AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article

Intelligent bio-assembly imaging-guided platform for real-time bacteria sterilizing and infectious therapy

Jiayu Zeng1,§Zengchao Guo1,§Yihan Wang1Zhaojian Qin1Yi Ma3Hui Jiang1Yossi Weizmann2( )Xuemei Wang1( )
State Key Laboratory of Bioelectronics (Chien-Shiung Wu Lab), School of Biological Science and Medical Engineering, Southeast University, Nanjing 210096, China
Department of Chemistry, Ben-Gurion University of the Negev, Beer-Sheva 8410501, Israel
Department of Engineering, China Pharmaceutical University, Nanjing 211198, China

§ Jiayu Zeng and Zengchao Guo contributed equally to this work.

Show Author Information

Graphical Abstract

The scheme illustrates the microenvironment-responsive assembled nanoclusters for real-time Escherichia coli bioimaging and simultaneous E. coli-infected wound cure. In bacterial infections, the metal precursors (i.e., HAuCl4, FeCl2, and herring sperm DNA) could be bio-self-assembled to multifunctional nanoclusters (NCs) that exhibit luminescence, in which AuCl4 was biosynthesized via reductive biomolecules such as NADPH to the fluorescent AuNCs. While visualizing the bacteria, the microenvironment-responsive NCs were enabled to sterilize bacteria efficiently due to reactive oxygen species (ROS) accumulation. Besides, the bio-responsive self-assembled NCs complexes contributed to accelerating bacteria-infected wound healing.

Abstract

Bacterial infection is rising as a threatening health issue. Because of the present delay in early diagnosis of bacterial diseases as well as the abuse of antibiotics, it has become a vital issue in the development of in-time detection and therapy of bacterial infections. Herein, we designed a multifunctional nanotheranostics platform based on the unique micro-environment of bacterial infections to achieve specific bioimaging and simultaneous inactivation of the target bacteria. We showed that in bacterial infections, the metal precursors (i.e., HAuCl4, FeCl2, and herring sperm DNA) could be readily bio-self-assembled to multifunctional nanoclusters (NCs) that exhibit luminescence, in which AuCl4 was biosynthesized via reductive biomolecules such as NADPH to the fluorescent AuNCs. The DNA may assist as an encapsulation and delivery vector, and Fe2+ served as a fluorescence intensifier and reduced reactive oxygen species (ROS) to produce the iron oxides. While the bacteria were being visualized, the microenvironment-responsive NCs were enabled to sterilize bacteria efficiently due to electrostatic effect, cell membrane destruction, inhibition of biofilm formation, and ROS accumulation. Besides, the bio-responsive self-assembled NCs complexes contributed to accelerating bacteria-infected wound healing and showed negligible side effects in long-term toxicity tests in vivo. Also, intracellular molecules involved in microenvironmental response were investigated. The work may become an effective strategy for the detection and real-time sterilization of intractable bacterial infections.

Electronic Supplementary Material

Download File(s)
12274_2021_3998_MOESM1_ESM.pdf (1.3 MB)

References

1

Bing, W.; Chen, Z. W.; Sun, H. J.; Shi, P.; Gao, N.; Ren, J. S.; Qu, X. G. Visible-light-driven enhanced antibacterial and biofilm elimination activity of graphitic carbon nitride by embedded Ag nanoparticles. Nano Res. 2015, 8, 1648–1658.

2

Zhao, Y.; Chen, L.; Wang, Y. A.; Song, X. Y.; Li, K. Y.; Yan, X. F.; Yu, L. M.; He, Z. Y. Nanomaterial-based strategies in antimicrobial applications: Progress and perspectives. Nano Res. 2021, 14, 4417–4441.

3

Chatzopoulou, M.; Kyriakaki, A.; Reynolds, L. Review of antimicrobial resistance control strategies: Low impact of prospective audit with feedback on bacterial antibiotic resistance within hospital settings. Infect. Dis. 2021, 53, 159–168.

4

Mills, B.; Bradley, M.; Dhaliwal, K. Optical imaging of bacterial infections. Clin. Transl. Imag. 2016, 4, 163–174.

5

Mao, D.; Hu, F.; Kenry; Ji, S. L.; Wu, W. B.; Ding, D.; Kong, D. L.; Liu, B. Metal–organic-framework-assisted in vivo bacterial metabolic labeling and precise antibacterial therapy. Adv. Mater. 2018, 30, 1706831.

6

van Oosten, M.; Hahn, M.; Crane, L. M. A.; Pleijhuis, R. G.; Francis, K. P.; van Dijl, J. M.; van Dam, G. M. Targeted imaging of bacterial infections: Advances, hurdles and hopes. FEMS Microbiol. Rev. 2015, 39, 892–916.

7

Robby, A. I.; Kim, S. G.; Lee, U. H.; In, I.; Lee, G.; Park, S. Y. Wireless electrochemical and luminescent detection of bacteria based on surface-coated CsWO3-immobilized fluorescent carbon dots with photothermal ablation of bacteria. Chem. Eng. J. 2021, 403, 126351.

8

Zhou, C. C.; Xu, W. H.; Zhang, P. B.; Jiang, M. J.; Chen, Y. C.; Kwok, R. T. K.; Lee, M. M. S.; Shan, G. G.; Qi, R. L.; Zhou, X. et al. Engineering sensor arrays using aggregation-induced emission luminogens for pathogen identification. Adv. Funct. Mater. 2019, 29, 1805986.

9

Lazcka, O.; Del Campo, F. J.; Muñoz, F. X. Pathogen detection: A perspective of traditional methods and biosensors. Biosens. Bioelectron. 2007, 22, 1205–1217.

10

He, X. W.; Xiong, L. H.; Zhao, Z.; Wang, Z. Y.; Luo, L.; Lam, J. W. Y.; Kwok, R. T. K.; Tang, B. Z. AIE-based theranostic systems for detection and killing of pathogens. Theranostics 2019, 9, 3223–3248.

11

Ren, C. H.; Wang, Z. Y.; Wang, Q.; Yang, C. H.; Liu, J. F. Self-assembled peptide-based nanoprobes for disease theranostics and disease-related molecular imaging. Small Methods 2020, 4, 1900403.

12

Sun, X.; Zhang, M. Z.; Du, R. H.; Zheng, X. J.; Tang, C. G.; Wu, Y. Q.; He, J. C.; Huang, W.; Wang, Y. Y.; Zhang, Z. Y. et al. A polyethyleneimine-driven self-assembled nanoplatform for fluorescence and MR dual-mode imaging guided cancer chemotherapy. Chem. Eng. J. 2018, 350, 69–78.

13

Zhao, S. J.; Wu, S. L.; Jia, Q. Y.; Huang, L.; Lan, M. H.; Wang, P. F.; Zhang, W. J. Lysosome-targetable carbon dots for highly efficient photothermal/photodynamic synergistic cancer therapy and photoacoustic/two-photon excited fluorescence imaging. Chem. Eng. J. 2020, 388, 124212.

14

Liu, L.; Wang, X. Y.; Zhu, S. X.; Yao, C.; Ban, D. D.; Liu, R. H.; Li, L. D.; Wang, S. Controllable targeted accumulation of fluorescent conjugated polymers on bacteria mediated by a saccharide bridge. Chem. Mater. 2020, 32, 438–447.

15

Váradi, L.; Luo, J. L.; Hibbs, D. E.; Perry, J. D.; Anderson, R. J.; Orenga, S.; Groundwater, P. W. Methods for the detection and identification of pathogenic bacteria: Past, present, and future. Chem. Soc. Rev. 2017, 46, 4818–4832.

16

Guo, H. B.; Yi, S.; Feng, K.; Xia, Y. Q.; Qu, X. W.; Wan, F.; Chen, L.; Zhang, C. L. In situ formation of metal organic framework onto gold nanorods/mesoporous silica with functional integration for targeted theranostics. Chem. Eng. J. 2021, 403, 126432.

17

Huang, Y.; Huang, P.; Lin, J. Plasmonic gold nanovesicles for biomedical applications. Small Methods 2019, 3, 1800394.

18

Cui, H.; Shao, Z. S.; Song, Z.; Wang, Y. B.; Wang, H. S. Development of gold nanoclusters: From preparation to applications in the field of biomedicine. J. Mater. Chem. C 2020, 8, 14312–14333.

19

El-Sayed, N.; Schneider, M. Advances in biomedical and pharmaceutical applications of protein-stabilized gold nanoclusters. J. Mater. Chem. B 2020, 8, 8952–8971.

20

Zheng, J.; Nicovich, P. R.; Dickson, R. M. Highly fluorescent noble-metal quantum dots. Annu. Rev. Phys. Chem. 2007, 58, 409–431.

21

Yarramala, D. S.; Baksi, A.; Pradeep, T.; Rao, C. P. Green synthesis of protein-protected fluorescent gold nanoclusters (AuNCs): Reducing the size of AuNCs by partially occupying the Ca2+ Site by La3+ in Apo-α-lactalbumin. ACS Sustainable Chem. Eng. 2017, 5, 6064–6069.

22

Guo, Y. H.; Amunyela, H. T. N. N.; Cheng, Y. L.; Xie, Y. F.; Yu, H.; Yao, W. R.; Li, H. W.; Qian, H. Natural protein-templated fluorescent gold nanoclusters: Syntheses and applications. Food Chem. 2021, 335, 127657.

23

Zheng, Y. K.; Wang, X. M.; Jiang, H. Label-free detection of Acinetobacter baumannii through the induced fluorescence quenching of thiolated AuAg nanoclusters. Sens. Actuators B: Chem. 2018, 277, 388–393.

24

Ahmed, H. B. Recruitment of various biological macromolecules in fabrication of gold nanoparticles: Overview for preparation and applications. Int. J. Biol. Macromol. 2019, 140, 265–277.

25

Erythropel, H. C.; Zimmerman, J. B.; de Winter, T. M.; Petitjean, L.; Melnikov, F.; Lam, C. H.; Lounsbury, A. W.; Mellor, K. E.; Janković, N. Z.; Tu, Q. S. et al. The Green ChemisTREE: 20 years after taking root with the 12 principles. Green Chem. 2018, 20, 1929–1961.

26

Basu, T.; Rana, K.; Das, N.; Pal, B. Selective detection of Mg2+ ions via enhanced fluorescence emission using Au-DNA nanocomposites. Beilstein J. Nanotechnol. 2017, 8, 762–771.

27

Li, X. M.; Fu, P. Y.; Liu, J. M.; Zhang, S. S. Biosensor for multiplex detection of two DNA target sequences using enzyme-functionalized Au nanoparticles as signal amplification. Anal. Chim. Acta 2010, 673, 133–138.

28

Xiu, W. J.; Gan, S. Y.; Wen, Q. R.; Qiu, Q.; Dai, S. L.; Dong, H.; Li, Q.; Yuwen, L. H.; Weng, L. X.; Teng, Z. G. et al. Biofilm microenvironment-responsive nanotheranostics for dual-mode imaging and hypoxia-relief-enhanced photodynamic therapy of bacterial infections. Research 2020, 2020, 9426453.

29

Xu, S. Y.; Yin, W.; Zhang, Y. L.; Lv, Q. M.; Yang, Y. J.; He, J. Foes or friends? Bacteria enriched in the tumor microenvironment of colorectal cancer. Cancers 2020, 12, 372.

30

Nothling, M. D.; Cao, H. W.; McKenzie, T. G.; Hocking, D. M.; Strugnell, R. A.; Qiao G. G. Bacterial redox potential powers controlled radical polymerization. J. Am. Chem. Soc. 2021, 143, 286–293.

31

Jena, S.; Das, B.; Bosu, R.; Suar, M.; Mandal, D. Bacteria generated antibacterial gold nanoparticles and potential mechanistic insight. J. Cluster Sci. 2015, 26, 1707–1721.

32

Song, C. X.; Xu, J. Y.; Chen, Y.; Zhang, L. L.; Lu, Y.; Qing, Z. H. DNA-templated fluorescent nanoclusters for metal ions detection. Molecules 2019, 24, 4189.

33

Zhao, C. Q.; Du, T. Y.; ur Rehman, F.; Lai, L. M.; Liu, X. L.; Jiang, X. R.; Li, X. Q.; Chen, Y.; Zhang, H.; Sun, Y. et al. Biosynthesized gold nanoclusters and iron complexes as scaffolds for multimodal cancer bioimaging. Small 2016, 12, 6255–6265.

34

Schwartz-Duval, A. S.; Konopka, C. J.; Moitra, P.; Daza, E. A.; Srivastava, I.; Johnson, E. V.; Kampert, T. L.; Fayn, S.; Haran, A.; Dobrucki, L. W. et al. Intratumoral generation of photothermal gold nanoparticles through a vectorized biomineralization of ionic gold. Nat. Commun. 2020, 11, 4530.

35

Wang, M. N.; Chen, Y.; Cai, W. J.; Feng, H.; Du, T. Y.; Liu, W. W.; Jiang, H.; Pasquarelli, A.; Weizmann, Y.; Wang, X. M. In situ self-assembling Au-DNA complexes for targeted cancer bioimaging and inhibition. Proc. Natl. Acad. Sci. USA 2020, 117, 308–316.

36

Liu, J. W. DNA-stabilized, fluorescent, metal nanoclusters for biosensor development. TrAC Trends Anal. Chem. 2014, 58, 99–111.

37

Zhao, W. H.; Xiong, M.; Liu, M. B.; Wang, S. Q.; Xian, X.; Lin, B. P.; Li, H. B. Evaluation of the effect of Tb(IV)-NR complex on herring sperm DNA genetic information by mean of spectroscopic. Nucleosides Nucleotides Nucleic Acids 2020, 39, 964–978.

38

Szymborska-Małek, K.; Komorowska, M.; Gąsior-Głogowska, M. Effects of near infrared radiation on DNA. DLS and ATR-FTIR study. Spectrochim. Acta A:Mol. Biomol. Spectrosc. 2018, 188, 258–267.

39

Kallistova, A. Y.; Nikolaev, Y. A.; Mardanov, A. V.; Berestovskaya, Y. Y.; Grachev, V. A.; Kostrikina, N. A.; Pelevina, A. V.; Ravin, N. V.; Pimenov, N. V. Investigation of formation and development of anammox biofilms by light, epifluorescence, and electron microscopy. Microbiology 2020, 89, 708–719.

40

Zheng, Y. K.; Liu, W. W.; Chen, Y.; Li, C. M.; Jiang, H.; Wang, X. M. Conjugating gold nanoclusters and antimicrobial peptides: From aggregation-induced emission to antibacterial synergy. J. Colloid Interface Sci. 2019, 546, 1–10.

41

Zheng, K. Y.; Setyawati, M. I.; Leong, D. T.; Xie, J. P. Overcoming bacterial physical defenses with molecule-like ultrasmall antimicrobial gold nanoclusters. Bioact. Mater. 2021, 6, 941–950.

42

Zheng, Y. K.; Liu, W. W.; Qin, Z. J.; Chen, Y.; Jiang, H.; Wang, X. M. Mercaptopyrimidine-conjugated gold nanoclusters as nanoantibiotics for combating multidrug-resistant superbugs. Bioconjugate Chem. 2018, 29, 3094–3103.

43

Chevallier, E.; Jolibois, R. D.; Meunier, N.; Carlier, P.; Monod, A. "Fenton-like" reactions of methylhydroperoxide and ethylhydroperoxide with Fe2+ in liquid aerosols under tropospheric conditions. Atmos. Environ. 2004, 38, 921–933.

44

Zayats, M.; Baron, R.; Popov, I.; Willner, I. Biocatalytic growth of Au nanoparticles: From mechanistic aspects to biosensors design. Nano Lett. 2005, 5, 21–25.

45

Iakimov, N. P.; Abdullina, V. R.; Sharanov, P. A.; Alov, N. V.; Orlov, V. N.; Grozdova, I. D.; Melik-Nubarov, N. S. Interaction of glutathione-stabilized gold nanoclusters with doxorubicin and polycation. Russ. J. Gen. Chem. 2019, 89, 2097–2102.

46

Gang, G. T.; Kim, Y. H.; Noh, J. R.; Kim, K. S.; Jung, J. Y.; Shong, M.; Hwang, J. H.; Lee, C. H. Protective role of NAD(P)H: Quinone oxidoreductase 1 (NQO1) in cisplatin-induced nephrotoxicity. Toxicol. Lett. 2013, 221, 165–175.

47

Hoshino, Y.; Mizuno, S.; Kato, K.; Mizuno-Iijima, S.; Tanimoto, Y.; Ishida, M.; Kajiwara, N.; Sakasai, T.; Miwa, Y.; Takahashi, S. et al. Simple generation of hairless mice for in vivo imaging. Exp. Anim. 2017, 66, 437–445.

48

Tran, M. T. N.; Tanaka, J.; Hamada, M.; Sugiyama, Y.; Sakaguchi, S.; Nakamura, M.; Takahashi, S.; Miwa, Y. In vivo image analysis using iRFP transgenic mice. Exp. Anim. 2014, 63, 311–319.

Nano Research
Pages 4164-4174
Cite this article:
Zeng J, Guo Z, Wang Y, et al. Intelligent bio-assembly imaging-guided platform for real-time bacteria sterilizing and infectious therapy. Nano Research, 2022, 15(5): 4164-4174. https://doi.org/10.1007/s12274-021-3998-3
Topics:

1080

Views

16

Crossref

16

Web of Science

16

Scopus

1

CSCD

Altmetrics

Received: 11 October 2021
Revised: 11 November 2021
Accepted: 14 November 2021
Published: 28 January 2022
© Tsinghua University Press and Springer-Verlag GmbH Germany, part of Springer Nature 2021
Return