AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article

Ultrafast growth of high-quality large-sized GaSe crystals by liquid metal promoter

Zuxin Chen1,5,6Quan Chen1Zebing Chai1Bin Wei2Jun Wang3Yanping Liu4Yumeng Shi5( )Zhongchang Wang6( )Jingbo Li1( )
Institute of semiconductors, South China Normal University, Guangzhou 510631, China
School of Materials, Sun Yat-Sen University, Guangzhou 510275, China
School of Electrical Engineering and Automation, Wuhan University, Wuhan 430000, China
School of Physics and Electronics, Hunan Key Laboratory for Super-microstructure and Ultrafast Process, Central South University, 932 South Lushan Road, Changsha 410083, China
Engineering Technology Research Center for 2D Material Information Function Devices and Systems of Guangdong Province, International Collaborative Laboratory of 2D Materials for Optoelectronics Science and Technology of Ministry of Education, Institute of Microscale Optoelectronics, Shenzhen University, Shenzhen 518060, China
International Iberian Nanotechnology Laboratory (INL), 4715–330 Braga, Portugal
Show Author Information

Graphical Abstract

A liquid-metal-assisted chemical vapor deposition method is proposed to rapidly synthesize centimeter-sized GaSe crystals of high crystal quality, which show good performance of photodetector.

Abstract

Growth of high-quality large-sized crystals using the traditional chemical vapor transport (CVT) or vertical Bridgman (VB) technique is costly and time-consuming, limiting its practical industrial application. Here, we propose an ultrafast crystal growth process with low energy consumption and capability of producing crystals of excellent quality, and demonstrate that large-sized GaSe crystals with a lateral size of 0.5 to 1 cm can be obtained within a short period of 5 min. X-ray diffraction (XRD) and scanning transmission electron microscopy (STEM) studies clearly indicate that the as-grown crystals have a good crystallinity. To further show the potential application of the resulting GaSe crystals, we fabricate the few-layer GaSe-based photodetector, which exhibits low dark current of 21 pA and fast response of 34 ms under 405 nm illumination. Our proposed technique for rapid crystal growth could be further extended to other metallenes with low-melting point, such as Bi-, Sn-, In-, Pb-based crystals, opening up a new avenue in fulfilling diverse potential optoelectronics applications of two-dimensional (2D) crystals.

Electronic Supplementary Material

Download File(s)
12274_2021_3987_MOESM1_ESM.pdf (542.8 KB)

References

1

Zou, Z. X.; Liang, J. W.; Zhang, X. H.; Ma, C.; Xu, P.; Yang, X.; Zeng, Z. X. S.; Sun, X. X.; Zhu, C. G.; Liang, D. L.; Zhuang, X. J.; Li, D.; Pan, A. L. Liquid-metal-assisted growth of vertical GaSe/MoS2 p–n heterojunctions for sensitive self-driven photodetectors. ACS Nano 2021, 15, 10039–10047.

2

Novoselov, K. S.; Mishchenko, A.; Carvalho, A.; Neto, A. C. 2D materials and van der Waals heterostructures. Science 2016, 353, 9439.

3

Schulman, D. S.; Arnold, A. J.; Das, S. Contact engineering for 2D materials and devices. Chem. Soc. Rev. 2018, 47, 3037–3058.

4

Sun, Z.; Martinez, A.; Wang, F. Optical modulators with 2D layered materials. Nat. Photon. 2016, 10, 227.

5
Liu, Z. J.; Wang, J. Y.; Chen, B.; Wei, Y. M.; Liu, W. J.; Liu, J. Giant enhancement of continuous wave second harmonic generation from few-layer GaSe coupled to high-Q quasi bound states in the continuum. Nano Lett. 2021, DOI: 10.1021/acs.nanolett.1c01975.
6

Habib, M.; Muhammad, Z.; Khan, R.; Wu, C.; Rehman, Z.; Zhou, Y.; Song, L. Ferromagnetism in CVT grown tungsten diselenide single crystals with nickel doping. Nanotechnol. 2018, 29, 115701.

7

Niu, L.; Liu, F.; Zeng, Q.; Zhu, X., Wang, Y.; Yu, P.; Shi, J.; Lin, J.; Zhou, J.; Fu, Q.; Zhou, W.; Yu, T.; Liu, X.; Liu, Z. Controlled synthesis and room-temperature pyroelectricity of CuInP2S6 ultrathin flakes. Nano Energy 2019, 58, 596–603.

8

Müller, G.; Neumann, G.; Weber, W. Natural convection in vertical Bridgman configurations. J. Cryst. Growth 1984, 70, 78–93.

9

Doty, F. P.; Butler, J. F.; Schetzina, J. F.; Bowers, K. A. Properties of CdZnTe crystals grown by a high-pressure Bridgman method. Journal of Vacuum Science & Technology B: Microelectronics and Nanometer Structures Processing, Measurement, and Phenomena 1992, 10, 1418–1422.

10

Qi, Y.; Wang, Y.; Pang, Z.; Dou, Z.; Wei, T.; Gao, P.; Chen, S. Fast growth of strain-free AlN on graphene-buffered sapphire. J. Am. Chem. Soc. 2018, 11935–11941.

11

Geng, D.; Yu, G. Liquid catalysts: an innovative solution to 2D materials in CVD processes. Mater. Horiz. 2018, 5, 1021–1034.

12

Chen, L.; Kong, Z.; Yue, S.; Liu, J.; Deng, J.; Xiao, Y.; Mendes, R. M.; Rummeli, M. H.; Peng, L.; Fu, L. Growth of uniform monolayer graphene using iron-group metals via the formation of an antiperovskite layer. Chem. Mater. 2015, 27, 8230–8236.

13

Chen, J.; Zhao, X.; Tan, S. J.; Xu, H.; Wu, B.; Liu, B.; Fu, D.; Fu, W.; Geng, D.; Liu Y.; Liu, W.; Tang, W.; Li, L.; Zhou, W.; Sum, T.; Loh, K. Chemical vapor deposition of large-size monolayer MoSe2 crystals on molten glass. J. Am. Chem. Soc. 2017, 139, 1073–1076.

14

Xu, X.; Zhang, Z.; Qiu, L.; Zhuang, J.; Zhang, L.; Wang, H.; Liao, C.; Song, H.; Qiao, R.; Gao, P.; Hu, Z.; Liao, L.; Liao, Z.; Yu, D.; Wang, E.; Ding, F.; Peng, H.; Liu, K. Ultrafast growth of single-crystal graphene assisted by a continuous oxygen supply. Nat. Nanotechnol. 2016, 11, 930.

15

Zheng, S.; Zeng, M.; Cao, H.; Zhang, T.; Gao, X.; Xiao, Y.; Fu, L. Insight into the rapid growth of graphene single crystals on liquid metal via chemical vapor deposition. Sci. China Mater. 2019, 1–9.

16

Zhou, Y.; Deng, B.; Zhou, Y.; Ren, X.; Yin, J.; Jin, C.; Liu, Z.; Peng, H. Low-temperature growth of two-dimensional layered chalcogenide crystals on liquid. Nano lett. 2016, 16, 2103–2107.

17

Suzuki, H.; Mori, R. Phase study on binary system Ga-Se. JPN. J. Appl. Phys. 1974, 13, 417.

18

Zheng, F.; Shen, J.; Liu, Y.; Kim, W.; Chu, M.; Ider, M.; Bao, X.; Anderson, T. J. Thermodynamic optimization of the Ga–Se system. Calphad 2008, 32, 432–438.

19

Onai, T.; Nagai, Y.; Dezaki, H.; Oyama, Y. Liquid phase growth of bulk GaSe crystal implemented with the temperature difference method under controlled vapor pressure. J. Cryst. Growth 2013, 380, 18–22.

20

Abdullah, M.; Bhagavannarayana, G.; Wahab, M. A. Growth and characterization of GaSe single crystal. J. Cryst. Growth 2010, 312, 1534–1537.

21

Liu, G.; Chen, K.; Li, J. Combustion synthesis of InSe, In2Se3, and GaSe. J. Am. Chem. Soc. 2018, 101, 36–39.

22

Zhao, Q.; Frisenda, R.; Gant, P.; Perez de Lara, D.; Munuera, C.; Garcia‐Hernandez, M.; Niu, Y.; Wang, T.; Jie, W.; Castellanos‐Gomez, A. Toward air stability of thin GaSe devices: avoiding environmental and laser‐induced degradation by encapsulation. Adv. Funct. Mater. 2018, 28, 1805304.

23

Li, X.; Basile, L.; Huang, B.; Ma, C.; Lee, J.; Vlassiouk, I. V.; Puretzky, A.; Lin, M.; Yoon, M.; Chi, M.; Idrobo, J.; Rouleau, C.; Sumpter, B.; Geohegan, D.; Xiao, K. Van der Waals epitaxial growth of two-dimensional single-crystalline GaSe domains on graphene. ACS nano 2015, 9, 8078–8088.

24

Wei, C.; Chen, X.; Li, D.; Su, H.; He, H.; Dai, J. Bound exciton and free exciton states in GaSe thin slab. Sci. Rep. 2016, 6, 33890.

25

Jie, W.; Chen, X.; Li, D.; Xie, L.; Hui, Y. Y.; Lau, S. P.; Cui, X.; Hao, J. Layer‐dependent nonlinear optical properties and stability of non‐centrosymmetric modification in few‐layer GaSe sheets. Angew. Chem. Int. Edit. 2015, 54, 1185–1189.

26

Susoma, J.; Lahtinen, J.; Kim, M.; Riikonen, J.; Lipsanen, H. Crystal quality of two-dimensional gallium telluride and gallium selenide using Raman fingerprint. AIP Adv. 2017, 7, 015014.

27

Tan, S.; Chua, C.; Sedmidubský, D.; Sofer, Z.; Pumera, M. Electrochemistry of layered GaSe and GeS: applications to ORR, OER and HER. Phys. Chem. Chem. Phys. 2016, 18, 1699–1711.

28

Kochat, V.; Samanta, A.; Zhang, Y.; Bhowmick, S.; Manimunda, P.; Asif, S. A. S.; Stender, A.; Vajtai, R.; Singh, A.; Tiwary, C.; Ajayan, P. Atomically thin gallium layers from solid-melt exfoliation. Science adv. 2018, 4, e1701373.

29

Li, X.; Dong, J.; Idrobo, J.; Puretzky, A.; Rouleau, C.; Geohegan, D.; Ding, F.; Xiao, K. Edge-controlled growth and etching of two-dimensional GaSe monolayers. Journal of the American Chemical Society 2016, 139, 482–491.

30

Zhou, X.; Cheng, J.; Zhou, Y.; Cao, T.; Hong, H.; Liao, Z.; Wu, S.; Peng, H.; Liu, K.; Yu, D. Strong second-harmonic generation in atomic layered GaSe. J. Am. Chem. Soc. 2015, 137, 7994–7997.

31

Li, X.; Lin, M.; Lin, J.; Huang, B.; Puretzky, A.; Ma, C.; Wang, K.; Zhou, W.; Pantelides, S.; Chi, M.; Kravchenko, I.; Fowlkers, J.; Rouleau, C.; Geohegan, D.; Xiao, K. Two-dimensional GaSe/MoSe2 misfit bilayer heterojunctions by van der Waals epitaxy. Science adv. 2016, 2, e1501882.

32

Fang, H.; Hu, W. Photogating in low dimensional photodetectors. Adv Sci. 2017, 4, 1700323.

33

Zhao, Q.; Wang, W.; Carrascoso-Plana, F.; Jie, W.; Wang, T.; Castellanos-Gomez, A.; Frisenda, R. The role of traps in the photocurrent generation mechanism in thin InSe photodetectors. Mater. Horiz. 2020, 7, 252–262.

34

Hu, P.; Wen, Z.; Wang, L.; Tan, P.; Xiao, K. Synthesis of few-layer GaSe nanosheets for high performance photodetectors. ACS Nano 2012, 6, 5988–5994.

35

Late, D. J.; Liu, B.; Luo, J.; Yan, A.; Matte, H. S. S. R.; Grayson, M.; Rao, C. N. R.; Dravid, V. P. GaS and GaSe ultrathin layer transistors. Adv. Mater. 2012, 24, 3549–3554.

36

Lei, S.; Ge, L.; Liu, Z.; Najmaei, S.; Shi, G.; You, G.; Lou, J.; Vajtai, R.; Ajayan, P. M. Synthesis and photoresponse of large GaSe atomic layers. Nano Lett. 2013, 13, 2777–2781.

37

Mahjouri-Samani, M.; Gresback, R.; Tian, M.; Wang, K.; Puretzky, A. A.; Rouleau, C. M.; Eres, G.; Ivanov, I. N.; Xiao, K.; McGuire, M. A.; Duscher, G.; Geohegan, D. B. Pulsed laser deposition of photoresponsive two-dimensional GaSe nanosheet networks. Adv. Funct. Mater. 2014, 24, 6365–6371.

38

Abderrahmane, A.; Jung, P.-G.; Kim, N.-H.; Ko, P. J.; Sandhu, A. Gate-tunable optoelectronic properties of a nano-layered GaSe photodetector. Opt. Mater. Express 2017, 7, 587–592.

39

Sorifi S.; Moun M.; Kaushik S.; Singh R. High-temperature performance of a GaSe nanosheet-based broadband photodetector. Appl. Electron. Mater. 2020, 2, 670–676.

40

Zappia, M. I.; Bianca, G.; Bellani, S. Solution-processed GaSe nanoflake-based films for photoelectrochemical water splitting and photoelectrochemical-type photodetectors. Adv. Funct. Mater. 2020, 1909572.

Nano Research
Pages 4677-4681
Cite this article:
Chen Z, Chen Q, Chai Z, et al. Ultrafast growth of high-quality large-sized GaSe crystals by liquid metal promoter. Nano Research, 2022, 15(5): 4677-4681. https://doi.org/10.1007/s12274-021-3987-6
Topics:

978

Views

22

Crossref

23

Web of Science

22

Scopus

0

CSCD

Altmetrics

Received: 01 September 2021
Revised: 20 October 2021
Accepted: 09 November 2021
Published: 26 December 2021
©  Tsinghua University Press and Springer-Verlag GmbH Germany, part of Springer Nature 2021
Return