AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article

Mesoporous radiosensitized nanoprobe for enhanced NIR-II photoacoustic imaging-guided accurate radio-chemotherapy

Tao Chen1Lichao Su1Lisen Lin1Xiaoguang Ge1Feicheng Bai1Meng Niu1Chenlu Wang1Jibin Song1Shaolei Guo2( )Huanghao Yang1( )
MOE Key Laboratory for Analytical Science of Food Safety and Biology, College of Chemistry, Fuzhou University, Fuzhou 350116, China
Department of Neurosurgery, The First Affiliated Hospital of Sun Yat-Sen University, Guangzhou 510080, China
Show Author Information

Graphical Abstract

As showed in schematic illustration, we synthesized the WO3-based nanoprobe (Au NPs/UCNPs/WO3@C) as a smart theranostic agent with the excellent electron excitation and transfer scenarios capability for near-infrared (NIR-II) photoacoustic imaging guided accurate cancer chemo-radiotherapy, which can produce oxygen under radiation and achieve the goal of the hypoxia alleviation in tumor region.

Abstract

Oxygen deficiency is a major obstacle to hypoxic-related cancer theranostics, and developing the oxygen production nanoplatforms received the widespread attention. However, it is remaining a challenge to structure a nanoplatform with hypoxia alleviation effect and imaging-guided cancer radiotherapy. Herein, we present a novel theranostics nanoplatform (Au NPs/UCNPs/WO3@C) comprising of tungsten trioxide (WO3) that loaded gold nanoparticles (Au NPs) and up-conversion nanoparticles (UCNPs) for improved photoacoustic (PA) imaging performance in the second near infrared window (NIR-II, 900–1,700 nm). Au NPs/UCNPs/WO3@C exhibited superior oxygen-generation effect and doxorubicin loading capacity, thus serving as an efficient radiosensitizer for radio-chemo anti-cancer therapy. Importantly, the accumulated Au NPs/UCNPs/WO3@C in the tumor region led to the increased NIR-II PA imaging signal and the blood oxygen saturation signal, which could enhance radiation sensitivity and accurately guiding cancer radiotherapy to reduce side effects on normal tissues. This study with proof-of-concept confirmed the multifaceted characteristics and encouraging potential of biomimetic Au NPs/UCNPs/WO3@C for NIR-II PA imaging-guided tumor therapeutics.

Electronic Supplementary Material

Download File(s)
12274_2021_3997_MOESM1_ESM.pdf (2 MB)

References

1

Kaneko, S.; Molina, E. S.; Ewelt, C.; Warneke, N.; Stummer, W. Fluorescence-based measurement of real-time kinetics of protoporphyrin IX after 5-aminolevulinic acid administration in human in situ malignant gliomas. Neurosurgery 2019, 85, E739–E746.

2

Van Meir, E. G.; Hadjipanayis, C. G.; Norden, A. D.; Shu, H. K.; Wen, P. Y.; Olson, J. J. Exciting new advances in neuro-oncology: The avenue to a cure for malignant glioma. CA. Cancer J. Clin. 2010, 60, 166–193.

3

Ye, T. Y.; Lai, Y. Q.; Wang, Z. Y.; Zhang, X. G.; Meng, G. N.; Zhou, L. P.; Zhang, Y. F.; Zhou, Z.; Deng, J. L.; Wang, M. et al. Precise modulation of gold nanorods for protecting against malignant ventricular arrhythmias via near-infrared neuromodulation. Adv. Funct. Mater. 2019, 29, 1902128.

4

Im, S.; Lee, J.; Park, D.; Park, A.; Kim, Y. M.; Kim, W. J. Hypoxia-triggered transforming immunomodulator for cancer immunotherapy via photodynamically enhanced antigen presentation of dendritic cell. ACS Nano 2019, 13, 476–488.

5

Jia, Q. Y.; Ge, J. C.; Liu, W. M.; Zheng, X. L.; Chen, S. Q.; Wen, Y. M.; Zhang, H. Y.; Wang, P. F. A magnetofluorescent carbon dot assembly as an acidic H2O2-driven oxygenerator to regulate tumor hypoxia for simultaneous bimodal imaging and enhanced photodynamic therapy. Adv. Mater. 2018, 30, 1706090.

6

Lan, G. X.; Ni, K. Y.; Xu, Z. W.; Veroneau, S. S.; Song, Y.; Lin, W. B. Nanoscale metal-organic framework overcomes hypoxia for photodynamic therapy primed cancer immunotherapy. J. Am. Chem. Soc. 2018, 140, 5670–5673.

7

An, J.; Hu, Y. G.; Li, C.; Hou, X. L.; Cheng, K.; Zhang, B.; Zhang, R. Y.; Li, D. Y.; Liu, S. J.; Liu, B. et al. A pH/ultrasound dual-response biomimetic nanoplatform for nitric oxide gas-sonodynamic combined therapy and repeated ultrasound for relieving hypoxia. Biomaterials 2020, 230, 119636.

8

Zhang, S. C.; Li, Q. Z.; Yang, N.; Shi, Y. H.; Ge, W.; Wang, W. J.; Huang, W. J.; Song, X. J.; Dong X. C. Phase-change materials based nanoparticles for controlled hypoxia modulation and enhanced phototherapy. Adv. Funct. Mater. 2019, 29, 1906805.

9

Herter-Sprie, G. S.; Korideck, H.; Christensen, C. L.; Herter, J. M.; Rhee, K.; Berbeco, R. I.; Bennett, D. G.; Akbay, E. A.; Kozono, D.; Mak, R. H. et al. Image-guided radiotherapy platform using single nodule conditional lung cancer mouse models. Nat. Commun. 2014, 5, 5870.

10

Zhang, C.; Zhao, K. L.; Bu, W. B.; Ni, D. L.; Liu, Y. Y.; Feng, J. W.; Shi, J. L. Marriage of scintillator and semiconductor for synchronous radiotherapy and deep photodynamic therapy with diminished oxygen dependence. Angew. Chem., Int. Ed. 2015, 54, 1770–1774.

11

Wang, Z.; Shao, D.; Chang, Z. M.; Lu, M. M.; Wang, Y. S.; Yue, J.; Yang, D.; Li, M. Q.; Xu, Q. B.; Dong, W. F. Janus gold nanoplatform for synergetic chemoradiotherapy and computed tomography imaging of hepatocellular carcinoma. ACS Nano 2017, 11, 12732–12741.

12

He, Z. M.; Huang, X. L.; Wang, C.; Li, X. L.; Liu, Y. J.; Zhou, Z. J.; Wang, S.; Zhang, F. W.; Wang, Z. T.; Jacobson, O. et al. A catalase-like metal-organic framework nanohybrid for O2-evolving synergistic chemoradiotherapy. Angew. Chem., Int. Ed. 2019, 131, 8752–8756.

13

Li, Y. Y.; Qi, Y. C.; Zhang, H. B.; Xia, Z. M.; Xie, T. T.; Li, W. L.; Zhong, D. N.; Zhu, H. L.; Zhou, M. Gram-scale synthesis of highly biocompatible and intravenous injectable hafnium oxide nanocrystal with enhanced radiotherapy efficacy for cancer theranostic. Biomaterials 2020, 226, 119538.

14

Ma, T. C.; Liu, Y. D.; Wu, Q.; Luo, L. F.; Cui, Y. L.; Wang, X. H.; Chen, X. W.; Tan, L. F.; Meng, X. W. Quercetin-modified metal-organic frameworks for dual sensitization of radiotherapy in tumor tissues by inhibiting the carbonic anhydrase IX. ACS Nano 2019, 13, 4209–4219.

15

Kaur, P.; Hurwitz, M. D.; Krishnan, S.; Asea, A. Combined hyperthermia and radiotherapy for the treatment of cancer. Cancers 2011, 3, 3799–3823.

16

Kaanders, J. H. A. M.; Pop, L. A. M.; Marres, H. A. M.; Liefers, J.; van den Hoogen, F. J. A.; van Daal, W. A. J.; van den Kogel, A. J. Accelerated radiotherapy with carbogen and nicotinamide (ARCON) for laryngeal cancer. Radiother. Oncol. 1998, 48, 115–122.

17

Swift, M. N.; Taketa, S. T.; Bond, V. P. Regionally fractionated x-irradiation equivalent in dose to total-body exposure. Radiat. Res. 1954, 1, 241–252.

18

Liu, Y. Y.; Liu, Y.; Bu, W. B.; Xiao, Q. F.; Sun, Y.; Zhao, K. L.; Fan, W. P.; Liu, J. N.; Shi, J. L. Radiation-/hypoxia-induced solid tumor metastasis and regrowth inhibited by hypoxia-specific upconversion nanoradiosensitizer. Biomaterials 2015, 49, 1–8.

19

Chen, Q.; Chen, J. W.; Yang, Z. J.; Xu, J.; Xu, L. G.; Liang, C.; Han, X.; Liu, Z. Nanoparticle-enhanced radiotherapy to trigger robust cancer immunotherapy. Adv. Mater. 2019, 31, 1802228.

20

Yi, X.; Chen, L.; Chen, J.; Maiti, D.; Chai, Z. F.; Liu, Z.; Yang, K. Biomimetic copper sulfide for chemo-radiotherapy: Enhanced uptake and reduced efflux of nanoparticles for tumor cells under ionizing radiation. Adv. Funct. Mater. 2018, 28, 1705161.

21

Dong, Z. L.; Feng, L. Z.; Chao, Y.; Hao, Y.; Chen, M. H.; Gong, F.; Han, X.; Zhang, R.; Cheng, L.; Liu, Z. Amplification of tumor oxidative stresses with liposomal Fenton catalyst and glutathione inhibitor for enhanced cancer chemotherapy and radiotherapy. Nano Lett. 2019, 19, 805–815.

22

Hua, L.; Wang, Z.; Zhao, L.; Mao, H. L.; Wang, G. H.; Zhang, K. R.; Liu, X. J.; Wu, D. M.; Zheng, Y. L.; Lu, J. et al. Hypoxia-responsive lipid-poly-(hypoxic radiosensitized polyprodrug) nanoparticles for glioma chemo- and radiotherapy. Theranostics 2018, 8, 5088–5105.

23

Sun, W. J.; Shi, T. H.; Luo, L.; Chen, X. M.; Lv, P.; Lv, Y.; Zhuang, Y. X.; Zhu, J. J.; Liu, G.; Chen, X. Y. et al. Monodisperse and uniform mesoporous silicate nanosensitizers achieve low-dose X-ray-induced deep-penetrating photodynamic therapy. Adv. Mater. 2019, 31, 1808024.

24

Cheng, K.; Sano, M.; Jenkins, C. H.; Zhang, G. L.; Vernekohl, D.; Zhao, W.; Wei, C. X.; Zhang, Y.; Zhang, Z.; Liu, Y. J. et al. Synergistically enhancing the therapeutic effect of radiation therapy with radiation activatable and reactive oxygen species-releasing nanostructures. ACS Nano 2018, 12, 4946–4958.

25

Fan, W. P.; Lu, N.; Shen, Z. Y.; Tang, W.; Shen, B.; Cui, Z. W.; Shan, L. L.; Yang, Z.; Wang, Z. T.; Jacobson, O. et al. Generic synthesis of small-sized hollow mesoporous organosilica nanoparticles for oxygen-independent X-ray-activated synergistic therapy. Nat. Commun. 2019, 10, 1241.

26

Lu, K. D.; He, C. B.; Guo, N. N.; Chan, C.; Ni, K. Y.; Lan, G. X.; Tang, H. D.; Pelizzari, C.; Fu, Y. X.; Spiotto, M. T. et al. Low-dose X-ray radiotherapy-radiodynamic therapy via nanoscale metal-organic frameworks enhances checkpoint blockade immunotherapy. Nat. Biomed. Eng. 2018, 2, 600–610.

27

Zhong, X. Y.; Wang, X. W.; Zhan, G. T.; Tang, Y. A.; Yao, Y. Z.; Dong, Z. L.; Hou, L. Q.; Zhao, H.; Zeng, S. J.; Hu, J. et al. NaCeF4: Gd, Tb scintillator as an X-ray responsive photosensitizer for multimodal imaging-guided synchronous radio/radiodynamic therapy. Nano Lett. 2019, 19, 8234–8244.

28

Deng, H. Z.; Lin, L. S.; Wang, S.; Yu, G. C.; Zhou, Z. J.; Liu, Y. J.; Niu, G.; Song, J. B.; Chen, X. Y. X-ray-controlled bilayer permeability of bionic nanocapsules stabilized by nucleobase pairing interactions for pulsatile drug delivery. Adv. Mater. 2019, 31, 1903443.

29

Lu, N.; Fan, W. P.; Yi, X.; Wang, S.; Wang, Z. T.; Tian, R.; Jacobson, O.; Liu, Y. J.; Yung, B. C.; Zhang, G. F. et al. Biodegradable hollow mesoporous organosilica nanotheranostics for mild hyperthermia-induced bubble-enhanced oxygen-sensitized radiotherapy. ACS Nano 2018, 12, 1580–1591.

30

Song, J. B.; Yang, X. Y.; Jacobson, O.; Lin, L. S.; Huang, P.; Niu, G.; Ma, Q. J.; Chen, X. Y. Sequential drug release and enhanced photothermal and photoacoustic effect of hybrid reduced graphene oxide-loaded ultrasmall gold nanorod vesicles for cancer therapy. ACS Nano 2015, 9, 9199–9209.

31

Yang, Z.; Song, J. B.; Dai, Y. L.; Chen, J. Y.; Wang, F.; Lin, L. S.; Liu, Y. J.; Zhang, F. W.; Yu, G. C.; Zhou, Z. J. et al. Self-assembly of semiconducting-plasmonic gold nanoparticles with enhanced optical property for photoacoustic imaging and photothermal therapy. Theranostics 2017, 7, 2177–2185.

32

Tang, W.; Yang, Z.; Wang, S.; Wang, Z. T.; Song, J. B.; Yu, G. C.; Fan, W. P.; Dai, Y. L.; Wang, J. J.; Shan, L. L. et al. Organic semiconducting photoacoustic nanodroplets for laser-activatable ultrasound imaging and combinational cancer therapy. ACS Nano 2018, 12, 2610–2622.

33

Zhang, Z.; Fang, X. F.; Liu, Z. H.; Liu, H. C.; Chen, D. D.; He, S. Q.; Zheng, J.; Yang, B.; Qin, W. P.; Zhang, X. J. et al. Semiconducting polymer dots with dual-enhanced NIR-IIa fluorescence for through-skull mouse-brain imaging. Angew. Chem., Int. Ed. 2019, 59, 3691–3698.

34

Sun, T. T.; Han, J. F.; Liu, S.; Wang, X.; Wang, Z. Y.; Xie, Z. G. Tailor-made semiconducting polymers for second near-infrared photothermal therapy of orthotopic liver cancer. ACS Nano 2019, 13, 7345–7354.

35

Tang, Y. F.; Li, Y. Y.; Lu, X. M.; Hu, X. M.; Zhao, H.; Hu, W. B.; Lu, F.; Fan, Q. L.; Huang, W. Bio-erasable intermolecular donor-acceptor interaction of organic semiconducting nanoprobes for activatable NIR-II fluorescence imaging. Adv. Fun. Mater. 2019, 29, 1807376.

36

Lv, H.; Sun, L. Z.; Zou, L.; Xu, D. D.; Yao, H. Q.; Liu, B. Size-dependent synthesis and catalytic activities of trimetallic PdAgCu mesoporous nanospheres in ethanol electrooxidation. Chem. Sci. 2019, 10, 1986–1993.

37

Gong, F.; Cheng, L.; Yang, N. L.; Betzer, O.; Feng, L. Z.; Zhou, Q.; Li, Y. G.; Chen, R. H.; Popovtzer, R.; Liu, Z. Ultrasmall oxygen-deficient bimetallic oxide mnwox nanoparticles for depletion of endogenous GSH and enhanced sonodynamic cancer therapy. Adv. Mater. 2019, 31, 1900730.

38

Duan, X. P.; Liu, D. M.; Chan, C.; Lin, W. B. Polymeric micelle-mediated delivery of DNA-targeting organometallic complexes for resistant ovarian cancer treatment. Small 2015, 11, 3962–3972.

39

Xi, J. Q.; Wei, G.; An, L. F.; Xu, Z. B.; Xu, Z. L.; Fan, L.; Gao, L. Z. Copper/carbon hybrid nanozyme: Tuning catalytic activity by the copper state for antibacterial therapy. Nano Lett. 2019, 19, 7645–7654.

40

Wu, D.; Duan, X. H.; Guan, Q. Q.; Liu, J.; Yang, X.; Zhang, F.; Huang, P.; Shen, J.; Shuai, X. T.; Cao, Z. Mesoporous polydopamine carrying manganese carbonyl responds to tumor microenvironment for multimodal imaging-guided cancer therapy. Adv. Fun. Mater. 2019, 29, 1900095.

41

Sun, Y. H.; Qin, H. S.; Yan, Z. Q.; Zhao, C. Q.; Ren, J. S.; Qu, X. G. Combating biofilm associated infection in vivo: Integration of quorum sensing inhibition and photodynamic treatment based on multidrug delivered hollow carbon nitride sphere. Adv. Fun. Mater. 2019, 29, 1808222.

42

Zhou, L. B.; Jing, Y.; Liu, Y. B.; Liu, Z. H.; Gao, D. Y.; Chen, H. B.; Song, W. Y.; Wang, T.; Fang, X. F.; Qin, W. P. et al. Mesoporous carbon nanospheres as a multifunctional carrier for cancer theranostics. Theranostics 2018, 8, 663–675.

43

Wang, H.; Chen, Q. W.; Zhou, S. Q. Carbon-based hybrid nanogels: A synergistic nanoplatform for combined biosensing, bioimaging, and responsive drug delivery. Chem. Soc. Rev. 2018, 47, 4198–4232.

44

Yang, W. P.; Li, X. X.; Li, Y.; Zhu, R. M.; Pang, H. Applications of metal-organic-framework-derived carbon materials. Adv. Mater. 2019, 31, 1804740.

45

Yao, C.; Wang, W. X.; Wang, P. Y.; Zhao, M. Y.; Li, X. M.; Zhang, F. Near-infrared upconversion mesoporous cerium oxide hollow biophotocatalyst for concurrent pH-/H2O2-responsive O2-evolving synergetic cancer therapy. Adv. Mater. 2018, 30, 1704833.

46

Ma, J. H.; Ren, Y.; Zhou, X. R.; Liu, L. L.; Zhu, Y. H.; Cheng, X. W.; Xu, P. C.; Li, X. X.; Deng, Y. H.; Zhao, D. Y. Pt nanoparticles sensitized ordered mesoporous WO3 semiconductor: Gas sensing performance and mechanism study. Adv. Fun. Mater. 2018, 28, 1705268.

47

Liu, B.; Kuo, C. H.; Chen, J. J.; Luo, Z.; Thanneeru, S.; Li, W. K.; Song, W. Q.; Biswas, S.; Suib, S. L.; He, J. Ligand-assisted co-assembly approach toward mesoporous hybrid catalysts of transition-metal oxides and noble metals: Photochemical water splitting. Angew. Chem., Int. Ed. 2015, 54, 9061–9065.

48

Sun, Z. H.; Guo, J. J.; Zhu, S. M.; Mao, L.; Ma, J.; Zhang, D. A high-performance Bi2WO6-graphene photocatalyst for visible light-induced H2 and O2 generation. Nanoscale 2014, 6, 2186–2193.

49

Kamat, P. V. Manipulation of charge transfer across semiconductor interface. A criterion that cannot be ignored in photocatalyst design. J. Phys. Chem. Lett. 2012, 3, 663–672.

50

Tanaka, A.; Hashimoto, K.; Kominami, H. Visible-light-induced hydrogen and oxygen formation over Pt/Au/WO3 photocatalyst utilizing two types of photoabsorption due to surface plasmon resonance and band-gap excitation. J. Am. Chem. Soc. 2014, 136, 586–589.

51

Liu, C. H.; Cao, Y.; Cheng, Y.; Wang, D. D.; Xu, T. L.; Su, L.; Zhang, X. J.; Dong, H. F. An open source and reduce expenditure ROS generation strategy for chemodynamic/photodynamic synergistic therapy. Nat. Commun. 2020, 11, 1735.

Nano Research
Pages 4154-4163
Cite this article:
Chen T, Su L, Lin L, et al. Mesoporous radiosensitized nanoprobe for enhanced NIR-II photoacoustic imaging-guided accurate radio-chemotherapy. Nano Research, 2022, 15(5): 4154-4163. https://doi.org/10.1007/s12274-021-3997-4
Topics:

1013

Views

15

Crossref

28

Web of Science

15

Scopus

1

CSCD

Altmetrics

Received: 05 September 2021
Revised: 12 November 2021
Accepted: 14 November 2021
Published: 15 January 2022
© Tsinghua University Press and Springer-Verlag GmbH Germany, part of Springer Nature 2021
Return