Discover the SciOpen Platform and Achieve Your Research Goals with Ease.
Search articles, authors, keywords, DOl and etc.
Developing stable but high active metal-nitrogen-carbon (M-N-C)-based hard carbon anode is a promising way to be the alternatives to graphene and blank hard carbon for sodium-ion batteries (SIBs), requiring the precise tailoring of the electronic structure for optimizing the Na+ intercalation behavior, yet is greatly challenging. Herein, Fe-N-C graphitic layer-encapsulating Fe3C species within hard carbon nanosheets (Fe-N-C/Fe3C@HCNs) are rationally engineered by pyrolysis of self-assembled polymer. Impressively, the Fe-N-C/Fe3C@HCNs exhibit outstanding rate capacity (242 mAh·g−1 at 2,000 mA·g−1), which is 2.1 and 4.2 times higher than that of Fe-N-C and N-doped carbon (N-C), respectively, and prolonged cycling stability (176 mAh·g−1 at 2,000 mA·g−1 after 2,000 cycles). Theoretical calculations unveil that the Fe3C species enhance the electronic transfer from Na to Fe-N-C, resulting in the charge redistribution between the interfaces of Fe3C and Fe-N-C. Thus, the optimized adsorption behavior towards Na+ reduces the thermodynamic energy barriers. The synergistic effect of Fe3C and Fe-N-C species maintains the structural integrity of electrode materials during the sodiation/desodiation process. The in-depth insight into the advanced Na+ storage mechanisms of Fe3C@Fe-N-C offers precise guidance for the rational establishment of confinement heterostructures in SIBs.
Yabuuchi, N.; Kubota, K.; Dahbi, M.; Komaba, S. Research development on sodium-ion batteries. Chem. Rev. 2014, 114, 11636–11682.
Li, Y. J.; Yang, Y.; Zhou, P.; Gao, T. T.; Xu, Z. K.; Lin, S. Y.; Chen, H.; Zhou, J. H.; Guo, S. J. Enhanced cathode and anode compatibility for boosting both energy and power densities of Na/K-ion hybrid capacitors. Matter 2019, 1, 893–910.
Kim, J.; Choi, M. S.; Shin, K. H.; Kota, M.; Kang, Y. B.; Lee, S.; Lee, J. Y.; Park, H. S. Rational design of carbon nanomaterials for electrochemical sodium storage and capture. Adv. Mater. 2019, 31, 1803444.
Jiang, Y.; Wei, M.; Feng, J. K.; Ma, Y. C.; Xiong, S. L. Enhancing the cycling stability of Na-ion batteries by bonding SnS2 ultrafine nanocrystals on amino-functionalized graphene hybrid nanosheets. Energy Environ. Sci. 2016, 9, 1430–1438.
Lin, Q. W.; Zhang, J.; Lv, W.; Ma, J. B.; He, Y. B.; Kang, F. Y.; Yang, Q. H. A functionalized carbon surface for high-performance sodium-ion storage. Small 2020, 16, 1902603.
Slater, M. D.; Kim, D.; Lee, E.; Johnson, C. S. Sodium-ion batteries. Adv. Funct. Mater. 2013, 23, 947–958.
Kim, S. W.; Seo, D. H.; Ma, X. H.; Ceder, G.; Kang, K. Electrode materials for rechargeable sodium-ion batteries: Potential alternatives to current lithium-ion batteries. Adv. Energy Mater. 2012, 2, 710–721.
Han, W. J.; Qin, X. Y.; Wu, J. X.; Li, Q.; Liu, M.; Xia, Y.; Du, H. D.; Li, B. H.; Kang, F. Y. Electrosprayed porous Fe3O4/carbon microspheres as anode materials for high-performance lithium-ion batteries. Nano Res. 2018, 11, 892–904.
Sun, J. H.; Sadd, M.; Edenborg, P.; Grönbeck, H.; Thiesen, P. H.; Xia, Z. Y.; Quintano, V.; Qiu, R.; Matic, A.; Palermo, V. Real-time imaging of Na+ reversible intercalation in “Janus” graphene stacks for battery applications. Sci. Adv. 2021, 7, eabf0812.
Liu, Z. G.; Li, J. B.; Yang, J.; Ma, H.; Wang, C. Y.; Guo, X.; Wang, G. X. Preparation of a novel g-C3N4/Sn/N-doped carbon composite for sodium storage. Chem. J. Chin. Univ. 2021, 42, 633–642.
Wang, G.; Yu, M. H; Feng, X. L. Carbon materials for ion-intercalation involved rechargeable battery technologies. Chem. Soc. Rev. 2021, 50, 2388–2443.
Wang, X. K.; Shi, J.; Mi, L. W.; Zhai, Y. P.; Zhang, J. Y.; Feng, X. M.; Wu, Z. J.; Chen, W. H. Hierarchical porous hard carbon enables integral solid electrolyte interphase as robust anode for sodium-ion batteries. Rare Met. 2020, 39, 1053–1062.
Yan, Z. H.; Yang, Q. W.; Wang, Q. H.; Ma, J. M. Nitrogen doped porous carbon as excellent dual anodes for Li- and Na-ion batteries. Chin. Chem. Lett. 2020, 31, 583–588.
Yu, P.; Tang, W.; Wu, F. F.; Zhang, C.; Luo, H. Y.; Liu, H.; Wang, Z. G. Recent progress in plant-derived hard carbon anode materials for sodium-ion batteries: A review. Rare Met. 2020, 39, 1019–1033.
Ye, J. C.; Zang, J.; Tian, Z. W.; Zheng, M. S.; Dong, Q. F. Sulfur and nitrogen co-doped hollow carbon spheres for sodium-ion batteries with superior cyclic and rate performance. J. Mater. Chem. A 2016, 4, 13223–13227.
Geng, P. B.; Zheng, S. S.; Tang, H.; Zhu, R. M.; Zhang, L.; Cao, S.; Xue, H. G.; Pang, H. Transition metal sulfides based on graphene for electrochemical energy storage. Adv. Energy Mater. 2018, 8, 1703259.
Huang, H. J.; Luo, X.; Yao, Y.; Zhou, X. F.; Jiang, Y.; Guo, C. L.; Liu, J. Q.; Wu, X. J.; Yu, Y. Binding Se into nitrogen-doped porous carbon nanosheets for high-performance potassium storage. InfoMat 2021, 3, 421–431.
Xia, H. C.; Qu, G.; Yin, H. B.; Zhang, J. A. Atomically dispersed metal active centers as a chemically tunable platform for energy storage devices. J. Mater. Chem. A 2020, 8, 15358–15372.
Lv, Y. J.; He, Q.; He, X. H.; Wang, Y. Q.; Yi, J.; Ji, H. B. Nitrogen and atomic Ni co-doped carbon material for sodium ion storage. Chem. Commun. 2020, 56, 5182–5185.
Deng, D. H.; Novoselov, K. S.; Fu, Q.; Zheng, N. F.; Tian, Z. Q.; Bao, X. H, Catalysis with two-dimensional materials and their heterostructures. Nat. Nanotechnol. 2016, 11, 218–230.
Xia, H. C.; Xu, Q.; Zhang, J. A. Recent progress on two-dimensional nanoflake ensembles for energy storage applications. Nano-Micro Lett. 2018, 10, 66.
Sun, Q. H.; Lu, T. T.; He, J. J.; Huang, C. S. Advances in the study of heteratomic graphdiyne electrode materials. Chem. J. Chin. Univ. 2021, 42, 366–379.
Qiao, Y. Y.; Yuan, P. F.; Hu, Y. F.; Zhang, J. A.; Mu, S. C.; Zhou, J. H.; Li, H.; Xia, H. C.; He, J.; Xu, Q. Sulfuration of an Fe-N-C catalyst containing FexC/Fe species to enhance the catalysis of oxygen reduction in acidic media and for use in flexible Zn–air batteries. Adv. Mater. 2018, 30, 1804504.
Zhang, J. A.; Wang, K. X.; Xu, Q.; Zhou, Y. C.; Cheng, F. Y.; Guo, S. J. Beyond yolk–shell nanoparticles: Fe3O4@Fe3C core@shell nanoparticles as yolks and carbon nanospindles as shells for efficient lithium ion storage. ACS Nano 2015, 9, 3369–3376.
Ōya, A.; Ōtani, S. Catalytic graphitization of carbons by various metals. Carbon 1979, 17, 131–137.
Xue, Y. H.; Zhang, Q.; Wang, W. J.; Cao, H.; Yang, Q. H.; Fu, L. Opening two-dimensional materials for energy conversion and storage: A concept. Adv. Energy Mater. 2017, 7, 1602684.
Dai, S. G.; Bai, Y. C.; Shen, W. X.; Zhang, S.; Hu, H.; Fu, J. W.; Wang, X. C.; Hu, C. G.; Liu, M. L. Core–shell structured Fe2O3@Fe3C@C nanochains and Ni-Co carbonate hydroxide hybridized microspheres for high-performance battery-type supercapacitor. J. Power Sources 2021, 482, 228915.
Wen, Y.; He, K.; Zhu, Y. J.; Han, F. D.; Xu, Y. H.; Matsuda, I.; Ishii, Y.; Cumings, J.; Wang, C. S. Expanded graphite as superior anode for sodium-ion batteries. Nat. Commun. 2014, 5, 4033.
Brunauer, S.; Emmett, P. H.; Teller, E. Adsorption of gases in multimolecular layers. J. Am. Chem. Soc. 1938, 60, 309–319.
Li, Y. C.; Hu, R. M.; Chen, Z. B.; Wan, X.; Shang, J. X.; Wang, F. H.; Shui, J. L. Effect of Zn atom in Fe-N-C catalysts for electro-catalytic reactions: Theoretical considerations. Nano Res. 2021, 14, 611–619.
Liu, X.; Liu, H.; Chen, C.; Zou, L. L.; Li, Y.; Zhang, Q.; Yang, B.; Zou, Z. Q.; Yang, H. Fe2N nanoparticles boosting FeNx moieties for highly efficient oxygen reduction reaction in Fe-N-C porous catalyst. Nano Res. 2019, 12, 1651–1657.
Yan, R. Y.; Leus, K.; Hofmann, J. P.; Antonietti, M.; Oschatz, M. Porous nitrogen-doped carbon/carbon nanocomposite electrodes enable sodium ion capacitors with high capacity and rate capability. Nano Energy 2020, 67, 104240.
Sun, Q. J.; Cao, Z.; Wang, S. H.; Sun, L. S.; Zhou, L.; Xue, H. J.; Wu, Y. Q.; Cavallo, L.; Wang, L. M.; Ming, J. Bio-inspired heteroatom-doped hollow aurilave-like structured carbon for high-performance sodium-ion batteries and supercapacitors. J. Power Sources 2020, 461, 228128.
Zhang, X. Y.; Zhang, S.; Yang, Y.; Wang, L. G.; Mu, Z. J.; Zhu, H. S.; Zhu, X. Q.; Xing, H. H.; Xia, H. Y.; Huang, B. L. et al. A general method for transition metal single atoms anchored on honeycomb-like nitrogen-doped carbon nanosheets. Adv. Mater. 2020, 32, 1906905.
Cui, X.; Gao, L. K.; Lei, S.; Liang, S.; Zhang, J. W.; Sewell, C. D.; Xue, W. D.; Liu, Q.; Lin, Z. Q.; Yang, Y. K. Simultaneously crafting single-atomic Fe sites and graphitic layer-wrapped Fe3C nanoparticles encapsulated within mesoporous carbon tubes for oxygen reduction. Adv. Funct. Mater. 2020, 31, 2009197.
Yang, G. J.; Li, X. Y.; Guan, Z. X,; Tong, Y. X.; Xu, B.; Wang, X. F.; Wang, Z. X,; Chen, L. Q. Insights into lithium and sodium storage in porous carbon. Nano Lett. 2020, 20, 3836–3843.
Wang, Z. Y.; Dong, K. Z.; Wang, D.; Luo, S. H.; Liu, X.; Liu, Y. G.; Wang, Q.; Zhang, Y. H.; Hao, A. M.; He, C. N. et al. Constructing N-doped porous carbon confined FeSb alloy nanocomposite with Fe-N-C coordination as a universal anode for advanced Na/K-ion batteries. Chem. Eng. J. 2020, 384, 123327.
Gao, X. Y.; Zuo, Z. C.; Li, Y. L. Construction of graphdiyne interface in electrochemical batteries. Chem. J. Chin. Univ. 2021, 42, 321–332.
Manikandan, B.; Ramar, V.; Yap, C.; Balaya, P. Investigation of physico-chemical processes in lithium-ion batteries by deconvolution of electrochemical impedance spectra. J. Power Sources 2017, 361, 300–309.
Taberna, P. L.; Simon, P.; Fauvarque, J. F. Electrochemical characteristics and impedance spectroscopy studies of carbon-carbon supercapacitors. J. Electrochem. Soc. 2003, 150, A292–A300.
Dong, S. H.; Li, C. X.; Li, Z. Q.; Ge, X. L.; Miao, X. G.; Wang, P.; Zhang, Z. W.; Yin, L. W. Synergistic effect of porous phosphosulfide and antimony nanospheres anchored on 3D carbon foam for enhanced long-life sodium storage performance. Energy Storage Mater. 2019, 20, 446–454.
Wang, J.; Polleux, J.; Lim, J.; Dunn, B. Pseudocapacitive contributions to electrochemical energy storage in TiO2 (anatase) nanoparticles. J. Phys. Chem. C 2007, 111, 14925–14931.
Guo, J. Z.; Yang, Y.; Liu, D. S.; Wu, X. L.; Hou, B. H.; Pang, W. L.; Huang, K. C.; Zhang, J. P.; Su, Z. M. A practicable Li/Na-ion hybrid full battery assembled by a high-voltage cathode and commercial graphite anode: Superior energy storage performance and working mechanism. Adv. Energy Mater. 2018, 8, 1702504.
Zhu, Z. Q.; Cheng, F. Y.; Hu, Z.; Niu, Z. Q.; Chen, J. Highly stable and ultrafast electrode reaction of graphite for sodium ion batteries. J. Power Sources 2015, 293, 626–634.
Chang, X. Q.; Zhou, X. L.; Ou, X. W.; Lee, C. S.; Zhou, J. W.; Tang, Y. B. Ultrahigh nitrogen doping of carbon nanosheets for high capacity and long cycling potassium ion storage. Adv. Energy Mater. 2019, 9, 1902672.
Huang, S. F.; Li, Z. P.; Wang, B.; Zhang, J. J.; Peng, Z. Q.; Qi, R. J.; Wang, J.; Zhao, Y. F. N-doping and defective nanographitic domain coupled hard carbon nanoshells for high performance lithium/sodium storage. Adv. Funct. Mater. 2018, 28, 1706294.
Wu, H.; Chan, G.; Choi, J. W.; Ryu, I.; Yao, Y.; McDowell, M. T.; Lee, S. W.; Jackson, A.; Yang, Y.; Hu, L. B. et al. Stable cycling of double-walled silicon nanotube battery anodes through solid-electrolyte interphase control. Nat. Nanotechnol. 2012, 7, 310–315.
Kresse, G.; Hafner, J. Ab initio molecular dynamics for liquid metals. Phys. Rev. B 1993, 47, 558–561.