Discover the SciOpen Platform and Achieve Your Research Goals with Ease.
Search articles, authors, keywords, DOl and etc.
The accomplishment of nanowelding typically requires the input of high energy, possibly causing appreciable damages to the brittle nanomaterial. Herein, we report an external field (EF, i.e., light, direct current (DC), and alternating current (AC))-strengthened Ostwald nanowelding (ONW) strategy to enable low-temperature nanowelding of Au nanoparticles (NPs) with nanoscale spacing in solution and propose an electron localization mechanism to understand it. We reveal that the EF-derived local electrons not only greatly strengthen the dissolution of surface atoms and the reduction of Au3+ ions dissolved, but also confine (together with ordered water molecules) the transport of Au3+ ions within the nanogap. Consequently, the electrochemical Ostwald ripening (OR) process of the Au NPs is actively strengthened, which, along with the local electron-strengthened surface atom diffusion (as a result of the strong electrostatic repulsion created), enables feasible ONW for solution processing of interdigital electrodes (IDEs) from Au NPs and high-performance transparent conductor (TC) from Ag nanowires (NWs). Our low-temperature nanowelding strategy offers an efficient interconnection technique for the processing of functional nanodevices from individual nanomaterials.
Boles, M. A.; Engel, M.; Talapin, D. V. Self-assembly of colloidal nanocrystals: From intricate structures to functional materials. Chem. Rev. 2016, 116, 11220–11289.
Zhu, J.; Hersam, M. C. Assembly and electronic applications of colloidal nanomaterials. Adv. Mater. 2017, 29, 1603895.
Begley, M. R.; Gianola, D. S.; Ray, T. R. Bridging functional nanocomposites to robust macroscale devices. Science 2019, 364, 1250.
Wu, D. J.; Zhou, H.; Song, Z. H.; Zheng, M.; Liu, R. H.; Pan, X. Y.; Wan, H. Z.; Zhang, J.; Wang, H.; Li, X. M. et al. Welding perovskite nanowires for stable, sensitive, flexible photodetectors. ACS Nano 2020, 14, 2777–2787.
Hwang, J.; Shim, Y.; Yoon, S. M.; Lee, S. H.; Park, S. H. Influence of polyvinylpyrrolidone (PVP) capping layer on silver nanowire networks: Theoretical and experimental studies. RSC Adv. 2016, 6, 30972–30977.
Han, M.; Chen, F.; Li, M. X.; Yu, R. P.; Xu, Y. L.; Jiang, Y. X.; Liu, C.; Hu, J. W. Light welding Au nanoparticles assembled at water-air interface for monolayered nanoporous gold films with tunable electrocatalytic activity. Electrochim. Acta 2020, 334, 135626.
Chen, C. X.; Yan, L. J.; Kong, E. S. W.; Zhang, Y. F. Ultrasonic nanowelding of carbon nanotubes to metal electrodes. Nanotechnology 2006, 17, 2192–2197.
Ghosh, P.; Lu, J. S.; Chen, Z. Y.; Yang, H. B.; Qiu, M.; Li, Q. Photothermal-induced nanowelding of metal-semiconductor heterojunction in integrated nanowire units. Adv. Electron. Mater. 2018, 4, 1700614.
Liu, C.; Li, Y. J.; Sun, S. G.; Yeung, E. S. Room-temperature cold-welding of gold nanoparticles for enhancing the electrooxidation of carbon monoxide. Chem. Commun. 2011, 47, 4481–4483.
Kang, H.; Song, S. J.; Sul, Y. E.; An, B. S.; Yin, Z. X.; Choi, Y.; Pu, L.; Yang, C. W.; Kim, Y. S.; Cho, S. M. et al. Epitaxial-growth-induced junction welding of silver nanowire network electrodes. ACS Nano 2018, 12, 4894–4902.
Chen, F.; Yang, S. Z.; Wu, Z. J.; Hu, W.; Hu, J. W.; Duan, X. F. Light welding nanoparticles: From metal colloids to free-standing conductive metallic nanoparticle film. Sci. China Mater. 2017, 60, 39–48.
Hu, A.; Peng, P.; Alarifi, H.; Zhang, X. Y.; Guo, J. Y.; Zhou, Y.; Duley, W. W. Femtosecond laser welded nanostructures and plasmonic devices. J. Laser Appl. 2012, 24, 042001.
Wagle, D. V.; Baker, G. A. Cold welding: A phenomenon for spontaneous self-healing and shape genesis at the nanoscale. Mater. Horiz. 2015, 2, 157–167.
Peng, Y.; Cullis, T.; Inkson, B. Bottom-up nanoconstruction by the welding of individual metallic nanoobjects using nanoscale solder. Nano Lett. 2009, 9, 91–96.
Lagrange, M.; Langley, D. P.; Giusti, G.; Jiménez, C.; Bréchet, Y.; Bellet, D. Optimization of silver nanowire-based transparent electrodes: Effects of density, size and thermal annealing. Nanoscale 2015, 7, 17410–17423.
Song, T. B.; Chen, Y.; Chung, C. H.; Yang, Y.; Bob, B.; Duan, H. S.; Li, G.; Tu, K. N.; Huang, Y.; Yang, Y. Nanoscale joule heating and electromigration enhanced ripening of silver nanowire contacts. ACS Nano 2014, 8, 2804–2811.
Tseng, J. Y.; Lee, L.; Huang, Y. C.; Chang, J. H.; Su, T. Y.; Shih, Y. C.; Lin, H. W.; Chueh, Y. L. Pressure welding of silver nanowires networks at room temperature as transparent electrodes for efficient organic light-emitting diodes. Small 2018, 14, 1800541.
She, J. C.; An, S.; Deng, S. Z.; Chen, J.; Xiao, Z. M.; Zhou, J.; Xu, N. S. Laser welding of a single tungsten oxide nanotip on a handleable tungsten wire: A demonstration of laser-weld nanoassembly. Appl. Phys. Lett. 2007, 90, 073103.
Garnett, E. C.; Cai, W. S.; Cha, J. J.; Mahmood, F.; Connor, S. T.; Christoforo, M. G.; Cui, Y.; McGehee, M. D.; Brongersma, M. L. Self-limited plasmonic welding of silver nanowire junctions. Nat. Mater. 2012, 11, 241–249.
Kim, J.; Nam, Y. S.; Song, M. H.; Park, H. W. Large pulsed electron beam welded percolation networks of silver nanowires for transparent and flexible electrodes. ACS Appl. Mater. Interfaces 2016, 8, 20938–20945.
Ozden, S.; Brunetto, G.; Karthiselva, N. S.; Galvão, D. S.; Roy, A.; Bakshi, S. R.; Tiwary, C. S.; Ajayan, P. M. Controlled 3D carbon nanotube structures by plasma welding. Adv. Mater. Interfaces 2016, 3, 1500755.
Schauerman, C. M.; Alvarenga, J.; Staub, J.; Forney, M. W.; Foringer, R.; Landi, B. J. Ultrasonic welding of bulk carbon nanotube conductors. Adv. Eng. Mater. 2015, 17, 76–83.
Yoon, S. S.; Khang, D. Y. Room-temperature chemical welding and sintering of metallic nanostructures by capillary condensation. Nano Lett. 2016, 16, 3550–3556.
Zhang, L. Q.; Tang, Y. S.; Peng, Q. M.; Yang, T. T.; Liu, Q. N.; Wang, Y. C.; Li, Y. F.; Du, C. C.; Sun, Y.; Cui, L. S. et al. Ceramic nanowelding. Nat. Commun. 2018, 9, 96.
Lu, Y.; Huang, J. Y.; Wang, C.; Sun, S. H.; Lou, J. Cold welding of ultrathin gold nanowires. Nat. Nanotechnol. 2010, 5, 218–224.
Peng, P.; Hu, A. M.; Gerlich, A. P.; Zou, G. S.; Liu, L.; Zhou, Y. N. Joining of silver nanomaterials at low temperatures: Processes, properties, and applications. ACS Appl. Mater. Interfaces 2015, 7, 12597–12618.
Zhang, Y. H.; Li, J. J.; Zhou, H. J.; Hu, Y. Q.; Ding, S. H.; Xia, R. Cold welding behavior of metallic glass nanowires: Insights from large-scale numerical simulations. J. Mater. Sci. 2021, 56, 15906–15920.
Zhang, M. Y.; Li, M. X.; Han, M.; Huang, W.; Hu, W.; Hu, J. W. Synthesis of gold nanoparticles, their interfacial self-assembly, and plasma welding: A solution-processable strategy to interdigital electrodes. Chem. Phys. Lett. 2020, 754, 137603.
Liu, J. F.; Ge, Y. J.; Zhang, D. M.; Han, M.; Li, M. X.; Zhang, M.; Duan, X. D.; Yang, Z. L.; Hu, J. W. Plasma cleaning and self-limited welding of silver nanowire films for flexible transparent conductors. ACS Appl. Nano Mater. 2021, 4, 1664–1671.
Kuo, C. L.; Hwang, K. C. Does morphology of a metal nanoparticle play a role in Ostwald ripening processes? Chem. Mater. 2013, 25, 365–371.
Voorhees, P. W. The theory of Ostwald ripening. J. Stat. Phys. 1985, 38, 231–252.
Lee, H. J.; Oh, S.; Cho, K. Y.; Jeong, W. L.; Lee, D. S.; Park, S. J. Spontaneous and selective nanowelding of silver nanowires by electrochemical Ostwald ripening and high electrostatic potential at the junctions for high-performance stretchable transparent electrodes. ACS Appl. Mater. Interfaces 2018, 10, 14124–14131.
Wang, M. H.; Li, Y. J.; Xie, Z. X.; Liu, C.; Yeung, E. S. Fabrication of large-scale one-dimensional Au nanochain and nanowire networks by interfacial self-assembly. Mater. Chem. Phys. 2010, 119, 153–157.
Duan, W. C.; Zhang, P. N.; Xiahou, Y. J.; Song, Y. H.; Bi, C. X.; Zhan, J.; Du, W.; Huang, L. H.; Möhwald, H.; Xia, H. B. Regulating surface facets of metallic aerogel electrocatalysts by size-dependent localized Ostwald ripening. ACS Appl. Mater. Interfaces 2018, 10, 23081–23093.
Zhang, L. X.; Liu, Q. L.; Crozier, P. A. Light induced coarsening of metal nanoparticles. J. Mater. Chem. A 2019, 7, 11756–11763.
Li, D. L.; Batchelor-McAuley, C.; Chen, L. F.; Compton, R. G. Band electrodes in sensing applications: Response characteristics and band fabrication methods. ACS Sens. 2019, 4, 2250–2266.
Kwon, J.; Suh, Y. D.; Lee, J.; Lee, P.; Han, S.; Hong, S.; Yeo, J.; Lee, H.; Ko, S. H. Recent progress in silver nanowire based flexible/wearable optoelectronics. J. Mater. Chem. C 2018, 6, 7445–7461.
Xu, L. J.; Han, G. B.; Hu, J. W.; He, Y.; Pan, J. G.; Li, Y. J.; Xiang, J. N. Hydrophobic coating- and surface active solvent-mediated self-assembly of charged gold and silver nanoparticles at water-air and water-oil interfaces. Phys. Chem. Chem. Phys. 2009, 11, 6490–6497.
Frens, G. Controlled nucleation for the regulation of the particle size in monodisperse gold suspensions. Nat. Phys. Sci. 1973, 241, 20–22.
Schuette, W. M.; Buhro, W. E. Silver chloride as a heterogeneous nucleant for the growth of silver nanowires. ACS Nano 2013, 7, 3844–3853.
Marcus, Y. Thermodynamics of solvation of ions. Part 5. —Gibbs free energy of hydration at 298.15 K. J. Chem. Soc. , Faraday Trans. 1991, 87, 2995–2999.
Marcus, Y. Thermodynamics of solvation of ions. Part 6. —The standard partial molar volumes of aqueous ions at 298.15 K. J. Chem. Soc. , Faraday Trans. 1993, 89, 713–718.
Johnson, P. B.; Christy, R. W. Optical constants of the noble metals. Phys. Rev. B 1972, 6, 4370–4379.
Xu, H. X.; Bjerneld, E. J.; Käll, M.; Börjesson, L. Spectroscopy of single hemoglobin molecules by surface enhanced Raman scattering. Phys. Rev. Lett. 1999, 83, 4357–4360.
Ding, S. Y.; Yi, J.; Li, J. F.; Ren, B.; Wu, D. Y.; Panneerselvam, R.; Tian, Z. Q. Nanostructure-based plasmon-enhanced Raman spectroscopy for surface analysis of materials. Nat. Rev. Mater. 2016, 1, 16021.
Wang, X.; Li, M. H.; Meng, L. Y.; Lin, K. Q.; Feng, J. M.; Huang, T. X.; Yang, Z. L.; Ren, B. Probing the location of hot spots by surface-enhanced Raman spectroscopy: Toward uniform substrates. ACS Nano 2014, 8, 528–536.
Buffat, P.; Borel, J. P. Size effect on the melting temperature of gold particles. Phys. Rev. A 1976, 13, 2287–2298.
Plieth, W. J. Electrochemical properties of small clusters of metal atoms and their role in the surface enhanced Raman scattering. J. Phys. Chem. 1982, 86, 3166–3170.
Redmond, P. L.; Hallock, A. J.; Brus, L. E. Electrochemical Ostwald ripening of colloidal Ag particles on conductive substrates. Nano Lett. 2005, 5, 131–135.
Maragò, O. M.; Jones, P. H.; Gucciardi, P. G.; Volpe, G.; Ferrari, A. C. Optical trapping and manipulation of nanostructures. Nat. Nanotechnol. 2013, 8, 807–819.
Harada, Y.; Asakura, T. Radiation forces on a dielectric sphere in the Rayleigh scattering regime. Opt. Commun. 1996, 124, 529–541.
Ranjan, N.; Mertig, M.; Cuniberti, G.; Pompe, W. Dielectrophoretic growth of metallic nanowires and microwires: Theory and experiments. Langmuir 2010, 26, 552–559.
Fumagalli, L.; Esfandiar, A.; Fabregas, R.; Hu, S.; Ares, P.; Janardanan, A.; Yang, Q.; Radha, B.; Taniguchi, T.; Watanabe, K. et al. Anomalously low dielectric constant of confined water. Science 2018, 360, 1339–1342.
Liu, S. H.; Guo, D.; Xie, G. X. Water film confined in a nanoscale gap: Surface polarity and hydration effects. J. Appl. Phys. 2010, 108, 084315.
Zhan, C.; Wang, G.; Yi, J.; Wei, J. Y.; Li, Z. H.; Chen, Z. B.; Shi, J.; Yang, Y.; Hong, W. J.; Tian, Z. Q. Single-molecule plasmonic optical trapping. Matter 2020, 3, 1350–1360.
Li, F.; Medvedeva, X. V.; Medvedev, J. J.; Khairullina, E.; Engelhardt, H.; Chandrasekar, S.; Guo, Y. Z.; Jin, J.; Lee, A.; Thérien-Aubin, H. et al. Interplay of electrochemical and electrical effects induces structural transformations in electrocatalysts. Nat. Catal. 2021, 4, 479–487.
Sanders, D. E.; DePristo, A. E. Predicted diffusion rates on fcc (001) metal surfaces for adsorbate/substrate combinations of Ni, Cu, Rh, Pd, Ag, Pt, Au. Surf. Sci. 1992, 260, 116–128.
Ge, Y. J.; Liu, J. F.; Liu, X. J.; Hu, J. W.; Duan, X. D.; Duan, X. F. Rapid electrochemical cleaning silver nanowire thin films for high-performance transparent conductors. J. Am. Chem. Soc. 2019, 141, 12251–12257.