AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article

Highly efficient two-electron electroreduction of oxygen into hydrogen peroxide over Cu-doped TiO2

Zhiqin Deng1,§Li Li1,§Yuchun Ren1Chaoqun Ma2Jie Liang1Kai Dong1Qian Liu3( )Yonglan Luo3Tingshuai Li1Bo Tang4Yang Liu5Shuyan Gao5Abdullah M. Asiri6Shihai Yan2( )Xuping Sun1( )
Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu 610054, China
College of Chemistry and Pharmaceutical Sciences, Qingdao Agricultural University, Qingdao 266109, China
Institute for Advanced Study, Chengdu University, Chengdu 610106, China
College of Chemistry, Chemical Engineering and Materials Science, Shandong Normal University, Jinan 250014, China
School of Materials Science and Engineering, Henan Normal University, Xinxiang 453007, China
Chemistry Department, Faculty of Science & Center of Excellence for Advanced Materials Research, King Abdulaziz University, P.O. Box 80203, Jeddah 21589, Saudi Arabia

§ Zhiqin Deng and Li Li contributed equally to this work.

Show Author Information

Graphical Abstract

Cu acts as an effective dopant to boost the catalytic activity of TiO2 for 2e O2 reduction reaction. Such Cu-TiO2 electrocatalyst achieves a high H2O2 selectivity of 91.2% and a large Faradaic efficiency (FE) of 98% in an alkaline medium.

Abstract

Electrosynthesis of hydrogen peroxide (H2O2), as a sustainable alternative to the anthraquinone oxidation method, provides the feasibility of directly generating H2O2. Here, we report Cu-doped TiO2 as an efficient electrocatalyst which exhibits the excellent two-electron oxygen reduction reaction (2e ORR) performance with respect to the pristine TiO2. The Cu doping results in the distortion of TiO2 lattice and further forms a large number of oxygen vacancies and Ti3+. Such Cu-doped TiO2 exhibits a positive onset potential about 0.79 V and high H2O2 selectivity about 91.2%. Moreover, it also shows a larger H2O2 yield and good stability. Density functional theory (DFT) calculations reveal that Cu dopant not only improves the electrical conductivity of pristine TiO2 but reduces the *OOH adsorption energy of active sites, which is beneficial to promote subsequently 2e ORR process.

Electronic Supplementary Material

Download File(s)
12274_2021_3995_MOESM1_ESM.pdf (4.3 MB)

References

1

Campos-Martin, J. M.; Blanco-Brieva, G.; Fierro, J. L. G. Hydrogen peroxide synthesis: An outlook beyond the anthraquinone process. Angew. Chem., Int. Ed. 2006, 45, 6962–6984.

2

Li, H. B.; Zheng, B.; Pan, Z. Y.; Zong, B. N.; Qiao, M. H. Advances in the slurry reactor technology of the anthraquinone process for H2O2 production. Front. Chem. Sci. Eng. 2018, 12, 124–131.

3

Santacesaria, E.; Di Serio, M.; Velotti, R.; Leone, U. Kinetics, mass transfer, and palladium catalyst deactivation in the hydrogenation step of the hydrogen peroxide synthesis via anthraquinone. Ind. Eng. Chem. Res. 1994, 33, 277–284.

4

Han, G. H.; Lee, S. H.; Hwang, S. Y.; Lee, K. Y. Advanced development strategy of nano catalyst and DFT calculations for direct synthesis of hydrogen peroxide. Adv. Energy Mater. 2021, 11, 2003121.

5

Dittmeyer, R.; Grunwaldt, J. D.; Pashkova, A. A review of catalyst performance and novel reaction engineering concepts in direct synthesis of hydrogen peroxide. Catal. Today 2015, 248, 149–159.

6

Jiang, Y. Y.; Ni, P. J.; Chen, C. X.; Lu, Y. Z.; Yang, P.; Kong, B.; Fisher, A.; Wang, X. Selective electrochemical H2O2 production through two-electron oxygen electrochemistry. Adv. Energy Mater. 2018, 8, 1801909.

7

Wang, Y. L.; Waterhouse, G. I. N.; Shang, L.; Zhang, T. R. Electrocatalytic oxygen reduction to hydrogen peroxide: From homogeneous to heterogeneous electrocatalysis. Adv. Energy Mater. 2021, 11, 2003323.

8

Chen, G. Y.; Liu, J. W.; Li, Q. Q.; Guan, P. F.; Yu, X. F.; Xing, L. S.; Zhang, J.; Che, R. C. A direct H2O2 production based on hollow porous carbon sphere-sulfur nanocrystal composites by confinement effect as oxygen reduction electrocatalysts. Nano Res. 2019, 12, 2614–2622.

9

Cai, H. Z.; Chen, B. B.; Zhang, X.; Deng, Y. C.; Xiao, D. Q.; Ma, D.; Shi, C. Highly active sites of low spin FeIIN4 species: The identification and the ORR performance. Nano Res. 2021, 14, 122–130.

10

Verdaguer-Casadevall, A.; Deiana, D.; Karamad, M.; Siahrostami, S.; Malacrida, P.; Hansen, T. W.; Rossmeisl, J.; Chorkendorff, I.; Stephens, I. E. L. Trends in the electrochemical synthesis of H2O2: Enhancing activity and selectivity by electrocatalytic site engineering. Nano Lett. 2014, 14, 1603–1608.

11

Jirkovský, J. S.; Panas, I.; Ahlberg, E.; Halasa, M.; Romani, S.; Schiffrin, D. J. Single atom hot-spots at Au-Pd nanoalloys for electrocatalytic H2O2 production. J. Am. Chem. Soc. 2011, 133, 19432–19441.

12

Siahrostami, S.; Verdaguer-Casadevall, A.; Karamad, M.; Deiana, D.; Malacrida, P.; Wickman, B.; Escudero-Escribano, M.; Paoli, E. A.; Frydendal, R.; Hansen, T. W. et al. Enabling direct H2O2 production through rational electrocatalyst design. Nat. Mater. 2013, 12, 1137–1143.

13

Chang, Q. W.; Zhang, P.; Mostaghimi, A. H. B.; Zhao, X. R.; Denny, S. R.; Lee, J. H.; Gao, H. P.; Zhang, Y.; Xin, H. L.; Siahrostami, S. et al. Promoting H2O2 production via 2-electron oxygen reduction by coordinating partially oxidized Pd with defect carbon. Nat. Commun. 2020, 11, 2178.

14

Zhang, L. C.; Liang, J.; Yue, L. C.; Xu, Z. Q.; Dong, K.; Liu, Q.; Luo, Y. L.; Li, T. S.; Cheng, X. H.; Cui, G. W. et al. N-doped carbon nanotubes supported CoSe2 nanoparticles: A highly efficient and stable catalyst for H2O2 electrosynthesis in acidic media. Nano Res. 2022, 15, 304–309.

15

Wang, M. J.; Zhang, N.; Feng, Y. G.; Hu, Z. W.; Shao, Q.; Huang, X. Q. Partially pyrolyzed binary metal-organic framework nanosheets for efficient electrochemical hydrogen peroxide synthesis. Angew. Chem., Int. Ed. 2020, 59, 14373–14377.

16

Dong, K.; Liang, J.; Wang, Y. Y.; Xu, Z. Q.; Liu, Q.; Luo, Y. L.; Li, T. S.; Li, L.; Shi, X. F.; Asiri, A. M. et al. Honeycomb carbon nanofibers: A superhydrophilic O2-entrapping electrocatalyst enables ultrahigh mass activity for the two-electron oxygen reduction reaction. Angew. Chem., Int. Ed. 2021, 60, 10583–10587.

17

Tang, C.; Jiao, Y.; Shi, B. Y.; Liu, J. N.; Xie, Z. H.; Chen, X.; Zhang, Q.; Qiao, S. Z. Coordination tunes selectivity: Two-electron oxygen reduction on high-loading molybdenum single-atom catalysts. Angew. Chem., Int. Ed. 2020, 59, 9171–9176.

18

Zhang, L. C.; Liang, J.; Yue, L. C.; Dong, K.; Xu, Z. Q.; Li, T. S.; Liu, Q.; Luo, Y. L.; Liu, Y.; Gao, S. Y. et al. CoTe nanoparticle-embedded N-doped hollow carbon polyhedron: An efficient catalyst for H2O2 electrosynthesis in acidic media. J. Mater. Chem. A 2021, 9, 21703–21707.

19

Sheng, H. Y.; Hermes, E. D.; Yang, X. H.; Ying, D. W.; Janes, A. N.; Li, W. J.; Schmidt, J. R.; Jin, S. Electrocatalytic production of H2O2 by selective oxygen reduction using earth-abundant cobalt pyrite (CoS2). ACS Catal. 2019, 9, 8433–8442.

20

Liang, J.; Wang, Y. Y.; Liu, Q.; Luo, Y. L.; Li, T. S.; Zhao, H. T.; Lu, S. Y.; Zhang, F.; Asiri, A. M.; Liu, F. G. et al. Electrocatalytic hydrogen peroxide production in acidic media enabled by NiS2 nanosheets. J. Mater. Chem. A 2021, 9, 6117–6122.

21

Wang, Y. L.; Shi, R.; Shang, L.; Waterhouse, G. I. N.; Zhao, J. Q.; Zhang, Q. H.; Gu, L.; Zhang, T. R. High-efficiency oxygen reduction to hydrogen peroxide catalyzed by Nickel single-atom catalysts with tetradentate N2O2 coordination in a three-phase flow cell. Angew. Chem., Int. Ed. 2020, 59, 13057–13062.

22

Deng, Z. Q.; Ma, C. Q.; Yan, S. H.; Dong, K.; Liu, Q.; Luo, Y. L.; Liu, Y.; Du, J.; Sun, X. P.; Zheng, B. Z. One-dimensional conductive metal-organic framework nanorods: A highly selective electrocatalyst for the oxygen reduction to hydrogen peroxide. J. Mater. Chem. A 2021, 9, 20345–20349.

23

Roy, P.; Berger, S.; Schmuki, P. TiO2 nanotubes: Synthesis and applications. Angew. Chem., Int. Ed. 2011, 50, 2904–2939.

24

Chen, X. B.; Mao, S. S. Titanium dioxide nanomaterials: Synthesis, properties, modifications, and applications. Chem. Rev. 2007, 107, 2891–2959.

25

Ghanem, M. A.; Al-Mayouf, A. M.; Shaddad, M. N.; Marken, F. Selective formation of hydrogen peroxide by oxygen reduction on TiO2 nanotubes in alkaline media. Electrochim. Acta 2015, 174, 557–562.

26

Xu, Z. Q.; Liang, J.; Wang, Y. Y.; Dong, K.; Shi, X. F.; Liu, Q.; Luo, Y. L.; Li, T. S.; Jia, Y.; Asiri, A. M. et al. Enhanced electrochemical H2O2 production via two-electron oxygen reduction enabled by surface-derived amorphous oxygen-deficient TiO2−x. ACS Appl. Mater. Interfaces 2021, 13, 33182–33187.

27

Wu, T. W.; Zhu, X. J.; Xing, Z.; Mou, S. Y.; Li, C. B.; Qiao, Y. X.; Liu, Q.; Luo, Y. L.; Shi, X. F.; Zhang, Y. N. et al. Greatly improving electrochemical N2 reduction over TiO2 nanoparticles by iron doping. Angew. Chem., Int. Ed. 2019, 58, 18449–18453.

28

Kuang, M.; Wang, Y.; Fang, W.; Tan, H. T.; Chen, M. X.; Yao, J. D.; Liu, C. T.; Xu, J. W.; Zhou, K.; Yan, Q. Y. Efficient nitrate synthesis via ambient nitrogen oxidation with Ru-doped TiO2/RuO2 electrocatalysts. Adv. Mater. 2020, 32, 2002189.

29

Koketsu, T.; Ma, J. W.; Morgan, B. J.; Body, M.; Legein, C.; Dachraoui, W.; Giannini, M.; Demortiere, A.; Salanne, M.; Dardoize, F. et al. Reversible magnesium and aluminium ions insertion in cation-deficient anatase TiO2. Nat. Mater. 2017, 16, 1142–1148.

30

Han, Q.; Wu, C. B.; Jiao, H. M.; Xu, R. Y.; Wang, Y. Z.; Xie, J. J.; Guo, Q.; Tang, J. W. Rational design of high-concentration Ti3+ in porous carbon-doped TiO2 nanosheets for efficient photocatalytic ammonia synthesis. Adv. Mater. 2021, 33, 2008180.

31

Colón, G.; Maicu, M.; Hidalgo, M. C.; Navío, J. A. Cu-Doped TiO2 systems with improved photocatalytic activity. Appl. Catal. B: Environ. 2006, 67, 41–51.

32

Deng, Z. Q.; Ma, C. Q.; Yan, S. H.; Liang, J.; Dong, K.; Li, T. S.; Wang, Y.; Yue, L. C.; Luo, Y. L.; Liu, Q. et al. Electrocatalytic H2O2 production via two-electron O2 reduction by Mo-doped TiO2 nanocrystallines. Catal. Sci. Technol. 2021, 11, 6970–6974.

33

Chen, Q. Y.; Ma, C. Q.; Yan, S. H.; Liang, J.; Dong, K.; Luo, Y. L.; Liu, Q.; Li, T. S.; Wang, Y.; Yue, L. C. et al. Greatly facilitated two-electron electroreduction of oxygen into hydrogen peroxide over TiO2 by Mn doping. ACS Appl. Mater. Interfaces 2021, 13, 46659–46664.

34

Wu, T. W.; Zhao, H. T.; Zhu, X. J.; Xing, Z.; Liu, Q.; Liu, T.; Gao, S. Y.; Lu, S. Y.; Chen, G.; Asiri, A. M. et al. Identifying the origin of Ti3+ activity toward enhanced electrocatalytic N2 reduction over TiO2 nanoparticles modulated by mixed-valent copper. Adv. Mater. 2020, 32, 2000299.

35

Cao, N.; Quan, Y. L.; Guan, A. X.; Yang, C.; Ji, Y. L.; Zhang, L. J.; Zheng, G. F. Oxygen vacancies enhanced cooperative electrocatalytic reduction of carbon dioxide and nitrite ions to urea. J. Colloid Interface Sci. 2020, 577, 109–114.

36

Yuan, J.; Liu, L.; Guo, R. R.; Zeng, S.; Wang, H.; Lu, J. X. Electroreduction of CO2 into ethanol over an active catalyst: Copper supported on titania. Catalysts 2017, 7, 220.

37

Kresse, G.; Furthmüller, J. Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set. Comp. Mater. Sci. 1996, 6, 15–50.

38

Kresse, G.; Furthmüller, J. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B 1996, 54, 11169.

39

Perdew, J. P.; Burke, K.; Ernzerhof, M. Generalized gradient approximation made simple. Phys. Rev. Lett. 1996, 77, 3865–3868.

40

Tilocca, A.; Selloni, A. DFT-GGA and DFT + U simulations of thin water layers on reduced TiO2 anatase. J. Phys. Chem. C 2012, 116, 9114–9121.

41

García-Mota, M.; Vojvodic, A.; Abild-Pedersen, F.; Nørskov, J. K. Electronic origin of the surface reactivity of transition-metal-doped TiO2(110). J. Phys. Chem. C 2013, 117, 460–465.

42

Grimme, S.; Antony, J.; Ehrlich, S.; Krieg, H. A consistent and accurate ab initio parametrization of density functional dispersion correction (DFT-D) for the 94 elements H-Pu. J. Chem. Phys. 2010, 132, 154104.

43

Aguilar, T.; Navas, J.; Alcántara, R.; Fernández-Lorenzo, C.; Gallardo, J. J.; Blanco, G.; Martín-Calleja, J. A route for the synthesis of Cu-doped TiO2 nanoparticles with a very low band gap. Chem. Phys. Lett. 2013, 571, 49–53.

44

Han, Z. S.; Choi, C.; Hong, S.; Wu, T. S.; Soo, Y. L.; Jung, Y.; Qiu, J.; Sun, Z. Y. Activated TiO2 with tuned vacancy for efficient electrochemical nitrogen reduction. Appl. Catal. B: Environ. 2019, 257, 117896.

45

Li, L.; Chen, H. J.; Li, L.; Li, B. H.; Wu, Q. B.; Cui, C. H.; Deng, B.; Luo, Y. L.; Liu, Q.; Li, T. S. et al. La-doped TiO2 nanorods toward boosted electrocatalytic N2-to-NH3 conversion at ambient conditions. Chin. J. Catal. 2021, 42, 1755–1762.

46

Wang, Y. F.; Chen, Z.; Han, P.; Du, Y. H.; Gu, Z. X.; Xu, X.; Zheng, G. F. Single-atomic Cu with multiple oxygen vacancies on ceria for electrocatalytic CO2 reduction to CH4. ACS Catal. 2018, 8, 7113–7119.

47

Jiang, K.; Back, S.; Akey, A. J.; Xia, C.; Hu, Y. F.; Liang, W. T.; Schaak, D.; Stavitski, E.; Nørskov, J. K.; Siahrostami, S. et al. Highly selective oxygen reduction to hydrogen peroxide on transition metal single atom coordination. Nat. Commun. 2019, 10, 3997.

48

Zhao, X.; Wang, Y.; Da, Y. L.; Wang, X. X.; Wang, T. T.; Xu, M. Q.; He, X. Y.; Zhou, W.; Li, Y. F.; Coleman, J. N. et al. Selective electrochemical production of hydrogen peroxide at zigzag edges of exfoliated molybdenum telluride nanoflakes. Natl. Sci. Rev. 2020, 7, 1360–1366.

Nano Research
Pages 3880-3885
Cite this article:
Deng Z, Li L, Ren Y, et al. Highly efficient two-electron electroreduction of oxygen into hydrogen peroxide over Cu-doped TiO2. Nano Research, 2022, 15(5): 3880-3885. https://doi.org/10.1007/s12274-021-3995-6
Topics:

1728

Views

52

Crossref

49

Web of Science

48

Scopus

1

CSCD

Altmetrics

Received: 04 September 2021
Revised: 22 October 2021
Accepted: 14 November 2021
Published: 11 January 2022
© Tsinghua University Press and Springer-Verlag GmbH Germany, part of Springer Nature 2021
Return