AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article

Dynamical investigation of tunable magnetism in Au@Ni-carbide nanocrystals by a combined soft and hard X-ray absorption spectroscopy

Weifeng Huang2,§Jianxin Kang3,§Tingwen Chen3Dawei Pang4Lihua Wang4Hang Wei1( )Changchun Yang2Dongfeng Zhang3( )Lin Guo3( )
College of Chemistry and Chemical Engineering, Inner Mongolia University, Hohhot 010021, China
School of Electronic Engineering, Jiujiang University, Jiujiang 332005, China
School of Chemistry, Beihang University, Beijing 100191, China
Institute of Microstructure and Property of Advanced Materials, Beijing University of Technology, Beijing 100124, China

§ Weifeng Huang and Jianxin Kang contributed equally to this work.

Show Author Information

Graphical Abstract

A series of Au@Ni-carbide magnetic materials are achieved from the controlled carbonation of Au@Ni core-shell structures. Hard X-ray absorption spectroscopy (XAS) at the metal K edge and soft XAS at both metal L edge and carbon K edge provide solid evidence for the carbonation process from fcc-Ni (fcc = face centered cubic) to NixC, rather than phase transformation to hcp-Ni (hcp = hexagonal close packed).

Abstract

Nickel based magnetic nanocrystals have been widely applied in magnetic and catalytic facilities. Tunable magnetic properties of nickel can be easily obtained via non-magnetic doping or phase transformation. However, phase transformation from face centered cubic (fcc) to hexagonal close packed (hcp) induced magnetism adjustment of Ni are always confused with nickel carbide (Ni3C), due to the similar atomic structures of hcp-Ni and Ni3C. Here, we present series of Au@Ni-carbide magnetic materials achieved from the controlled carbonation of Au@Ni core–shell structures, whose magnetism is tunable by adjusting the amount of carbon in the Ni layer. Ex-situ hard X-ray absorption spectroscopy (XAS) at the metal K edge and soft XAS at both metal L edge and carbon K edge provide solid evidence for the carbonation process from fcc-Ni to NixC, rather than phase transformation to hcp-Ni. Further investigation reveals that the magnetism of the hybrids is mainly contributed from the residual fcc-Ni. The result represents an accurate and effective way to distinguish hexagonal Ni3C from hcp-Ni, and provides the pathway to control magnetism of Ni-based materials for applications.

Electronic Supplementary Material

Download File(s)
12274_2021_4005_MOESM1_ESM.pdf (1.6 MB)

References

1

Liang, C. W.; Zou, P. C.; Nairan, A.; Zhang, Y. Q.; Liu, J. X.; Liu, K. W.; Hu, S. Y.; Kang, F. Y.; Fan, H. J.; Yang, C. Exceptional performance of hierarchical Ni-Fe oxyhydroxide@NiFe alloy nanowire array electrocatalysts for large current density water splitting. Energy Environ. Sci. 2020, 13, 86–95.

2

Fantechi, E.; Innocenti, C.; Bertoni, G.; Sangregorio, C.; Pineider, F. Modulation of the magnetic properties of gold-spinel ferrite heterostructured nanocrystals. Nano Res. 2020, 13, 785–794.

3

Cao, Y. Q.; Zi, T. Q.; Liu, C.; Cui, D. P.; Wu, D.; Li, A. D. Co-Pt bimetallic nanoparticles with tunable magnetic and electrocatalytic properties prepared by atomic layer deposition. Chem. Commun. 2020, 56, 8675–8678.

4

Niether, C.; Faure, S.; Bordet, A.; Deseure, J.; Chatenet, M.; Carrey, J.; Chaudret, B.; Rouet, A. Improved water electrolysis using magnetic heating of FeC-Ni core-shell nanoparticles. Nat. Energy 2018, 3, 476–483.

5

Zeng, S. J.; Xiao, J. J.; Yang, Q. B.; Hao, J. H. Bi-functional NaLuF4: Gd3+/Yb3+/Tm3+ nanocrystals: Structure controlled synthesis, near-infrared upconversion emission and tunable magnetic properties. J. Mater. Chem. 2012, 22, 9870–9874.

6

Zhang, D. Q.; Shi, M. J.; Zhu, T. S.; Xing, D. Y.; Zhang, H. J.; Wang, J. Topological Axion states in the magnetic insulator MnBi2Te4 with the quantized magnetoelectric effect. Phys. Rev. Lett. 2019, 122, 206401.

7

Wu, N. N.; Xu, D. M.; Wang, Z.; Wang, F. L.; Liu, J. R.; Liu, W.; Shao, Q.; Liu, H.; Gao, Q.; Guo, Z. H. Achieving superior electromagnetic wave absorbers through the novel metal-organic frameworks derived magnetic porous carbon nanorods. Carbon 2019, 145, 433–444.

8

Gong, C.; Zhang, X. Two-dimensional magnetic crystals and emergent heterostructure devices. Science 2019, 363, eaav4450.

9

Schaefer, Z. L.; Weeber, K. M.; Misra, R.; Schiffer, P.; Schaak, R. E. Bridging hcp-Ni and Ni3C via a Ni3C1−x solid solution: Tunable composition and magnetism in colloidal nickel carbide nanoparticles. Chem. Mater. 2011, 23, 2475–2480.

10

Jana, N. R.; Chen, Y. F.; Peng, X. G. Size- and shape-controlled magnetic (Cr, Mn, Fe, Co, Ni) oxide nanocrystals via a simple and general approach. Chem. Mater. 2004, 16, 3931–3935.

11

Li, Y. B.; Lu, J.; Li, M.; Chang, K. K.; Zha, X. H.; Zhang, Y. M.; Chen, K.; Persson, P. O. Å.; Hultman, L.; Eklund, P. et al. Multielemental single-atom-thick A layers in nanolaminated V2(Sn, A)C (A = Fe, Co, Ni, Mn) for tailoring magnetic properties. Proc. Natl. Acad. Sci. USA 2020, 117, 820–825.

12

Zhang, H. T.; Ding, J.; Chow, G.; Ran, M.; Yi, J. B. Engineering magnetic properties of Ni nanoparticles by non-magnetic cores. Chem. Mater. 2009, 21, 5222–5228.

13

Vronka, M.; Straka, L.; De Graef, M.; Heczko, O. Antiphase boundaries, magnetic domains, and magnetic vortices in Ni-Mn-Ga single crystals. Acta Mater. 2020, 184, 179–186.

14

Barrera, G.; Allia, P.; Bonelli, B.; Esposito, S.; Freyria, F. S.; Pansini, M.; Marocco, A.; Confalonieri, G.; Arletti, R.; Tiberto, P. Magnetic behavior of Ni nanoparticles and Ni2+ ions in weakly loaded zeolitic structures. J. Alloys Compd. 2020, 817, 152776.

15

Lei, T. Y.; Mao, J. T.; Liu, X. C.; Pathak, A. D.; Shetty, S.; Van Bavel, A. P.; Xie, L.; Gao, Rui.; Ren, P. J.; Luo, D. et al. Carbon deposition and permeation on nickel surfaces in operando conditions: A theoretical study. J. Phys. Chem. C 2021, 125, 7166–7177.

16

He, L. Hexagonal close-packed nickel or Ni3C? J. Magn. Magn. Mater. 2010, 322, 1991–1993.

17

Zhuang, J. H.; Liu, X. L.; Ji, Y. J.; Gu, F. N.; Xu, J.; Han, Y. F.; Xu, G. W.; Zhong, Z. Y.; Su, F. B. Phase-controlled synthesis of Ni nanocrystals with high catalytic activity in 4-nitrophenol reduction. J. Mater. Chem. A 2020, 8, 22143–22154.

18
Zhuang, J. H.; He, F. Liu, X. L.; Si, P. C.; Gu, F. N; Xu, J.; Wang, Y.; Xu, G. W.; Zhong, Z. Y.; Su, F. B. In-situ growth of heterophase Ni nanocrystals on graphene for enhanced catalytic reduction of 4-nitrophenol. Nano Res., in press, DOI: 10.1007/s12274-021-3630-6.
19

Yue, L. P.; Sabiryanov, R.; Kirkpatrick, E. M.; Leslie-Pelecky, D. L. Magnetic properties of disordered Ni3C. Phys. Rev. B 2000, 62, 8969–8975.

20

Lee, P. A.; Pendry, J. B. Theory of the extended X-ray absorption fine structure. Phys. Rev. B 1975, 11, 2795–2811.

21

Abdel-Mageed, A. M.; Rungtaweevoranit, B.; Parlinska-Wojtan, M.; Pei, X. K.; Yaghi, O. M.; Behm, R. J. Highly active and stable single-atom Cu catalysts supported by a metal-organic framework. J. Am. Chem. Soc. 2019, 141, 5201–5210.

22

Brodsky, C. N.; Hadt, R. G.; Hayes, D.; Reinhart, B. J.; Li, N.; Chen, L. X.; Nocera, D. G. In situ characterization of cofacial Co(IV) centers in Co4O4 cubane: Modeling the high-valent active site in oxygen-evolving catalysts. Proc. Natl. Acad. Sci. USA 2017, 114, 3855–3860.

23

Zandkarimi, B.; Sun, G.; Halder, A.; Seifert, S.; Vajda, S.; Sautet, P.; Alexandrova, A. N. Interpreting the operando XANES of surface-supported subnanometer clusters: When fluxionality, oxidation state, and size effect fight. J. Phys. Chem. C 2020, 124, 10057–10066.

24

Celorrio, V.; Leach, A. S.; Huang, H. L.; Hayama, S.; Freeman, A.; Inwood, D. W.; Fermin, D. J.; Russell, A. E. Relationship between Mn oxidation state changes and oxygen reduction activity in (La, Ca)MnO3 as probed by in situ XAS and XES. ACS Catal. 2021, 11, 6431–6439.

25

Huang, W. F.; Zhang, Q.; Zhang, D. F.; Zhou, J.; Si, C.; Guo, L.; Chu, W. S.; Wu, Z. Y. Investigation of structural and magnetic properties of CoPt/CoAu bimetallic nanochains by X-ray absorption spectroscopy. J. Phys. Chem. C 2013, 117, 6872–6879.

26

Wu, T. Z.; Sun, S. N.; Song, J. J.; Xi, S. B.; Du, Y. H.; Chen, B.; Sasangka, W. A.; Liao, H. B.; Gan, C. L.; Scherer, G. G. et al. Iron-facilitated dynamic active-site generation on spinel CoAl2O4 with self-termination of surface reconstruction for water oxidation. Nat. Catal. 2019, 2, 763–772.

27

Zhong, J.; Song, L.; Chiou, J.; Dong, C. L.; Liang, X. Q.; Chen, D. L.; Xie, S. S.; Pong, W. F.; Chang, C. L.; Guo, J. H. et al. Electronic structure study of Li+/OH- modified single-walled carbon nanotubes by soft-X-ray absorption and resonant emission spectroscopy. Appl. Phys. Lett. 2010, 96, 213112.

28

Tesch, M. F. T.; Bonke, S. A.; Jones, T. E.; Shaker, M. N.; Xiao, J.; Skorupska, K.; Mom, R.; Melder, J.; Kurz, P.; Knop-Gericke, A. et al. Evolution of oxygen-metal electron transfer and metal electronic states during manganese oxide catalyzed water oxidation revealed with in situ soft X-ray spectroscopy. Angew. Chem., Int. Ed. 2019, 58, 3426–3432.

29

Kang, J. X.; Zhang, D. F.; Guo, G. C.; Yu, H. J.; Wang, L. H.; Huang, W. F.; Wang, R. Z.; Guo, L.; Han, X. D. Au catalyzed carbon diffusion in Ni: A case of lattice compatibility stabilized metastable intermediates. Adv. Funct. Mater. 2018, 28, 1706434.

30

Sasaki, K.; Kuttiyiel, K. A.; Barrio, L.; Su, D.; Frenkel, A. I.; Marinkovic, N.; Mahajan, D.; Adzic, R. R. Carbon-supported IrNi core-shell nanoparticles: Synthesis, characterization, and catalytic activity. J. Phys. Chem. C 2011, 115, 9894–9902.

31

Gong, J.; Wang, L. L.; Liu, Y.; Yang, J. H.; Zong, Z. G. Structural and magnetic properties of hcp and fcc Ni nanoparticles. J. Alloys Compd. 2008, 457, 6–9.

32

Mi, Y. Z.; Yuan, D. S.; Liu, Y. L.; Zhang, J. X.; Xiao, Y. Synthesis of hexagonal close-packed nanocrystalline nickel by a thermal reduction process. Mater. Chem. Phys. 2005, 89, 359–361.

33

Richard-Plouet, M.; Guillot, M.; Vilminot, S.; Leuvrey, C.; Estournès, C.; Kurmoo, M. Hcp and fcc nickel nanoparticles prepared from organically functionalized layered phyllosilicates of nickel(II). Chem. Mater. 2007, 19, 865–871.

34

Siegel, D. J.; Hamilton, J. C. First-principles study of the solubility, diffusion, and clustering of C in Ni. Phys. Rev. B 2003, 68, 094105.

35

Goto, Y.; Taniguchi, K.; Omata, T.; Otsuka-Yao-Matsuo, S.; Ohashi, N.; Ueda, S.; Yoshikawa, H.; Yamashita, Y.; Oohashi, H.; Kobayashi, K. Formation of Ni3C nanocrystals by thermolysis of nickel acetylacetonate in oleylamine: Characterization using hard X-ray photoelectron spectroscopy. Chem. Mater. 2008, 20, 4156–4160.

36
Spiro, C.; Wong, J.; Lytle, F.; Greegor, R.; Glover, B. EXAFS and near edge structure III. In Proceedings of an International Conference, Stanford, 1984; pp 368–370.
37

Wang, H. Y.; Jiao, X. L.; Chen, D. R. Monodispersed nickel nanoparticles with tunable phase and size: Synthesis, characterization, and magnetic properties. J. Phys. Chem. C 2008, 112, 18793–18797.

38

Zheng, X. L.; Zhang, B.; De Luna, P.; Liang, Y. F.; Comin, R.; Voznyy, O.; Han, L. L.; De Arquer, F. P. G.; Liu, M.; Dinh, C. T. et al. Theory-driven design of high-valence metal sites for water oxidation confirmed using in situ soft X-ray absorption. Nat. Chem. 2018, 10, 149–154.

39

Chuang, C. W.; Lin, H. J.; De Groot, F. M. F.; Chang, F. H.; Chen, C. T.; Chin, Y. Y.; Liao, Y. F.; Tsuei, K. D.; Chelvane, J. A.; Nirmala, R. et al. Electronic structure investigation of GdNi using X-ray absorption, magnetic circular dichroism, and hard X-ray photoemission spectroscopy. Phys. Rev. B 2020, 101, 115137.

40

Kubin, M.; Guo, M. Y.; Ekimova, M.; Källman, E.; Kern, J.; Yachandra, V. K.; Yano, J.; Nibbering, E. T. J.; Lundberg, M.; Wernet, P. Cr L-edge X-ray absorption spectroscopy of CrIII(acac)3 in solution with measured and calculated absolute absorption cross sections. J. Phys. Chem. B 2018, 122, 7375–7384.

41

Vinson, J.; Rehr, J. J. Ab initio bethe-salpeter calculations of the X-ray absorption spectra of transition metals at the L-shell edges. Phys. Rev. B 2012, 86, 195135.

Nano Research
Pages 4320-4326
Cite this article:
Huang W, Kang J, Chen T, et al. Dynamical investigation of tunable magnetism in Au@Ni-carbide nanocrystals by a combined soft and hard X-ray absorption spectroscopy. Nano Research, 2022, 15(5): 4320-4326. https://doi.org/10.1007/s12274-021-4005-8
Topics:

838

Views

3

Crossref

3

Web of Science

3

Scopus

0

CSCD

Altmetrics

Received: 30 August 2021
Revised: 24 October 2021
Accepted: 19 November 2021
Published: 18 January 2022
© Tsinghua University Press and Springer-Verlag GmbH Germany, part of Springer Nature 2021
Return