AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article

Solvent sieving separators implement dual electrolyte for high-voltage lithium-metal batteries

Yan LiuQianqian LiuYouran HongYifei XuZerui ChenWei ZhaoZhikun HuJiangwei WangHao Bin Wu( )
School of Materials Science and Engineering, Zhejiang University, Hangzhou 310027, China
Show Author Information

Graphical Abstract

Metal-organic framework-functionalized separators with solvent sieving capability are prepared and implemented in dual electrolyte for lithium metal batteries. The average of coulombic efficiency is improved notably and the lifespan of LiCoO2|Li full cell has been extended twice compared with carbonate electrolyte.

Abstract

Lithium-metal batteries (LMBs) based on high-voltage cathodes would deliver high specific energy density to meet the demand of future energy storage. However, developing liquid electrolytes with wide electrochemical window for high-energy LMBs is intrinsically challenging. Herein, we demonstrate metal-organic framework-functionalized separators (PE@MOF) with solvent sieving capability that implement dual electrolyte for LMBs. The capability of PE@MOF separator to block the diffusion of liquid electrolytes has been investigated. The PE@MOF separator notably suppresses solvents shuttling, enabling the independent optimization of cathode–electrolyte and anode–electrolyte interfaces. By adapting commercial carbonate and ether electrolytes on cathode and anode sides, respectively, robust cathode–electrolyte interphase (CEI) and solid electrolyte interface (SEI) have been built on both electrodes. The lifespan of LiCoO2 (LCO)|Li full cell has been notably extended when using dual electrolyte and the solvent-sieving PE@MOF separator. This work demonstrates a new strategy to separately optimize the local environments at electrodes and to develop high-energy LMBs using low-cost and commercially available electrolytes.

Electronic Supplementary Material

Download File(s)
12274_2021_4014_MOESM1_ESM.pdf (1.1 MB)

References

[1]

Lin, D. C.; Liu, Y. Y.; Cui, Y. Reviving the lithium metal anode for high-energy batteries. Nat. Nanotechnol. 2017, 12, 194–206.

[2]

Jeong, G.; Kim, Y. U.; Kim, H.; Kim, Y. J.; Sohn, H. J. Prospective materials and applications for Li secondary batteries. Energy Environ. Sci. 2011, 4, 1986–2002.

[3]

Lee, H.; Ren, X. D.; Niu, C. J.; Yu, L.; Engelhard, M. H.; Cho, I.; Ryou, M. H.; Jin, H. S.; Kim, H. T.; Liu, J. et al. Suppressing lithium dendrite growth by metallic coating on a separator. Adv. Funct. Mater. 2017, 27, 1704391.

[4]

Cheng, X. B.; Zhang, R.; Zhao, C. Z.; Zhang, Q. Toward safe lithium metal anode in rechargeable batteries: A review. Chem. Rev. 2017, 117, 10403–10473.

[5]

Liu, Y. Y.; Lin, D. C.; Liang, Z.; Zhao, J.; Yan, K.; Cui, Y. Lithium-coated polymeric matrix as a minimum volume-change and dendrite-free lithium metal anode. Nat. Commun. 2016, 7, 10992.

[6]

Chi, S. S.; Liu, Y. C.; Song, W. L.; Fan, L. Z.; Zhang, Q. Prestoring lithium into stable 3D nickel foam host as dendrite-free lithium metal anode. Adv. Funct. Mater. 2017, 27, 1700348.

[7]

Zhang, R.; Chen, X. R.; Chen, X.; Cheng, X. B.; Zhang, X. Q.; Yan, C.; Zhang, Q. Lithiophilic sites in doped graphene guide uniform lithium nucleation for dendrite-free lithium metal anodes. Angew. Chem., Int. Ed. 2017, 56, 7764–7768.

[8]

Cui, C. Y.; Yang, C. Y.; Eidson, N.; Chen, J.; Han, F. D.; Chen, L.; Luo, C.; Wang, P. F.; Fan, X. L.; Wang, C. S. A highly reversible, dendrite-free lithium metal anode enabled by a lithium-fluoride-enriched interphase. Adv. Mater. 2020, 32, 1906427.

[9]

Crowther, O.; West, A. C. Effect of electrolyte composition on lithium dendrite growth. J. Electrochem. Soc. 2008, 155, A806–A811.

[10]

Miao, R. R.; Yang, J.; Xu, Z. X.; Wang, J. L.; Nuli, Y.; Sun, L. M. A new ether-based electrolyte for dendrite-free lithium-metal based rechargeable batteries. Sci. Rep. 2016, 6, 21771.

[11]

Park, M. S.; Ma, S. B.; Lee, D. J.; Im, D.; Doo, S. G.; Yamamoto, O. A highly reversible lithium metal anode. Sci. Rep. 2014, 4, 3815.

[12]

Aurbach, D.; Zaban, A.; Gofer, Y.; Abramson, P.; Ben-Zion, M. Studies of Li anodes in the electrolyte system 2Me-THF/THF/Me-Furan/LiAsF6. J. Electrochem. Soc. 1995, 142, 687–696.

[13]

Cao, Y. L.; Li, M.; Lu, J.; Liu, J.; Amine, K. Bridging the academic and industrial metrics for next-generation practical batteries. Nat. Nanotechnol. 2019, 14, 200–207.

[14]

Liu, J.; Bao, Z. N.; Cui, Y.; Dufek, E. J.; Goodenough, J. B.; Khalifah, P.; Li, Q. Y.; Liaw, B. Y.; Liu, P.; Manthiram, A. et al. Pathways for practical high-energy long-cycling lithium metal batteries. Nat. Energy 2019, 4, 180–186.

[15]

Jiao, S. H.; Ren, X. D.; Cao, R. G.; Engelhard, M. H.; Liu, Y. Z.; Hu, D. H.; Mei, D. H.; Zheng, J. M.; Zhao, W. G.; Li, Q. Y. et al. Stable cycling of high-voltage lithium metal batteries in ether electrolytes. Nat. Energy 2018, 3, 739–746.

[16]

Ren, X. D.; Zou, L. F.; Jiao, S. H.; Mei, D. H.; Engelhard, M. H.; Li, Q. Y.; Lee, H.; Niu, C. J.; Adams, B. D.; Wang, C. M. et al. High-concentration ether electrolytes for stable high-voltage lithium metal batteries. ACS Energy Lett. 2019, 4, 896–902.

[17]

Leng, Y. J.; Ge, S. H.; Longchamps, R. S.; Yang, X. G.; Liu, T.; Wang, C. Y. High voltage stable li metal batteries enabled by ether-based highly concentrated electrolytes at elevated temperatures. J. Electrochem. Soc. 2020, 167, 110543.

[18]

Qin, L.; Xiao, N.; Zheng, J. F.; Lei, Y.; Zhai, D. Y.; Wu, Y. Y. Localized high-concentration electrolytes boost potassium storage in high-loading graphite. Adv. Energy Mater. 2019, 9, 1902618.

[19]

Yu, Z. A.; Wang, H. S.; Kong, X.; Huang, W.; Tsao, Y.; Mackanic, D. G.; Wang, K. C.; Wang, X. C.; Huang, W. X.; Choudhury, S. et al. Molecular design for electrolyte solvents enabling energy-dense and long-cycling lithium metal batteries. Nat. Energy 2020, 5, 526–533.

[20]

Amanchukwu, C. V.; Yu, Z. A.; Kong, X.; Qin, J.; Cui, Y.; Bao, Z. N. A new class of ionically conducting fluorinated ether electrolytes with high electrochemical stability. J. Am. Chem. Soc. 2020, 142, 7393–7403.

[21]

Chang, Z.; Qiao, Y.; Deng, H.; Yang, H. J.; He, P.; Zhou, H. S. A liquid electrolyte with de-solvated lithium ions for lithium-metal battery. Joule 2020, 4, 1776–1789.

[22]

Choudhury, S.; Tu, Z. Y.; Nijamudheen, A.; Zachman, M. J.; Stalin, S.; Deng, Y.; Zhao, Q.; Vu, D.; Kourkoutis, L. F.; Mendoza-Cortes, J. L. et al. Stabilizing polymer electrolytes in high-voltage lithium batteries. Nat. Commun. 2019, 10, 3091.

[23]

Park, Y.; Shin, S. H.; Hwang, H.; Lee, S. M.; Kim, S. P.; Choi, H. C.; Jung, Y. M. Investigation of solid electrolyte interface (SEI) film on LiCoO2 cathode in fluoroethylene carbonate (FEC)-containing electrolyte by 2D correlation X-ray photoelectron spectroscopy (XPS). J. Mol. Struct. 2014, 1069, 157–163.

[24]

Schaate, A.; Roy, P.; Godt, A.; Lippke, J.; Waltz, F.; Wiebcke, M.; Behrens, P. Modulated synthesis of Zr-based metal-organic frameworks: From nano to single crystals. Chem.—Eur. J. 2011, 17, 6643–6651.

[25]

Li, Z. J.; Liu, Q. Q.; Gao, L. N.; Xu, Y. F.; Kong, X. Q.; Luo, Y.; Peng, H. X.; Ren, Y. R.; Wu, H. B. Quasi-solid electrolyte membranes with percolated metal-organic frameworks for practical lithium-metal batteries. J. Energy Chem. 2021, 52, 354–360.

[26]

Adams, B. D.; Zheng, J. M.; Ren, X. D.; Xu, W.; Zhang, J. G. Accurate determination of Coulombic efficiency for lithium metal anodes and lithium metal batteries. Adv. Energy Mater. 2018, 8, 1702097.

[27]

Xu, Y. F.; Gao, L. N.; Shen, L.; Liu, Q. Q.; Zhu, Y. Y.; Liu, Q.; Li, L. S.; Kong, X. Q.; Lu, Y. F.; Wu, H. B. Ion-transport-rectifying layer enables Li-metal batteries with high energy density. Matter 2020, 3, 1685–1700.

[28]

Ramsahye, N. A.; Gao, J.; Jobic, H.; Llewellyn, P. L.; Yang, Q.; Wiersum, A. D.; Koza, M. M.; Guillerm, V.; Serre, C.; Zhong, C. L. et al. Adsorption and diffusion of light hydrocarbons in UiO-66(Zr): A combination of experimental and modeling tools. J. Phys. Chem. C 2014, 118, 27470–27482.

[29]

Cavka, J. H.; Jakobsen, S.; Olsbye, U.; Guillou, N.; Lamberti, C.; Bordiga, S.; Lillerud, K. P. A new zirconium inorganic building brick forming metal organic frameworks with exceptional stability. J. Am. Chem. Soc. 2008, 130, 13850–13851.

[30]

Yao, Y. X.; Chen, X.; Yan, C.; Zhang, X. Q.; Cai, W. L.; Huang, J. Q.; Zhang, Q. Frontispiece: Regulating interfacial chemistry in lithium-ion batteries by a weakly solvating electrolyte. Angew. Chem., Int. Ed. 2021, 60, 4090–4097.

[31]

Okoshi, M.; Yamada, Y.; Komaba, S.; Yamada, A.; Nakai, H. Theoretical analysis of interactions between potassium ions and organic electrolyte solvents: A comparison with lithium, sodium, and magnesium ions. J. Electrochem. Soc. 2016, 164, A54–A60.

[32]

Zhang, Q.; Lu, Y. Y.; Miao, L. C.; Zhao, Q.; Xia, K. X.; Liang, J.; Chou, S. L.; Chen, J. An alternative to lithium metal anodes: Non-dendritic and highly reversible sodium metal anodes for Li-Na hybrid batteries. Angew. Chem., Int. Ed. 2018, 57, 14796–14800.

[33]

Chen, R. J.; Liu, F.; Chen, Y.; Ye, Y. S.; Huang, Y. X.; Wu, F.; Li, L. An investigation of functionalized electrolyte using succinonitrile additive for high voltage lithium-ion batteries. J. Power Sources 2016, 306, 70–77.

[34]

Kim, Y. S.; Kim, T. H.; Lee, H.; Song, H. K. Electronegativity-induced enhancement of thermal stability by succinonitrile as an additive for Li ion batteries. Energy Environ. Sci. 2011, 4, 4038–4045.

[35]

Xu, N.; Zhou, H. B.; Liao, Y. H.; Li, G. J.; Xu, M. Q.; Li, W. S. A facile strategy to improve the cycle stability of 4.45 V LiCoO2 cathode in gel electrolyte system via succinonitrile additive under elevated temperature. Solid State Ionics 2019, 341, 115049.

[36]

Pham, H. Q.; Lee, H. Y.; Hwang, E. H.; Kwon, Y. G.; Song, S. W. Non-flammable organic liquid electrolyte for high-safety and high-energy density Li-ion batteries. J. Power Sources 2018, 404, 13–19.

[37]

Xu, K. Nonaqueous liquid electrolytes for lithium-based rechargeable batteries. Chem. Rev. 2004, 104, 4303–4418.

[38]

Jang, D. H.; Oh, S. M. Electrolyte effects on spinel dissolution and cathodic capacity losses in 4V Li/LixMn2O4 rechargeable cells. J. Electrochem. Soc. 1997, 144, 3342–3348.

[39]

Li, W. Y.; Yao, H. B.; Yan, K.; Zheng, G. Y.; Liang, Z.; Chiang, Y. M.; Cui, Y. The synergetic effect of lithium polysulfide and lithium nitrate to prevent lithium dendrite growth. Nat. Commun. 2015, 6, 7436.

[40]

Liang, X.; Wen, Z. Y.; Liu, Y.; Wu, M. F.; Jin, J.; Zhang, H.; Wu, X. W. Improved cycling performances of lithium sulfur batteries with LiNO3-modified electrolyte. J. Power Sources 2011, 196, 9839–9843.

[41]

Liu, Q. Q.; Xu, Y. F.; Wang, J. H.; Zhao, B.; Li, Z. J.; Wu, H. B. Sustained-release nanocapsules enable long-lasting stabilization of Li anode for practical Li-metal batteries. Nano-Micro Lett. 2020, 12, 176.

Nano Research
Pages 4901-4907
Cite this article:
Liu Y, Liu Q, Hong Y, et al. Solvent sieving separators implement dual electrolyte for high-voltage lithium-metal batteries. Nano Research, 2023, 16(4): 4901-4907. https://doi.org/10.1007/s12274-021-4014-7
Topics:
Part of a topical collection:

689

Views

6

Crossref

9

Web of Science

7

Scopus

0

CSCD

Altmetrics

Received: 06 September 2021
Revised: 10 November 2021
Accepted: 22 November 2021
Published: 14 January 2022
© Tsinghua University Press and Springer-Verlag GmbH Germany, part of Springer Nature 2021
Return