Horike, N.; Tsotsalas, M.; Hirai, K.; Uehara, H.; Kondo, M.; Louvain, N.; Sakata, O.; Kitagawa, S. Mesoscopic architectures of porous coordination polymers fabricated by pseudomorphic replication. Nat. Mater. 2012, 11, 717–723.
Li, Y.; Lo, W. S.; Zhang, F. R.; Si, X. M.; Chou, L. Y.; Liu, X. Y.; Williams, B. P.; Li, Y. H.; Jung, S. H.; Hsu, Y. S. et al. Creating an aligned interface between nanoparticles and MOFs by concurrent replacement of capping agents. J. Am. Chem. Soc. 2021, 143, 5182–5190.
Lo, W. S.; Chou, L. Y.; Young, A. P.; Ren, C. H.; Goh, T. W.; Williams, B. P.; Li, Y.; Chen, S. Y.; Ismail, M. N.; Huang, W. Y. et al. Probing the interface between encapsulated nanoparticles and metal-organic frameworks for catalytic selectivity control. Chem. Mater. 2021, 33, 1946–1953.
Tian, Z.; Chen, D. L.; He, T.; Yang, P. Y.; Wang, F. F.; Zhong, Y. J.; Zhu, W. D. Theoretical evidence on the confinement effect of Pt@UiO-66-NH2 for cinnamaldehyde hydrogenation. J. Phys. Chem. C 2019, 123, 22114–22122.
Cai, M. J.; Li, C. R.; He, L. Enhancing photothermal CO2 catalysis by thermal insulating substrates. Rare Met. 2020, 39, 881–886.
Yang, D. R.; Wang, G. X.; Wang, X. Photo- and thermo-coupled electrocatalysis in carbon dioxide and methane conversion. Sci. China Mater. 2019, 62, 1369–1373.
Jiang, Z.; Xu, X. H.; Ma, Y. H.; Cho, H. S.; Ding, D.; Wang, C.; Wu, J.; Oleynikov, P.; Jia, M.; Cheng, J. et al. Filling metal-organic framework mesopores with TiO2 for CO2 photoreduction. Nature 2020, 586, 549–554.
Wu, H.; Kong, X. Y.; Wen, X. M.; Chai, S. P.; Lovell, E. C.; Tang, J. W.; Ng, Y. H. Metal-organic framework decorated cuprous oxide nanowires for long-lived charges applied in selective photocatalytic CO2 reduction to CH4. Angew. Chem., Int. Ed. 2021, 60, 8455–8459.
Li, J.; Huang, H. L.; Xue, W. J.; Sun, K.; Song, X. H.; Wu, C. R.; Nie, L.; Li, Y.; Liu, C. Y.; Pan, Y. et al. Self-adaptive dual-metal-site pairs in metal-organic frameworks for selective CO2 photoreduction to CH4. Nat. Catal. 2021, 4, 719–729.
Wang, S. B.; Lin, J. L.; Wang, X. C. Semiconductor-redox catalysis promoted by metal-organic frameworks for CO2 reduction. Phys. Chem. Chem. Phys. 2014, 16, 14656–14660.
Liu, S. W.; Chen, F.; Li, S. T.; Peng, X. X.; Xiong, Y. Enhanced photocatalytic conversion of greenhouse gas CO2 into solar fuels over g-C3N4 nanotubes with decorated transparent ZiF-8 nanoclusters. Appl. Catal. B:Environ. 2017, 211, 1–10.
Wang, S. B.; Wang, X. C. Photocatalytic CO2 reduction by CdS promoted with a zeolitic imidazolate framework. Appl. Catal. B:Environ. 2015, 162, 494–500.
Yan, S. S.; Ouyang, S. X.; Xu, H.; Zhao, M.; Zhang, X. L.; Ye, J. H. Co-ZIF-9/TiO2 nanostructure for superior CO2 photoreduction activity. J. Mater. Chem. A 2016, 4, 15126–15133.
Shi, L.; Wang, T.; Zhang, H. B.; Chang, K.; Ye, J. H. Electrostatic self-assembly of nanosized carbon nitride nanosheet onto a zirconium metal-organic framework for enhanced photocatalytic CO2 reduction. Adv. Funct. Mater. 2015, 25, 5360–5367.
Wang, L.; Jin, P. X.; Duan, S. H.; She, H. D.; Huang, J. W.; Wang, Q. Z. In-situ incorporation of copper(II) porphyrin functionalized zirconium MOF and TiO2 for efficient photocatalytic CO2 reduction. Sci. Bull. 2019, 64, 926–933.
Su, Y.; Zhang, Z.; Liu, H.; Wang, Y. Cd0.2Zn0.8S@UiO-66-NH2 nanocomposites as efficient and stable visible-light-driven photocatalyst for H2 evolution and CO2 reduction. Appl. Catal. B:Environ. 2017, 200, 448–457.
Zhao, H.; Wang, X. S.; Feng, J. F.; Chen, Y. N.; Yang, X.; Gao, S. Y.; Cao, R. Synthesis and characterization of Zn2GeO4/Mg-MOF-74 composites with enhanced photocatalytic activity for CO2 reduction. Catal. Sci. Technol. 2018, 8, 1288–1295.
Li, R.; Hu, J. H.; Deng, M. S.; Wang, H. L.; Wang, X. J.; Hu, Y. L.; Jiang, H. L.; Jiang, J.; Zhang, Q.; Xie, Y. et al. Integration of an inorganic semiconductor with a metal-organic framework: A platform for enhanced gaseous photocatalytic reactions. Adv. Mater. 2014, 26, 4783–4788.
Mu, Q. Q.; Su, Y. H.; Wei, Z. H.; Sun, H.; Lian, Y. B.; Dong, Y. Y.; Qi, P. W.; Deng, Z.; Peng, Y. Dissecting the interfaces of MOF-coated CdS on synergized charge transfer for enhanced photocatalytic CO2 reduction. J. Catal. 2021, 397, 128–136.
Chen, X.; Li, Q.; Li, J. J.; Chen, J.; Jia, H. P. Modulating charge separation via in situ hydrothermal assembly of low content Bi2S3 into UiO-66 for efficient photothermocatalytic CO2 reduction. Appl. Catal. B:Environ. 2020, 270, 118915.
Chen, L. Y.; Wang, Y. X.; Yu, F. Y.; Shen, X. S.; Duan, C. Y. A simple strategy for engineering heterostructures of Au nanoparticle-loaded metal-organic framework nanosheets to achieve plasmon-enhanced photocatalytic CO2 conversion under visible light. J. Mater. Chem. A 2019, 7, 11355–11361.
Choi, K. M.; Kim, D.; Rungtaweevoranit, B.; Trickett, C. A.; Barmanbek, J. T. D.; Alshammari, A. S.; Yang, P. D.; Yaghi, O. M. Plasmon-enhanced photocatalytic CO2 conversion within metal-organic frameworks under visible light. J. Am. Chem. Soc. 2017, 139, 356–362.
Sun, D. R.; Liu, W. J.; Fu, Y. H.; Fang, Z. X.; Sun, F. X.; Fu, X. Z.; Zhang, Y. F.; Li, Z. H. Noble metals can have different effects on photocatalysis over metal–organic frameworks (MOFs): A case study on M/NH2-MIL-125(Ti) (M=Pt and Au). Chem. - Eur. J. 2014, 20, 4780–4788.
Feng, X. Y.; Pi, Y. H.; Song, Y.; Brzezinski, C.; Xu, Z. W.; Li, Z.; Lin, W. B. Metal-organic frameworks significantly enhance photocatalytic hydrogen evolution and CO2 reduction with earth-abundant copper photosensitizers. J. Am. Chem. Soc. 2020, 142, 690–695.
Wang, S. B.; Yao, W. S.; Lin, J. L.; Ding, Z. X.; Wang, X. C. Cobalt imidazolate metal-organic frameworks photosplit CO2 under mild reaction conditions. Angew. Chem., Int. Ed. 2014, 53, 1034–1038.
Fei, H. H.; Sampson, M. D.; Lee, Y.; Kubiak, C. P.; Cohen, S. M. Photocatalytic CO2 reduction to formate using a Mn(I) molecular catalyst in a robust metal-organic framework. Inorg. Chem. 2015, 54, 6821–6828.
Zhao, J.; Wang, Q.; Sun, C. Y.; Zheng, T. T.; Yan, L. K.; Li, M. T.; Shao, K. Z.; Wang, X. L.; Su, Z. M. A hexanuclear cobalt metal–organic framework for efficient CO2 reduction under visible light. J. Mater. Chem. A 2017, 5, 12498–12505.
Kong, Z. C.; Liao, J. F.; Dong, Y. J.; Xu, Y. F.; Chen, H. Y.; Kuang, D. B.; Su, C. Y. Core@shell CsPbBr3@zeolitic imidazolate framework nanocomposite for efficient photocatalytic CO2 reduction. ACS Energy Lett. 2018, 3, 2656–2662.
Wu, L. Y.; Mu, Y. F.; Guo, X. X.; Zhang, W.; Zhang, Z. M.; Zhang, M.; Lu, T. B. Encapsulating perovskite quantum dots in iron-based metal-organic frameworks (MOFs) for efficient photocatalytic CO2 reduction. Angew. Chem., Int. Ed. 2019, 58, 9491–9495.
Wang, J. W.; Qiao, L. Z.; Nie, H. D.; Huang, H. H.; Li, Y.; Yao, S.; Liu, M.; Zhang, Z. M.; Kang, Z. H.; Lu, T. B. Facile electron delivery from graphene template to ultrathin metal-organic layers for boosting CO2 photoreduction. Nat. Commun. 2021, 12, 813.
Mu, Q. Q.; Zhu, W.; Li, X.; Zhang, C. F.; Su, Y. H.; Lian, Y. B.; Qi, P. W.; Deng, Z.; Zhang, D.; Wang, S. A. et al. Electrostatic charge transfer for boosting the photocatalytic CO2 reduction on metal centers of 2D MOF/rGO heterostructure. Appl. Catal. B:Environ. 2020, 262, 118144.
Duguet, M.; Lemarchand, A.; Benseghir, Y.; Mialane, P.; Gomez-Mingot, M.; Roch-Marchal, C.; Haouas, M.; Fontecave, M.; Mellot-Draznieks, C.; Sassoye, C. et al. Structure-directing role of immobilized polyoxometalates in the synthesis of porphyrinic Zr-based metal-organic frameworks. Chem. Commun. 2020, 56, 10143–10146.
Mialane, P.; Mellot-Draznieks, C.; Gairola, P.; Duguet, M.; Benseghir, Y.; Oms, O.; Dolbecq, A. Heterogenisation of polyoxometalates and other metal-based complexes in metal-organic frameworks: From synthesis to characterisation and applications in catalysis. Chem. Soc. Rev. 2021, 50, 6152–6220.
Gu, J.; Chen, W.; Shan, G. G.; Li, G.; Sun, C.; Wang, X. L.; Su, Z. The roles of polyoxometalates in photocatalytic reduction of carbon dioxide. Mater. Today Energy 2021, 21, 100760.
Yang, D. R.; Ni, B.; Wang, X. Heterogeneous catalysts with well-defined active metal sites toward CO2 electrocatalytic reduction. Adv. Energy Mater. 2020, 10, 2001142.
Yang, D. R.; Zuo, S. W.; Yang, H. Z.; Wang, X. Single-unit-cell catalysis of CO2 electroreduction over sub-1 nm Cu9S5 nanowires. Adv. Energy Mater. 2021, 11.
Zhang, S. M.; Liu, N.; Wang, H. W.; Lu, Q. C.; Shi, W. X.; Wang, X. Sub-nanometer nanobelts based on titanium dioxide/zirconium dioxide-polyoxometalate heterostructures. Adv. Mater. 2021, 33, 2100576.
Yang, D. R.; Zuo, S. W.; Yang, H. Z.; Zhou, Y.; Wang, X. Freestanding millimeter-scale porphyrin-based monoatomic layers with 0.28 nm thickness for CO2 electrocatalysis. Angew. Chem., Int. Ed. 2020, 59, 18954–18959.
Yang, H. Z.; Yang, D. R.; Wang, X. POM-incorporated CoO nanowires for enhanced photocatalytic syngas production from CO2. Angew. Chem., Int. Ed. 2020, 59, 15527–15531.
Yang, D. R.; Yu, H. D.; He, T.; Zuo, S. W.; Liu, X. Z.; Yang, H. Z.; Ni, B.; Li, H. Y.; Gu, L.; Wang, D. et al. Visible-light-switched electron transfer over single porphyrin-metal atom center for highly selective electroreduction of carbon dioxide. Nat. Commun. 2019, 10, 3844.
Benseghir, Y.; Lemarchand, A.; Duguet, M.; Mialane, P.; Gomez-Mingot, M.; Roch-Marchal, C.; Pino, T.; Ha-Thi, M. H.; Haouas, M.; Fontecave, M. et al. Co-immobilization of a Rh catalyst and a keggin polyoxometalate in the UiO-67 Zr-based metal-organic framework: In depth structural characterization and photocatalytic properties for CO2 reduction. J. Am. Chem. Soc. 2020, 142, 9428–9438.
Wang, Y.; Xie, Y.; Deng, M. C.; Liu, T. F.; Yang, H. X. Incorporation of polyoxometalate in sulfonic acid-modified MIL-101-CR for enhanced CO2 photoreduction activity. Eur. J. Inorg. Chem. 2021, 2021, 681–687.
Liu, S. M.; Zhang, Z.; Li, X. H.; Jia, H. J.; Ren, M. W.; Liu, S. X. Ti-substituted keggin-type polyoxotungstate as proton and electron reservoir encaged into metal-organic framework for carbon dioxide photoreduction. Adv. Mater. Interf. 2018, 5, 1801062.
Liu, Y. N.; Chen, C. S.; Valdez, J.; Meira, D. M.; He, W. T.; Wang, Y.; Harnagea, C.; Lu, Q. Q.; Guner, T.; Wang, H. et al. Phase-enabled metal-organic framework homojunction for highly selective CO2 photoreduction. Nat. Commun. 2021, 12, 1231.
Yang, C. H.; Zhu, Y. T.; Liu, J. Q.; Qin, Y. C.; Wang, H. Q.; Liu, H. L.; Chen, Y. N.; Zhang, Z. C.; Hu, W. P. Defect engineering for electrochemical nitrogen reduction reaction to ammonia. Nano Energy 2020, 77, 105126.
Zhou, Y.; Zheng, L. R.; Yang, D. R.; Yang, H. Z.; Lu, Q. C.; Zhang, Q. H.; Gu, L.; Wang, X. Enhancing CO2 electrocatalysis on 2D porphyrin-based metal-organic framework nanosheets coupled with visible-light. Small Methods 2021, 5, 2000991.
Cai, Z.; Zhang, Y. S.; Zhao, Y. X.; Wu, Y. S.; Xu, W. W.; Wen, X. M.; Zhong, Y.; Zhang, Y.; Liu, W.; Wang, H. L. et al. Selectivity regulation of CO2 electroreduction through contact interface engineering on superwetting Cu nanoarray electrodes. Nano Res. 2019, 12, 345–349.
Guntern, Y. T.; Pankhurst, J. R.; Vávra, J.; Mensi, M.; Mantella, V.; Schouwink, P.; Buonsanti, R. Nanocrystal/metal-organic framework hybrids as electrocatalytic platforms for CO2 conversion. Angew. Chem., Int. Ed. 2019, 58, 12632–12639.
Mukhopadhyay, S.; Shimoni, R.; Liberman, I.; Ifraemov, R.; Rozenberg, I.; Hod, I. Assembly of a metal-organic framework (MOF) membrane on a solid electrocatalyst: Introducing molecular-level control over heterogeneous CO2 reduction. Angew. Chem., Int. Ed. 2021, 60, 13423–13429.
Kung, C. W.; Audu, C. O.; Peters, A. W.; Noh, H.; Farha, O. K.; Hupp, J. T. Copper nanoparticles installed in metal-organic framework thin films are electrocatalytically competent for CO2 reduction. ACS Energy Lett. 2017, 2, 2394–2401.
Mian, M. R.; Redfern, L. R.; Pratik, S. M.; Ray, D.; Liu, J.; Idrees, K. B.; Islamoglu, T.; Gagliardi, L.; Farha, O. K. Precise control of Cu nanoparticle size and catalytic activity through pore templating in Zr metal-organic frameworks. Chem. Mater. 2020, 32, 3078–3086.
Nam, D. H.; Bushuyev, O. S.; Li, J.; De Luna, P.; Seifitokaldani, A.; Dinh, C. T.; de Arquer, F. P. G.; Wang, Y. H.; Liang, Z. Q.; Proppe, A. H. et al. Metal-organic frameworks mediate Cu coordination for selective CO2 electroreduction. J. Am. Chem. Soc. 2018, 140, 11378–11386.
Thevenon, A.; Rosas-Hernández, A.; Herreros, A. M. F.; Agapie, T.; Peters, J. C. Dramatic her suppression on Ag electrodes via molecular films for highly selective CO2 to CO reduction. ACS Catal. 2021, 11, 4530–4537.
Yi, J. D.; Xie, R. K.; Xie, Z. L.; Chai, G. L.; Liu, T. F.; Chen, R. P.; Huang, Y. B.; Cao, R. Highly selective CO2 electroreduction to CH4 by in situ generated Cu2O single-type sites on a conductive MOF: Stabilizing key intermediates with hydrogen bonding. Angew. Chem., Int. Ed. 2020, 59, 23641–23648.
Zhu, Z. H.; Zhao, B. H.; Hou, S. L.; Jiang, X. L.; Liang, Z. L.; Zhang, B.; Zhao, B. A facile strategy for constructing a carbon-particle-modified metal-organic framework for enhancing the efficiency of CO2 electroreduction into formate. Angew. Chem., Int. Ed. 2021, 60, 23394–23402.
Xin, Z. F.; Wang, Y. R.; Chen, Y. F.; Li, W. L.; Dong, L. Z.; Lan, Y. Q. Metallocene implanted metalloporphyrin organic framework for highly selective CO2 electroreduction. Nano Energy 2020, 67, 104233.
Wang, H. Q.; Chen, H.; Ni, B.; Wang, K.; He, T.; Wu, Y. L.; Wang, X. Mesoporous ZrO2 nanoframes for biomass upgrading. ACS Appl. Mater. Interfaces 2017, 9, 26897–26906.
Wang, H. Q.; Liu, H. L.; Ji, Y. C.; Yang, R. Q.; Zhang, Z. F.; Wang, X.; Liu, H. Hybrid nanostructures of pit-rich TiO2 nanocrystals with Ru loading and N doping for enhanced solar water splitting. Chem. Commun. 2019, 55, 2781–2784.
Wang, H. Q.; Lin, H. F.; Long, Y.; Ni, B.; He, T.; Zhang, S. M.; Zhu, H. H.; Wang, X. Titanocene dichloride (Cp2TiCl2) as a precursor for template-free fabrication of hollow TiO2 nanostructures with enhanced photocatalytic hydrogen production. Nanoscale 2017, 9, 2074–2081.
Wang, H. Q.; Sun, D. H.; Lu, Q. C.; Wang, F. L.; Zhao, L. L.; Zhang, Z. F.; Wang, X.; Liu, H. Bio-inspired synthesis of mesoporous HfO2 nanoframes as reactors for piezotronic polymerization and Suzuki coupling reactions. Nanoscale 2019, 11, 5240–5246.
Deng, X.; Li, R.; Wu, S. K.; Wang, L.; Hu, J. H.; Ma, J.; Jiang, W. B.; Zhang, N.; Zheng, X. S.; Gao, C. et al. Metal-organic framework coating enhances the performance of Cu2O in photoelectrochemical CO2 reduction. J. Am. Chem. Soc. 2019, 141, 10924–10929.
Zhao, X.; Xu, H. T.; Wang, X. X.; Zheng, Z. Z.; Xu, Z. L.; Ge, J. P. Monodisperse metal-organic framework nanospheres with encapsulated core-shell nanoparticles Pt/Au@Pd@{Co2(oba)4(3-bpdh)2}4H2O for the highly selective conversion of CO2 to CO. ACS Appl. Mater. Interfaces 2018, 10, 15096–15103.
Rungtaweevoranit, B.; Baek, J.; Araujo, J. R.; Archanjo, B. S.; Choi, K. M.; Yaghi, O. M.; Somorjai, G. A. Copper nanocrystals encapsulated in Zr-based metal-organic frameworks for highly selective CO2 hydrogenation to methanol. Nano Lett. 2016, 16, 7645–7649.
Zhen, W. L.; Li, B.; Lu, G. X.; Ma, J. T. Enhancing catalytic activity and stability for CO2 methanation on Ni@MOF-5 via control of active species dispersion. Chem. Commun. 2015, 51, 1728–1731.
Zhao, Z. W.; Zhou, X.; Liu, Y. N.; Shen, C. C.; Yuan, C. Z.; Jiang, Y. F.; Zhao, S. J.; Ma, L. B.; Cheang, T. Y.; Xu, A. W. Ultrasmall Ni nanoparticles embedded in Zr-based MOFs provide high selectivity for CO2 hydrogenation to methane at low temperatures. Catal. Sci. Technol. 2018, 8, 3160–3165.
Chen, D. X.; Yang, W. J.; Jiao, L.; Li, L. Y.; Yu, S. H.; Jiang, H. L. Boosting catalysis of Pd nanoparticles in MOFs by pore wall engineering: The roles of electron transfer and adsorption energy. Adv. Mater. 2020, 32, 2000041.
Habib, N. R.; Asedegbega-Nieto, E.; Taddesse, A. M.; Diaz, I. Non-noble MNP@MOF materials: Synthesis and applications in heterogeneous catalysis. Dalton Trans. 2021, 50, 10340–10353.
Han, S.; Ciufo, R. A.; Wygant, B. R.; Keitz, B. K.; Mullins, C. B. Methanol oxidation catalyzed by copper nanoclusters incorporated in vacuum-deposited HKUST-1 thin films. ACS Catal. 2020, 10, 4997–5007.
Mitsuka, Y.; Ogiwara, N.; Mukoyoshi, M.; Kitagawa, H.; Yamamoto, T.; Toriyama, T.; Matsumura, S.; Haneda, M.; Kawaguchi, S.; Kubota, Y. et al. Fabrication of integrated copper-based nanoparticles/amorphous metal-organic framework by a facile spray-drying method: Highly enhanced CO2 hydrogenation activity for methanol synthesis. Angew. Chem., Int. Ed. 2021, 60, 22283–22288.
Kobayashi, H.; Taylor, J. M.; Mitsuka, Y.; Ogiwara, N.; Yamamoto, T.; Toriyama, T.; Matsumura, S.; Kitagawa, H. Charge transfer dependence on CO2 hydrogenation activity to methanol in Cu nanoparticles covered with metal-organic framework systems. Chem. Sci. 2019, 10, 3289–3294.
Mehla, S.; Kandjani, A. E.; Babarao, R.; Lee, A. F.; Periasamy, S.; Wilson, K.; Ramakrishna, S.; Bhargava, S. K. Porous crystalline frameworks for thermocatalytic CO2 reduction: An emerging paradigm. Energy Environ. Sci. 2021, 14, 320–352.
Hu, S.; Liu, M.; Ding, F. S.; Song, C. S.; Zhang, G. L.; Guo, X. W. Hydrothermally stable MOFs for CO2 hydrogenation over iron-based catalyst to light olefins. J. CO2 Util. 2016, 15, 89–95.
Mon, M.; Rivero-Crespo, M. A.; Ferrando-Soria, J.; Vidal-Moya, A.; Boronat, M.; Leyva-Pérez, A.; Corma, A.; Hernández-Garrido, J. C.; López-Haro, M.; Calvino, J. J. et al. Synthesis of densely packaged, ultrasmall Pt02 clusters within a thioether-functionalized MOF: Catalytic activity in industrial reactions at low temperature. Angew. Chem., Int. Ed. 2018, 57, 6186–6191.
An, B.; Zeng, L. Z.; Jia, M.; Li, Z.; Lin, Z. K.; Song, Y.; Zhou, Y.; Cheng, J.; Wang, C.; Lin, W. B. Molecular iridium complexes in metal-organic frameworks catalyze CO2 hydrogenation via concerted proton and hydride transfer. J. Am. Chem. Soc. 2017, 139, 17747–17750.
Kornienko, N. Operando spectroscopy of nanoscopic metal/covalent organic framework electrocatalysts. Nanoscale 2021, 13, 1507–1514.
Wagner, A.; Sahm, C. D.; Reisner, E. Towards molecular understanding of local chemical environment effects in electro- and photocatalytic CO2 reduction. Nat. Catal. 2020, 3, 775–786.
Endrődi, B.; Samu, A.; Kecsenovity, E.; Halmágyi, T.; Sebők, D.; Janáky, C. Operando cathode activation with alkali metal cations for high current density operation of water-fed zero-gap carbon dioxide electrolysers. Nat. Energy 2021, 6, 439–448.
Chen, G. Z.; Chen, K. J.; Fu, J. W.; Liu, M. Tracking dynamic evolution of catalytic active sites in photocatalytic CO2 reduction by in situ time-resolved spectroscopy. Rare Met. 2020, 39, 607–609.