AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article

Probing the active sites of 2D nanosheets with Fe-N-C carbon shell encapsulated FexC/Fe species for boosting sodium-ion storage performances

Huicong Xia1,2Pengfei Yuan3Lingxing Zan2,5Gan Qu1Yunchuan Tu2Kaixin Zhu2Yifan Wei1Zeyu Wei2Fangying Zheng2Mo Zhang2,4Yongfeng Hu6Dehui Deng2( )Jianan Zhang1( )
College of Materials Science and Engineering, Zhengzhou University, Zhengzhou 450001, China
State Key Laboratory of Catalysis, iChEM, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
College of Physics and Engineering, Zhengzhou University, Zhengzhou 450001, China
College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
Key Laboratory of Chemical Reaction Engineering of Shaanxi Province, College of Chemistry & Chemical Engineering, Yan’an University, Yan’an 716000, China
Canadian Light Source, 44 Innovation Boulevard Saskatoon, Saskatoon S7N 2V3, Canada
Show Author Information

Graphical Abstract

Fe-N-C graphitic carbon layers-encapsulating Fe3C species within hard carbon nanosheets (Fe-N-C/Fe3C@HCNs) were rationally engineered by pyrolysis of self-assembled polymer. The coupling effect of atomically dispersed Fe-N-C and Fe3C species play a significant role in enhancing the binding ability towards Na+ ions, allowing the robust rate performance and prolonged cycling life for sodium-ion battery.

Abstract

Developing stable but high active metal-nitrogen-carbon (M-N-C)-based hard carbon anode is a promising way to be the alternatives to graphene and blank hard carbon for sodium-ion batteries (SIBs), requiring the precise tailoring of the electronic structure for optimizing the Na+ intercalation behavior, yet is greatly challenging. Herein, Fe-N-C graphitic layer-encapsulating Fe3C species within hard carbon nanosheets (Fe-N-C/Fe3C@HCNs) are rationally engineered by pyrolysis of self-assembled polymer. Impressively, the Fe-N-C/Fe3C@HCNs exhibit outstanding rate capacity (242 mAh·g−1 at 2,000 mA·g−1), which is 2.1 and 4.2 times higher than that of Fe-N-C and N-doped carbon (N-C), respectively, and prolonged cycling stability (176 mAh·g−1 at 2,000 mA·g−1 after 2,000 cycles). Theoretical calculations unveil that the Fe3C species enhance the electronic transfer from Na to Fe-N-C, resulting in the charge redistribution between the interfaces of Fe3C and Fe-N-C. Thus, the optimized adsorption behavior towards Na+ reduces the thermodynamic energy barriers. The synergistic effect of Fe3C and Fe-N-C species maintains the structural integrity of electrode materials during the sodiation/desodiation process. The in-depth insight into the advanced Na+ storage mechanisms of Fe3C@Fe-N-C offers precise guidance for the rational establishment of confinement heterostructures in SIBs.

Electronic Supplementary Material

Download File(s)
12274_2021_3992_MOESM1_ESM.pdf (3.3 MB)

References

1

Yabuuchi, N.; Kubota, K.; Dahbi, M.; Komaba, S. Research development on sodium-ion batteries. Chem. Rev. 2014, 114, 11636–11682.

2

Li, Y. J.; Yang, Y.; Zhou, P.; Gao, T. T.; Xu, Z. K.; Lin, S. Y.; Chen, H.; Zhou, J. H.; Guo, S. J. Enhanced cathode and anode compatibility for boosting both energy and power densities of Na/K-ion hybrid capacitors. Matter 2019, 1, 893–910.

3

Kim, J.; Choi, M. S.; Shin, K. H.; Kota, M.; Kang, Y. B.; Lee, S.; Lee, J. Y.; Park, H. S. Rational design of carbon nanomaterials for electrochemical sodium storage and capture. Adv. Mater. 2019, 31, 1803444.

4

Jiang, Y.; Wei, M.; Feng, J. K.; Ma, Y. C.; Xiong, S. L. Enhancing the cycling stability of Na-ion batteries by bonding SnS2 ultrafine nanocrystals on amino-functionalized graphene hybrid nanosheets. Energy Environ. Sci. 2016, 9, 1430–1438.

5

Lin, Q. W.; Zhang, J.; Lv, W.; Ma, J. B.; He, Y. B.; Kang, F. Y.; Yang, Q. H. A functionalized carbon surface for high-performance sodium-ion storage. Small 2020, 16, 1902603.

6

Slater, M. D.; Kim, D.; Lee, E.; Johnson, C. S. Sodium-ion batteries. Adv. Funct. Mater. 2013, 23, 947–958.

7

Kim, S. W.; Seo, D. H.; Ma, X. H.; Ceder, G.; Kang, K. Electrode materials for rechargeable sodium-ion batteries: Potential alternatives to current lithium-ion batteries. Adv. Energy Mater. 2012, 2, 710–721.

8

Han, W. J.; Qin, X. Y.; Wu, J. X.; Li, Q.; Liu, M.; Xia, Y.; Du, H. D.; Li, B. H.; Kang, F. Y. Electrosprayed porous Fe3O4/carbon microspheres as anode materials for high-performance lithium-ion batteries. Nano Res. 2018, 11, 892–904.

9

Sun, J. H.; Sadd, M.; Edenborg, P.; Grönbeck, H.; Thiesen, P. H.; Xia, Z. Y.; Quintano, V.; Qiu, R.; Matic, A.; Palermo, V. Real-time imaging of Na+ reversible intercalation in “Janus” graphene stacks for battery applications. Sci. Adv. 2021, 7, eabf0812.

10

Liu, Z. G.; Li, J. B.; Yang, J.; Ma, H.; Wang, C. Y.; Guo, X.; Wang, G. X. Preparation of a novel g-C3N4/Sn/N-doped carbon composite for sodium storage. Chem. J. Chin. Univ. 2021, 42, 633–642.

11

Wang, G.; Yu, M. H; Feng, X. L. Carbon materials for ion-intercalation involved rechargeable battery technologies. Chem. Soc. Rev. 2021, 50, 2388–2443.

12

Wang, X. K.; Shi, J.; Mi, L. W.; Zhai, Y. P.; Zhang, J. Y.; Feng, X. M.; Wu, Z. J.; Chen, W. H. Hierarchical porous hard carbon enables integral solid electrolyte interphase as robust anode for sodium-ion batteries. Rare Met. 2020, 39, 1053–1062.

13

Yan, Z. H.; Yang, Q. W.; Wang, Q. H.; Ma, J. M. Nitrogen doped porous carbon as excellent dual anodes for Li- and Na-ion batteries. Chin. Chem. Lett. 2020, 31, 583–588.

14

Yu, P.; Tang, W.; Wu, F. F.; Zhang, C.; Luo, H. Y.; Liu, H.; Wang, Z. G. Recent progress in plant-derived hard carbon anode materials for sodium-ion batteries: A review. Rare Met. 2020, 39, 1019–1033.

15

Ye, J. C.; Zang, J.; Tian, Z. W.; Zheng, M. S.; Dong, Q. F. Sulfur and nitrogen co-doped hollow carbon spheres for sodium-ion batteries with superior cyclic and rate performance. J. Mater. Chem. A 2016, 4, 13223–13227.

16

Geng, P. B.; Zheng, S. S.; Tang, H.; Zhu, R. M.; Zhang, L.; Cao, S.; Xue, H. G.; Pang, H. Transition metal sulfides based on graphene for electrochemical energy storage. Adv. Energy Mater. 2018, 8, 1703259.

17

Huang, H. J.; Luo, X.; Yao, Y.; Zhou, X. F.; Jiang, Y.; Guo, C. L.; Liu, J. Q.; Wu, X. J.; Yu, Y. Binding Se into nitrogen-doped porous carbon nanosheets for high-performance potassium storage. InfoMat 2021, 3, 421–431.

18

Xia, H. C.; Qu, G.; Yin, H. B.; Zhang, J. A. Atomically dispersed metal active centers as a chemically tunable platform for energy storage devices. J. Mater. Chem. A 2020, 8, 15358–15372.

19

Lv, Y. J.; He, Q.; He, X. H.; Wang, Y. Q.; Yi, J.; Ji, H. B. Nitrogen and atomic Ni co-doped carbon material for sodium ion storage. Chem. Commun. 2020, 56, 5182–5185.

20

Deng, D. H.; Novoselov, K. S.; Fu, Q.; Zheng, N. F.; Tian, Z. Q.; Bao, X. H, Catalysis with two-dimensional materials and their heterostructures. Nat. Nanotechnol. 2016, 11, 218–230.

21

Xia, H. C.; Xu, Q.; Zhang, J. A. Recent progress on two-dimensional nanoflake ensembles for energy storage applications. Nano-Micro Lett. 2018, 10, 66.

22

Sun, Q. H.; Lu, T. T.; He, J. J.; Huang, C. S. Advances in the study of heteratomic graphdiyne electrode materials. Chem. J. Chin. Univ. 2021, 42, 366–379.

23

Qiao, Y. Y.; Yuan, P. F.; Hu, Y. F.; Zhang, J. A.; Mu, S. C.; Zhou, J. H.; Li, H.; Xia, H. C.; He, J.; Xu, Q. Sulfuration of an Fe-N-C catalyst containing FexC/Fe species to enhance the catalysis of oxygen reduction in acidic media and for use in flexible Zn–air batteries. Adv. Mater. 2018, 30, 1804504.

24

Zhang, J. A.; Wang, K. X.; Xu, Q.; Zhou, Y. C.; Cheng, F. Y.; Guo, S. J. Beyond yolk–shell nanoparticles: Fe3O4@Fe3C core@shell nanoparticles as yolks and carbon nanospindles as shells for efficient lithium ion storage. ACS Nano 2015, 9, 3369–3376.

25

Ōya, A.; Ōtani, S. Catalytic graphitization of carbons by various metals. Carbon 1979, 17, 131–137.

26

Xue, Y. H.; Zhang, Q.; Wang, W. J.; Cao, H.; Yang, Q. H.; Fu, L. Opening two-dimensional materials for energy conversion and storage: A concept. Adv. Energy Mater. 2017, 7, 1602684.

27

Dai, S. G.; Bai, Y. C.; Shen, W. X.; Zhang, S.; Hu, H.; Fu, J. W.; Wang, X. C.; Hu, C. G.; Liu, M. L. Core–shell structured Fe2O3@Fe3C@C nanochains and Ni-Co carbonate hydroxide hybridized microspheres for high-performance battery-type supercapacitor. J. Power Sources 2021, 482, 228915.

28

Wen, Y.; He, K.; Zhu, Y. J.; Han, F. D.; Xu, Y. H.; Matsuda, I.; Ishii, Y.; Cumings, J.; Wang, C. S. Expanded graphite as superior anode for sodium-ion batteries. Nat. Commun. 2014, 5, 4033.

29

Brunauer, S.; Emmett, P. H.; Teller, E. Adsorption of gases in multimolecular layers. J. Am. Chem. Soc. 1938, 60, 309–319.

30

Li, Y. C.; Hu, R. M.; Chen, Z. B.; Wan, X.; Shang, J. X.; Wang, F. H.; Shui, J. L. Effect of Zn atom in Fe-N-C catalysts for electro-catalytic reactions: Theoretical considerations. Nano Res. 2021, 14, 611–619.

31

Liu, X.; Liu, H.; Chen, C.; Zou, L. L.; Li, Y.; Zhang, Q.; Yang, B.; Zou, Z. Q.; Yang, H. Fe2N nanoparticles boosting FeNx moieties for highly efficient oxygen reduction reaction in Fe-N-C porous catalyst. Nano Res. 2019, 12, 1651–1657.

32

Yan, R. Y.; Leus, K.; Hofmann, J. P.; Antonietti, M.; Oschatz, M. Porous nitrogen-doped carbon/carbon nanocomposite electrodes enable sodium ion capacitors with high capacity and rate capability. Nano Energy 2020, 67, 104240.

33

Sun, Q. J.; Cao, Z.; Wang, S. H.; Sun, L. S.; Zhou, L.; Xue, H. J.; Wu, Y. Q.; Cavallo, L.; Wang, L. M.; Ming, J. Bio-inspired heteroatom-doped hollow aurilave-like structured carbon for high-performance sodium-ion batteries and supercapacitors. J. Power Sources 2020, 461, 228128.

34

Zhang, X. Y.; Zhang, S.; Yang, Y.; Wang, L. G.; Mu, Z. J.; Zhu, H. S.; Zhu, X. Q.; Xing, H. H.; Xia, H. Y.; Huang, B. L. et al. A general method for transition metal single atoms anchored on honeycomb-like nitrogen-doped carbon nanosheets. Adv. Mater. 2020, 32, 1906905.

35

Cui, X.; Gao, L. K.; Lei, S.; Liang, S.; Zhang, J. W.; Sewell, C. D.; Xue, W. D.; Liu, Q.; Lin, Z. Q.; Yang, Y. K. Simultaneously crafting single-atomic Fe sites and graphitic layer-wrapped Fe3C nanoparticles encapsulated within mesoporous carbon tubes for oxygen reduction. Adv. Funct. Mater. 2020, 31, 2009197.

36

Yang, G. J.; Li, X. Y.; Guan, Z. X,; Tong, Y. X.; Xu, B.; Wang, X. F.; Wang, Z. X,; Chen, L. Q. Insights into lithium and sodium storage in porous carbon. Nano Lett. 2020, 20, 3836–3843.

37

Wang, Z. Y.; Dong, K. Z.; Wang, D.; Luo, S. H.; Liu, X.; Liu, Y. G.; Wang, Q.; Zhang, Y. H.; Hao, A. M.; He, C. N. et al. Constructing N-doped porous carbon confined FeSb alloy nanocomposite with Fe-N-C coordination as a universal anode for advanced Na/K-ion batteries. Chem. Eng. J. 2020, 384, 123327.

38

Gao, X. Y.; Zuo, Z. C.; Li, Y. L. Construction of graphdiyne interface in electrochemical batteries. Chem. J. Chin. Univ. 2021, 42, 321–332.

39

Manikandan, B.; Ramar, V.; Yap, C.; Balaya, P. Investigation of physico-chemical processes in lithium-ion batteries by deconvolution of electrochemical impedance spectra. J. Power Sources 2017, 361, 300–309.

40

Taberna, P. L.; Simon, P.; Fauvarque, J. F. Electrochemical characteristics and impedance spectroscopy studies of carbon-carbon supercapacitors. J. Electrochem. Soc. 2003, 150, A292–A300.

41

Dong, S. H.; Li, C. X.; Li, Z. Q.; Ge, X. L.; Miao, X. G.; Wang, P.; Zhang, Z. W.; Yin, L. W. Synergistic effect of porous phosphosulfide and antimony nanospheres anchored on 3D carbon foam for enhanced long-life sodium storage performance. Energy Storage Mater. 2019, 20, 446–454.

42

Wang, J.; Polleux, J.; Lim, J.; Dunn, B. Pseudocapacitive contributions to electrochemical energy storage in TiO2 (anatase) nanoparticles. J. Phys. Chem. C 2007, 111, 14925–14931.

43

Guo, J. Z.; Yang, Y.; Liu, D. S.; Wu, X. L.; Hou, B. H.; Pang, W. L.; Huang, K. C.; Zhang, J. P.; Su, Z. M. A practicable Li/Na-ion hybrid full battery assembled by a high-voltage cathode and commercial graphite anode: Superior energy storage performance and working mechanism. Adv. Energy Mater. 2018, 8, 1702504.

44

Zhu, Z. Q.; Cheng, F. Y.; Hu, Z.; Niu, Z. Q.; Chen, J. Highly stable and ultrafast electrode reaction of graphite for sodium ion batteries. J. Power Sources 2015, 293, 626–634.

45

Chang, X. Q.; Zhou, X. L.; Ou, X. W.; Lee, C. S.; Zhou, J. W.; Tang, Y. B. Ultrahigh nitrogen doping of carbon nanosheets for high capacity and long cycling potassium ion storage. Adv. Energy Mater. 2019, 9, 1902672.

46

Huang, S. F.; Li, Z. P.; Wang, B.; Zhang, J. J.; Peng, Z. Q.; Qi, R. J.; Wang, J.; Zhao, Y. F. N-doping and defective nanographitic domain coupled hard carbon nanoshells for high performance lithium/sodium storage. Adv. Funct. Mater. 2018, 28, 1706294.

47

Wu, H.; Chan, G.; Choi, J. W.; Ryu, I.; Yao, Y.; McDowell, M. T.; Lee, S. W.; Jackson, A.; Yang, Y.; Hu, L. B. et al. Stable cycling of double-walled silicon nanotube battery anodes through solid-electrolyte interphase control. Nat. Nanotechnol. 2012, 7, 310–315.

48

Kresse, G.; Hafner, J. Ab initio molecular dynamics for liquid metals. Phys. Rev. B 1993, 47, 558–561.

Nano Research
Pages 7154-7162
Cite this article:
Xia H, Yuan P, Zan L, et al. Probing the active sites of 2D nanosheets with Fe-N-C carbon shell encapsulated FexC/Fe species for boosting sodium-ion storage performances. Nano Research, 2022, 15(8): 7154-7162. https://doi.org/10.1007/s12274-021-3992-9
Topics:

1202

Views

18

Crossref

17

Web of Science

17

Scopus

0

CSCD

Altmetrics

Received: 20 September 2021
Revised: 20 October 2021
Accepted: 11 November 2021
Published: 15 December 2021
© Tsinghua University Press and Springer-Verlag GmbH Germany, part of Springer Nature 2021
Return