AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article

Line defects in monolayer TiSe2 with adsorption of Pt atoms potentially enable excellent catalytic activity

Zhipeng Song1,§Juxia Yi1,§Jing Qi1Qi Zheng1Zhili Zhu1Lei Tao1Yun Cao1Yan Li1Zhaoyan Gao1Ruizi Zhang1( )Li Huang1Geng Li1,2,3Ziqiang Xu4Xu Wu4Yeliang Wang4Chengmin Shen1,2Yu-Yang Zhang1,2Hongliang Lu1,2( )Xiao Lin1,2( )Shixuan Du1,2,3Hong-Jun Gao1,2,3
Institute of Physics and University of Chinese Academy of Sciences, Chinese Academy of Sciences, Beijing 100190, China
CAS Center for Excellence in Topological Quantum Computation, Chinese Academy of Sciences, Beijing 100190, China
Songshan Lake Materials Laboratory, Dongguan 523808, China
School of Information and Electronics, Beijing Institute of Technology, Beijing 100081, China

§ Zhipeng Song and Juxia Yi contributed equally to this work.

Show Author Information

Graphical Abstract

Monolayer TiSe2 with Pt adatoms adsorption on the line defects were successfully fabricated on the Au(111) substrate. The density functional theory calculations shows that the line defect itself has catalytic activity for hydrogen evlution reaction, and it will have better catalytic activity if it adsorbs Pt atoms.

Abstract

Two-dimensional (2D) materials with defects are desired for catalysis after the adsorption of monodispersed noble metal atoms. High-performance catalysts with the absolute value of Gibbs free energy (|ΔGH|) close to zero, is one of the ultimate goals in the catalytic field. Here, we report the formation of monolayer titanium selenide (TiSe2) with line defects. The low-temperature scanning tunneling microscopy/spectroscopy (STM/S) measurements revealed the structure and electronic states of the line defect. Density functional theory (DFT) calculation results confirmed that the line defects were induced by selenium vacancies and the STM simulation was in good agreement with the experimental results. Further, DFT calculations show that monolayer TiSe2 with line defects have good catalytic activity for hydrogen evolution reaction (HER). If the defects are decorated with single Pt atom, the HER catalytic activity will be enhanced dramatically (|ΔGH| = 0.006 eV), which is much better than Pt metal (|ΔGH| = 0.09 eV). Line defects in monolayer TiSe2/Au(111) provide a wonderful platform for the design of high-performance catalysts.

References

1

Zhang, Y.; Chang, T. R.; Zhou, B.; Cui, Y. T.; Yan, H.; Liu, Z. K.; Schmitt, F.; Lee, J.; Moore, R.; Chen, Y. L. et al. Direct observation of the transition from indirect to direct bandgap in atomically thin epitaxial MoSe2. Nat. Nanotechnol. 2014, 9, 111–115.

2

Chhowalla, M.; Shin, H. S.; Eda, G.; Li, L. J.; Loh, K. P.; Zhang, H. The chemistry of two-dimensional layered transition metal dichalcogenide nanosheets. Nat. Chem. 2013, 5, 263–275.

3

Tian, H.; Chin, M. L.; Najmaei, S.; Guo, Q. S.; Xia, F. N.; Wang, H.; Dubey, M. Optoelectronic devices based on two-dimensional transition metal dichalcogenides. Nano Res. 2016, 9, 1543–1560.

4

Wang, Q. H.; Kalantar-Zadeh, K.; Kis, A.; Coleman, J. N.; Strano, M. S. Electronics and optoelectronics of two-dimensional transition metal dichalcogenides. Nat. Nanotechnol. 2012, 7, 699–712.

5

Mak, K. F.; Lee, C.; Hone, J.; Shan, J.; Heinz, T. F. Atomically thin MoS2: A new direct-gap semiconductor. Phys. Rev. Lett. 2010, 105, 136805.

6

Rossnagel, K. On the origin of charge-density waves in select layered transition-metal dichalcogenides. J. Phys. Condens. Matter 2011, 23, 213001.

7

Liu, M. Z.; Wu, C. W.; Liu, Z. Z.; Wang, Z. Q.; Yao, D. X.; Zhong, D. Y. Multimorphism and gap opening of charge-density-wave phases in monolayer VTe2. Nano Res. 2020, 13, 1733–1738.

8

Ugeda, M. M.; Bradley, A. J.; Zhang, Y.; Onishi, S.; Chen, Y.; Ruan, W.; Ojeda-Aristizabal, C.; Ryu, H.; Edmonds, M. T.; Tsai, H. Z. et al. Characterization of collective ground states in single-layer NbSe2. Nat. Phys. 2016, 12, 92–97.

9

Xu, J. P.; Liu, C. H.; Wang, M. X.; Ge, J. F.; Liu, Z. L.; Yang, X. J.; Chen, Y.; Liu, Y.; Xu, Z. A.; Gao, C. L. et al. Artificial topological superconductor by the proximity effect. Phys. Rev. Lett. 2014, 112, 217001.

10

Qian, X. F.; Liu, J. W.; Fu, L.; Li, J. Quantum spin Hall effect in two-dimensional transition metal dichalcogenides. Science 2014, 346, 1344–1347.

11

Thiel, L.; Wang, Z.; Tschudin, M. A.; Rohner, D.; Gutiérrez-Lezama, I.; Ubrig, N.; Gibertini, M.; Giannini, E.; Morpurgo, A. F.; Maletinsky, P. Probing magnetism in 2D materials at the nanoscale with single-spin microscopy. Science 2019, 364, 973–976.

12

Duan, R. H.; Deng, Y.; Yang, J. F.; Liu, Z. High-quality 2D TMD crystals synthesized by solid-state reaction in vacuum system and their applications. Chin. J. Vac. Sci. Technol. 2021, 41, 1–21.

13

Zhao, J. L.; Ma, D. T.; Wang, C.; Guo, Z. N.; Zhang, B.; Li, J. Q.; Nie, G. H.; Xie, N.; Zhang, H. Recent advances in anisotropic two-dimensional materials and device applications. Nano Res. 2021, 14, 897–919.

14

Lu, H. L.; Zhang, Y. Y.; Lin, X.; Gao, H. J. Novel two-dimensional transition metal chalcogenides created by epitaxial growth. Sci. China Phys. Mech. Astron. 2021, 64, 106801.

15

Qiu, H.; Xu, T.; Wang, Z. L.; Ren, W.; Nan, H. Y.; Ni, Z. H.; Chen, Q.; Yuan, S. J.; Miao, F.; Song, F. Q. et al. Hopping transport through defect-induced localized states in molybdenum disulphide. Nat. Commun. 2013, 4, 2642.

16

Cai, L.; He, J. F.; Liu, Q. H.; Yao, T.; Chen, L.; Yan, W. S.; Hu, F. C.; Jiang, Y.; Zhao, Y. D.; Hu, T. D. et al. Vacancy-induced ferromagnetism of MoS2 nanosheets. J. Am. Chem. Soc. 2015, 137, 2622–2627.

17

Bao, W.; Borys, N. J.; Ko, C.; Suh, J.; Fan, W.; Thron, A.; Zhang, Y. J.; Buyanin, A.; Zhang, J.; Cabrini, S. et al. Visualizing nanoscale excitonic relaxation properties of disordered edges and grain boundaries in monolayer molybdenum disulfide. Nat. Commun. 2015, 6, 7993.

18

van der Zande, A. M.; Huang, P. Y.; Chenet, D. A.; Berkelbach, T. C.; You, Y. M.; Lee, G. H.; Heinz, T. F.; Reichman, D. R.; Muller, D. A.; Hone, J. C. Grains and grain boundaries in highly crystalline monolayer molybdenum disulphide. Nat. Mater. 2013, 12, 554–561.

19

Zhang, Z. H.; Zou, X. L.; Crespi, V. H.; Yakobson, B. I. Intrinsic magnetism of grain boundaries in two-dimensional metal dichalcogenides. Acs Nano 2013, 7, 10475–10481.

20

Dai, M. J.; Zheng, W.; Zhang, X.; Wang, S. M.; Lin, J. H.; Li, K.; Hu, Y. X.; Sun, E. W.; Zhang, J.; Qiu, Y. F. et al. Enhanced piezoelectric effect derived from grain boundary in MoS2 Monolayers. Nano Lett. 2020, 20, 201–207.

21

Zhu, J. Q.; Wang, Z. C.; Dai, H. J.; Wang, Q. Q.; Yang, R.; Yu, H.; Liao, M. Z.; Zhang, J.; Chen, W.; Wei, Z. et al. Boundary activated hydrogen evolution reaction on monolayer MoS2. Nat. Commun. 2019, 10, 1348.

22
Pu, M. J.; Wang, D.; Zhang, Z. H.; Guo, Y. F.; Guo, W. L. Flexoelectricity enhanced water splitting and hydrogen evolution reaction on grain boundaries of monolayer transition metal dichalcogenides. Nano Res., in press, DOI: 10.1007/s12274-021-3584-8.https://doi.org/10.1007/s12274-021-3584-8
23

Chang, Y. S.; Chen, C. Y.; Ho, C. J.; Cheng, C. M.; Chen, H. R.; Fu, T. Y.; Huang, Y. T.; Ke, S. W.; Du, H. Y.; Lee, K. Y. et al. Surface electron accumulation and enhanced hydrogen evolution reaction in MoSe2 basal planes. Nano Energy 2021, 84, 105922.

24

Yuan, S. G.; Pang, S. Y.; Hao, J. H. 2D transition metal dichalcogenides, carbides, nitrides, and their applications in supercapacitors and electrocatalytic hydrogen evolution reaction. Appl. Phys. Rev. 2020, 7, 021304.

25

Voiry, D.; Yamaguchi, H.; Li, J. W.; Silva, R.; Alves, D. C. B.; Fujita, T.; Chen, M. W.; Asefa, T.; Shenoy, V. B.; Eda, G. et al. Enhanced catalytic activity in strained chemically exfoliated WS2 nanosheets for hydrogen evolution. Nat. Mater. 2013, 12, 850–855.

26

Gordon, R. B.; Bertram, M.; Graedel, T. E. Metal stocks and sustainability. Proc. Natl. Acad. Sci. USA 2006, 103, 1209–1214.

27

Fu, J. N.; Ali, R.; Mu, C. H.; Liu, Y. F.; Mahmood, N.; Lau, W. M.; Jian, X. Large-scale preparation of 2D VSe2 through a defect-engineering approach for efficient hydrogen evolution reaction. Chem. Eng. J. 2021, 411, 128494.

28

Greeley, J.; Jaramillo, T. F.; Bonde, J.; Chorkendorff, I.; Nørskov, J. K. Computational high-throughput screening of electrocatalytic materials for hydrogen evolution. Nat. Mater. 2006, 5, 909–913.

29

Shu, H. B.; Zhou, D.; Li, F.; Cao, D.; Chen, X. S. Defect engineering in MoSe2 for the hydrogen evolution reaction: From point defects to edges. ACS Appl. Mater. Interfaces 2017, 9, 42688–42698.

30

Li, H.; Tsai, C.; Koh, A. L.; Cai, L. L.; Contryman, A. W.; Fragapane, A. H.; Zhao, J. H.; Han, H. S.; Manoharan, H. C.; Abild-Pedersen, F. et al. Activating and optimizing MoS2 basal planes for hydrogen evolution through the formation of strained sulphur vacancies. Nat. Mater. 2016, 15, 48–53.

31

Kresse, G.; Furthmüller, J. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B 1996, 54, 11169–11186.

32

Kresse, G.; Furthmüller, J. Efficiency of ab initio total energy calculations for metals and semiconductors using a plane-wave basis set. Comput. Mater. Sci. 1996, 6, 15–50.

33

Kresse, G.; Joubert, D. From ultrasoft pseudopotentials to the projector augmented-wave method. Phys. Rev. B 1999, 59, 1758–1775.

34

Perdew, J. P.; Burke, K.; Ernzerhof, M. Generalized gradient approximation made simple. Phys. Rev. Lett. 1996, 77, 3865–3868.

35

Perdew, J. P.; Chevary, J. A.; Vosko, S. H.; Jackson, K. A.; Pederson, M. R.; Singh, D. J.; Fiolhais, C. Atoms, molecules, solids, and surfaces: Applications of the generalized gradient approximation for exchange and correlation. Phys. Rev. B 1993, 48, 4978.

36

Grimme, S.; Ehrlich, S.; Goerigk, L. Effect of the damping function in dispersion corrected density functional theory. J. Comput. Chem. 2011, 32, 1456–1465.

37

Palotás, K.; Mándi, G.; Szunyogh, L. Enhancement of the spin transfer torque efficiency in magnetic STM junctions. Phys. Rev. B 2016, 94, 064434.

38

Nørskov, J. K.; Bligaard, T.; Logadottir, A.; Kitchin, J. R.; Chen, J. G.; Pandelov, S.; Stimming, U. Trends in the exchange current for hydrogen evolution. J. Electrochem. Soc. 2005, 152, J23.

39

Peng, J. P.; Guan, J. Q.; Zhang, H. M.; Song, C. L.; Wang, L. L.; He, K.; Xue, Q. K.; Ma, X. C. Molecular beam epitaxy growth and scanning tunneling microscopy study of TiSe2 ultrathin films. Phys. Rev. B 2015, 91, 121113.

40

Shkvarin, A. S.; Yarmoshenko, Y. M.; Yablonskikh, M. V.; Merentsov, A. I.; Shkvarina, E. G.; Titov, A. A.; Zhukov, Y. M.; Titov, A. N. The electronic structure formation of CuxTiSe2 in a wide range (0.04 < x < 0.8) of copper concentration. J. Chem. Phys. 2016, 144, 074702.

41

Cheng, F.; Hu, Z. X.; Xu, H.; Shao, Y.; Su, J.; Chen, Z.; Ji, W.; Loh, K. P. Interface engineering of Au(111) for the growth of 1T'-MoSe2. Acs Nano 2019, 13, 2316–2323.

42

Wang, D. F.; Yu, H.; Tao, L.; Xiao, W. D.; Fan, P.; Zhang, T. T.; Liao, M. Z.; Guo, W.; Shi, D. X.; Du, S. X. et al. Bandgap broadening at grain boundaries in single-layer MoS2. Nano Res. 2018, 11, 6102–6109.

43

Liu, Z. L.; Lei, B.; Zhu, Z. L.; Tao, L.; Qi, J.; Bao, D. L.; Wu, X.; Huang, L.; Zhang, Y. Y.; Lin, X. et al. Spontaneous formation of 1D pattern in monolayer VSe2 with dispersive adsorption of Pt atoms for HER catalysis. Nano Lett. 2019, 19, 4897–4903.

44

Elibol, K.; Susi, T.; Argentero, G.; Monazam, M. R. A.; Pennycook, T. J.; Meyer, J. C.; Kotakoski, J. Atomic structure of intrinsic and electron-irradiation-induced defects in MoTe2. Chem. Mater. 2018, 30, 1230–1238.

45

Lu, J. C.; Bao, D. L.; Qian, K.; Zhang, S.; Chen, H.; Lin, X.; Du, S. X.; Gao, H. J. Identifying and visualizing the edge terminations of single-layer MoSe2 island epitaxially grown on Au(111). Acs Nano 2017, 11, 1689–1695.

46

Li, S.; Lee, J. K.; Zhou, S.; Pasta, M.; Warner, J. H. Synthesis of surface grown Pt nanoparticles on edge-enriched MoS2 porous thin films for enhancing electrochemical performance. Chem. Mater. 2019, 31, 387–397.

47

Wang, C. L.; Jin, M. G.; Liu, D. M.; Liang, F.; Luo, C.; Li, P. L.; Cai, C. H.; Bi, H. C.; Wu, X.; Di, Z. F. VSe2 quantum dots with high-density active edges for flexible efficient hydrogen evolution reaction. J. Phys. D:Appl. Phys. 2021, 54, 214006.

Nano Research
Pages 4687-4692
Cite this article:
Song Z, Yi J, Qi J, et al. Line defects in monolayer TiSe2 with adsorption of Pt atoms potentially enable excellent catalytic activity. Nano Research, 2022, 15(5): 4687-4692. https://doi.org/10.1007/s12274-021-4002-y
Topics:

892

Views

19

Crossref

19

Web of Science

19

Scopus

1

CSCD

Altmetrics

Received: 26 September 2021
Revised: 12 November 2021
Accepted: 16 November 2021
Published: 18 December 2021
© Tsinghua University Press and Springer-Verlag GmbH Germany, part of Springer Nature 2021
Return