AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article

Structure engineering of PtCu3/C catalyst from disordered to ordered intermetallic compound with heat-treatment for the methanol electrooxidation reaction

Zihao Xing1Jun Li1Shun Wang1Chenliang Su2( )Huile Jin1( )
Institute of New Materials & Industry Technology, Wenzhou University, Wenzhou 325024, China
Institute of Microscale Optoelectronics, Shenzhen University, Shenzhen 518060, China
Show Author Information

Graphical Abstract

The intermetallic compound of PtCu3/C-1000 exhibited high specific activity of 3.23 mA·cm–1 and mass activity of 1,200 mA·mgPt–1 towards the methanol electrooxidation reaction.

Abstract

Platinum based alloys are hereinto the mostly used methanol oxidation catalysts. However, there are limited ways to improve the methanol oxidation reaction (MOR) performance of catalysts in terms of both activity and stability. Herein we developed a simple heat-treatment method to synthesize PtCu3/C intermetallic compound catalyst with lattice compression. The as-prepared PtCu3/C-1000 exhibited high specific activity of 3.23 mA·cm–1 and mass activity of 1,200 mA·mgPt–1, which is much higher than the PtCu3/C-untreated and commercial Pt/C catalysts, respectively. The XAS and DFT results shows the high activity of the catalyst towards MOR comes from the tightening of the Pt-M bond, which leads to the decrease of Fermi energy level and the make it difficulty in adsorbing carbon intermediates, thus releasing more active sites to promote the improvement of MOR performance. Moreover, the PtCu3/C-1000 shows better stability which is due to the surface-rich Pt prevents Cu from dissolution.

Electronic Supplementary Material

Download File(s)
12274_2021_3993_MOESM1_ESM.pdf (3.3 MB)

References

1

Xia, B. Y.; Wu, H. B.; Wang, X.; Lou, X. W. One-pot synthesis of cubic PtCu3 nanocages with enhanced electrocatalytic activity for the methanol oxidation reaction. J. Am. Chem. Soc. 2012, 134, 13934–13937.

2

Jiang, B.; Li, C. L.; Malgras, V.; Imura, M.; Tominaka, S.; Yamauchi, Y. Mesoporous Pt nanospheres with designed pore surface as highly active electrocatalyst. Chem. Sci. 2016, 7, 1575–1581.

3

Lu, S. L.; Eid, K.; Ge, D. H.; Guo, J.; Wang, L.; Wang, H. J; Gu, H. W. One-pot synthesis of PtRu nanodendrites as efficient catalysts for methanol oxidation reaction. Nanoscale 2017, 9, 1033–1039.

4

Liu, F. F.; Dang, D.; Tian, X. L. Platinum-decorated three dimensional titanium copper nitride architectures with durable methanol oxidation reaction activity. Int. J. Hydrogen Energy 2019, 44, 8415–8424.

5

Wittkopf, J. A.; Zheng, J.; Yan, Y. S. High-performance dealloyed PtCu/CuNW oxygen reduction reaction catalyst for proton exchange membrane fuel cells. ACS Catal. 2014, 4, 3145–3151.

6

Chen, G. J.; Shan, H. Q.; Li, Y.; Bao, H. W.; Hu, T. W.; Zhang, L.; Liu, S.; Ma, F. Hollow PtCu nanoparticles encapsulated into a carbon shell via mild annealing of Cu metal-organic frameworks. J. Mater. Chem. A 2020, 8, 10337–10345.

7

Huang, L.; Zhang, X. P.; Han, Y. J.; Wang, Q. Q.; Fang, Y. X.; Dong, S. J. High-index facets bounded platinum-lead concave nanocubes with enhanced electrocatalytic properties. Chem. Mater. 2017, 29, 4557–4562.

8

Hunt, S. T.; Milina, M.; Alba-Rubio, A. C.; Hendon, C. H.; Dumesic, J. A.; Roman-Leshkov, Y. Self-assembly of noble metal monolayers on transition metal carbide nanoparticle catalysts. Science 2016, 352, 974–978.

9

Li, Z. S.; Xu, S. H.; Shi, Y. D.; Zou, X. H.; Lin, S. Metal-semiconductor oxide (WO3@W) induces an efficient electro-photo synergistic catalysis for MOR and ORR. Chem. Eng. J. 2021, 414, 128814.

10

Wang, H. F.; Zhang, K. F.; Qiu, J.; Wu, J.; Shao, J. W.; Wang, H. J.; Zhang, Y. J.; Han, J.; Zhang, Y.; Yan, L. F. Ternary PtFeCo alloys on graphene with high electrocatalytic activities for methanol oxidation. Nanoscale 2020, 12, 9824–9832.

11

Yang, Y.; Guo, Y. F.; Fu, C.; Zhang, R. H.; Zhan, W.; Wang, P.; Zhang, X.; Wang, Q.; Zhou, X. W. In-situ loading synthesis of graphene supported PtCu nanocube and its high activity and stability for methanol oxidation reaction. J. Colloid Interface Sci. 2021, 595, 107–117.

12

Wang, Y. X.; Zhou, H. J.; Sun, P. C.; Chen, T. H. Exceptional methanol electro-oxidation activity by bimetallic concave and dendritic Pt-Cu nanocrystals catalysts. J. Power Sources 2014, 245, 663–670.

13

Gatalo, M.; Ruiz-Zepeda, F.; Hodnik, N.; Dražić, G.; Bele, M.; Gaberšček, M. Insights into thermal annealing of highly-active PtCu3/C Oxygen Reduction Reaction electrocatalyst: An in-situ heating transmission Electron microscopy study. Nano Energy 2019, 63, 103892.

14

Hodnik, N.; Jeyabharathi, C.; Meier, J. C.; Kostka, A.; Phani, K. L.; Rečnik, A.; Bele, M.; Hočevar, S.; Gaberšček, M.; Mayrhofer, K. J. J. Effect of ordering of PtCu3 nanoparticle structure on the activity and stability for the oxygen reduction reaction. Phys. Chem. Chem. Phys. 2014, 16, 13610–13615.

15

Yao, X. Z.; Wei, Y. P.; Wang, Z. X.; Gan, L. Revealing the role of surface composition on the particle mobility and coalescence of carbon-supported Pt alloy fuel cell catalysts by in situ heating (S)TEM. ACS Catal. 2020, 10, 7381–7388.

16

Dai, L.; Mo, S. G.; Qin, Q.; Zhao, X. J.; Zheng, N. F. Carbon monoxide-assisted synthesis of ultrathin PtCu3 alloy wavy nanowires and their enhanced electrocatalysis. Small 2016, 12, 1572–1577.

17

Wigmans, T.; Hoogland, A.; Tromp, P.; Moulijn, J. A. The influence of potassium carbonate on surface area development and reactivity during gasification of activated carbon by carbon dioxide. Carbon 1983, 21, 13–22.

18
Wang, Y.; Zheng, X. B.; Wang, D. S. Design concept for electrocatalysts. Nano Res. 2021, in press, DOI: 10.1007/s12274-021-3794-0.https://doi.org/10.1007/s12274-021-3794-0
19

Wang, Y.; Wang, D. S.; Li, Y. D. A fundamental comprehension and recent progress in advanced Pt-based ORR nanocatalysts. SmartMat 2021, 2, 56–75.

20

Chen, L. G.; Liang, X.; Li, X. T.; Pei, J. J.; Lin, H.; Jia, D. Z.; Chen, W. X.; Wang, D. S.; Li, Y. D. Promoting electrocatalytic methanol oxidation of platinum nanoparticles by cerium modification. Nano Energy 2020, 73, 104784.

21

Mukerjee, S.; Srinivasan, S.; Soriaga, M. P.; McBreen, J. Role of structural and electronic properties of Pt and Pt alloys on electrocatalysis of oxygen reduction: An in situ XANES and EXAFS investigation. J. Electrochem. Soc. 1995, 142, 1409–1422.

Nano Research
Pages 3866-3871
Cite this article:
Xing Z, Li J, Wang S, et al. Structure engineering of PtCu3/C catalyst from disordered to ordered intermetallic compound with heat-treatment for the methanol electrooxidation reaction. Nano Research, 2022, 15(5): 3866-3871. https://doi.org/10.1007/s12274-021-3993-8
Topics:

977

Views

19

Crossref

21

Web of Science

21

Scopus

1

CSCD

Altmetrics

Received: 15 October 2021
Revised: 08 November 2021
Accepted: 10 November 2021
Published: 17 December 2021
© Tsinghua University Press and Springer-Verlag GmbH Germany, part of Springer Nature 2021
Return