AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Review Article

State of the art in flexible SERS sensors toward label-free and onsite detection: From design to applications

Liping Xie1( )Hedele Zeng1Jiaxin Zhu1Zelin Zhang1Hong-bin Sun3Wen Xia1Yanan Du2( )
College of Medicine and Biological Information Engineering, Northeastern University, Shenyang 110169, China
Department of Biomedical Engineering, School of Medicine, Tsinghua University, Beijing 100084, China
Department of Chemistry, Northeastern University, Shenyang 110819, China
Show Author Information

Graphical Abstract

A state-of-the-art review of the flexible SERS sensors for point-of-care detection was provided from rational design to applications. Strategies of constructing the flexible SERS sensors were investigated in depth, enabling ultrasensitive detection of various analytes and high specificity with a fingerprint-like characteristic.

Abstract

Surface-enhanced Raman scattering (SERS) as a powerful non-invasive spectroscopic technique has been intensively used in bio/chemical sensing, enabling ultrasensitive detection of various analytes and high specificity with a fingerprint-like characteristic. Flexible SERS sensors conformally adapting to nonplanar surfaces and allowing swab-sampling or in-situ detection of analytes, which are not achievable for rigid SERS sensors, greatly meet the demand of onsite and real-time diagnostics. However, the rational design and fabrication of flexible SERS-based sensors for point-of-care diagnostics aiming to simultaneously achieve extremely high sensitivity, stability, and good signal reproducibility remain many challenges. We present a state-of-the-art review of the flexible SERS sensors. Attentions are devoted to engineering plasmonic substrates for improving the performance of flexible SERS devices. Strategies of constructing the flexible SERS sensors toward point-of-care detection are investigated in depth. Advanced algorithms assisting the SERS data process are also presented for intelligently distinguishing the species and contents of analytes. The promising applications of flexible SERS sensors in medical diagnostics, environmental analyses, food safety, and forensic science are displayed. The flexible SERS devices serving as powerful analytical tools shed new light on the in-situ and point-of-care detection of real-world analytes in a convenient, facile, and non-destructive manner, and especially are conceivable to serve as next-generation wearable sensors for healthcare.

References

1

Fleischmann, M.; Hendra, P. J.; McQuillan, A. J. Raman spectra of pyridine adsorbed at a silver electrode. Chem. Phys. Lett. 1974, 26, 163–166.

2

Ding, S. Y.; Yi, J.; Li, J. F.; Ren, B.; Wu, D. Y.; Panneerselvam, R.; Tian, Z. Q. Nanostructure-based plasmon-enhanced Raman spectroscopy for surface analysis of materials. Nat. Rev. Mater. 2016, 1, 16021.

3

Kneipp, K.; Wang, Y.; Kneipp, H.; Itzkan, I.; Dasari, R. R.; Feld, M. S. Population pumping of excited vibrational states by spontaneous surface-enhanced Raman scattering. Phys. Rev. Lett. 1996, 76, 2444–2447.

4

Zong, C.; Xu, M. X.; Xu, L. J.; Wei, T.; Ma, X.; Zheng, X. S.; Hu, R.; Ren, B. Surface-enhanced Raman spectroscopy for bioanalysis: Reliability and challenges. Chem. Rev. 2018, 118, 4946–4980.

5

Garcia-Rico, E.; Alvarez-Puebla, R. A.; Guerrini, L. Direct surface-enhanced Raman scattering (SERS) spectroscopy of nucleic acids: From fundamental studies to real-life applications. Chem. Soc. Rev. 2018, 47, 4909–4923.

6

Camden, J. P.; Dieringer, J. A.; Wang, Y. M.; Masiello, D. J.; Marks, L. D.; Schatz, G. C.; Van Duyne, R. P. Probing the structure of single-molecule surface-enhanced Raman scattering hot spots. J. Am. Chem. Soc. 2008, 130, 12616–12617.

7

Laing, S.; Jamieson, L. E.; Faulds, K.; Graham, D. Surface-enhanced Raman spectroscopy for in vivo biosensing. Nat. Rev. Chem. 2017, 1, 0060.

8

Zeng, Y.; Koo, K. M.; Trau, M.; Shen, A. G.; Hu, J. M. Watching SERS glow for multiplex biomolecular analysis in the clinic: A review. Appl. Mater. Today 2019, 15, 431–444.

9

Lenzi, E.; De Aberasturi, D. J.; Liz-Marzán, L. M. Surface-enhanced Raman scattering tags for three-dimensional bioimaging and biomarker detection. ACS Sens. 2019, 4, 1126–1137.

10

Luo, S. C.; Sivashanmugan, K.; Liao, J. D.; Yao, C. K.; Peng, H. C. Nanofabricated SERS-active substrates for single-molecule to virus detection in vitro: A review. Biosens. Bioelectron. 2014, 61, 232–240.

11

Cialla-May, D.; Zheng, X. S.; Weber, K.; Popp, J. Recent progress in surface-enhanced Raman spectroscopy for biological and biomedical applications: From cells to clinics. Chem. Soc. Rev. 2017, 46, 3945–3961.

12

Bruzas, I.; Lum, W.; Gorunmez, Z.; Sagle, L. Advances in surface-enhanced Raman spectroscopy (SERS) substrates for lipid and protein characterization: Sensing and beyond. Analyst 2018, 143, 3990–4008.

13

Nie, S. M.; Emory, S. R. Probing single molecules and single nanoparticles by surface-enhanced Raman scattering. Science 1997, 275, 1102–1106.

14

Albrecht, M. G.; Creighton, J. A. Anomalously intense Raman spectra of pyridine at a silver electrode. J. Am. Chem. Soc. 1977, 99, 5215–5217.

15

Xu, K. C.; Zhou, R.; Takei, K.; Hong, M. H. Toward flexible surface-enhanced Raman scattering (SERS) sensors for point-of-care diagnostics. Adv. Sci. 2019, 6, 1900925.

16

Restaino, S. M.; White, I. M. A critical review of flexible and porous SERS sensors for analytical chemistry at the point-of-sample. Anal. Chim. Acta 2019, 1060, 17–29.

17

Ma, Y.; Chen, Y.; Tian, Y. R.; Gu, C. J.; Jiang, T. Contrastive study of in situ sensing and swabbing detection based on SERS-active gold nanobush-PDMS hybrid film. J. Agric. Food Chem. 2021, 69, 1975–1983.

18

Kang, H.; Heo, C. J.; Jeon, H. C.; Lee, S. Y.; Yang, S. M. Durable plasmonic cap arrays on flexible substrate with real-time optical tunability for high-fidelity SERS devices. ACS Appl. Mater. Interfaces 2013, 5, 4569–4574.

19

Xu, K. C.; Wang, Z. Y.; Tan, C. F.; Kang, N.; Chen, L. W.; Ren, L.; Thian, E. S.; Ho, G. W.; Ji, R.; Hong, M. H. Uniaxially stretched flexible surface plasmon resonance film for versatile surface enhanced Raman scattering diagnostics. ACS Appl. Mater. Interfaces 2017, 9, 26341–26349.

20

Wang, P.; Wu, L.; Lu, Z. C.; Li, Q.; Yin, W. M.; Ding, F.; Han, H. Y. Gecko-inspired nanotentacle surface-enhanced Raman spectroscopy substrate for sampling and reliable detection of pesticide residues in fruits and vegetables. Anal. Chem. 2017, 89, 2424–2431.

21

Park, M.; Jung, H.; Jeong, Y.; Jeong, K. H. Plasmonic schirmer strip for human tear-based gouty arthritis diagnosis using surface-enhanced Raman scattering. ACS Nano 2017, 11, 438–443.

22

Liyanage, T.; Rael, A.; Shaffer, S.; Zaidi, S.; Goodpaster, J. V.; Sardar, R. Fabrication of a self-assembled and flexible SERS nanosensor for explosive detection at parts-per-quadrillion levels from fingerprints. Analyst 2018, 143, 2012–2022.

23

Kalachyova, Y.; Erzina, M.; Postnikov, P.; Svorcik, V.; Lyutakov, O. Flexible SERS substrate for portable Raman analysis of biosamples. Appl. Surf. Sci. 2018, 458, 95–99.

24

Shi, R. Y.; Liu, X. J.; Ying, Y. B. Facing challenges in real-life application of surface-enhanced Raman scattering: Design and nanofabrication of surface-enhanced Raman scattering substrates for rapid field test of food contaminants. J. Agric. Food Chem. 2018, 66, 6525–6543.

25

Polavarapu, L.; Liz-Marzán, L. M. Towards low-cost flexible substrates for nanoplasmonic sensing. Phys. Chem. Chem. Phys. 2013, 15, 5288–5300.

26

Zhang, D. R.; Pu, H. B.; Huang, L. J.; Sun, D. W. Advances in flexible surface-enhanced Raman scattering (SERS) substrates for nondestructive food detection: Fundamentals and recent applications. Trends Food Sci. Technol. 2021, 109, 690–701.

27

Liu, H. Q.; He, Y. N.; Cao, K. Z. Flexible surface-enhanced Raman scattering substrates: A review on constructions, applications, and challenges. Adv. Mater. Interfaces 2021, 8, 2100982.

28

Li, Z. Y.; Huang, X.; Lu, G. Recent developments of flexible and transparent SERS substrates. J. Mater. Chem. C 2020, 8, 3956–3969.

29

Wei, H. R.; Abtahi, S. M. H.; Vikesland, P. J. Plasmonic colorimetric and SERS sensors for environmental analysis. Environ. Sci. :Nano 2015, 2, 120–135.

30

Campion, A.; Kambhampati, P. Surface-enhanced Raman scattering. Chem. Soc. Rev. 1998, 27, 241–250.

31

Cardinal, M. F.; Ende, E. V.; Hackler, R. A.; McAnally, M. O.; Stair, P. C.; Schatz, G. C.; Van Duyne, R. P. Expanding applications of SERS through versatile nanomaterials engineering. Chem. Soc. Rev. 2017, 46, 3886–3903.

32

Han, X. X.; Ji, W.; Zhao, B.; Ozaki, Y. Semiconductor-enhanced Raman scattering: Active nanomaterials and applications. Nanoscale 2017, 9, 4847–4861.

33

Jensen, L.; Aikens, C. M.; Schatz, G. C. Electronic structure methods for studying surface-enhanced Raman scattering. Chem. Soc. Rev. 2008, 37, 1061–1073.

34

Phan-Quang, G. C.; Han, X. M.; Koh, C. S. L.; Sim, H. Y. F.; Lay, C. L.; Leong, S. X.; Lee, Y. H.; Pazos-Perez, N.; Alvarez-Puebla, R. A.; Ling, X. Y. Three-dimensional surface-enhanced Raman scattering platforms: Large-scale plasmonic hotspots for new applications in sensing, microreaction, and data storage. Acc. Chem. Res. 2019, 52, 1844–1854.

35

Huang, Y.; Zhang, X.; Ringe, E.; Ma, L. W.; Zhai, X.; Wang, L. L.; Zhang, Z. J. Detailed correlations between SERS enhancement and plasmon resonances in subwavelength closely spaced Au nanorod arrays. Nanoscale 2018, 10, 4267–4275.

36

McFarland, A. D.; Young, M. A.; Dieringer, J. A.; Van Duyne, R. P. Wavelength-scanned surface-enhanced Raman excitation spectroscopy. J. Phys. Chem. B 2005, 109, 11279–11285.

37

Yang, L. L.; Peng, Y. S.; Yang, Y.; Liu, J. J.; Huang, H. L.; Yu, B. H.; Zhao, J. M.; Lu, Y. L.; Huang, Z. R.; Li, Z. Y. et al. A novel ultra-sensitive semiconductor SERS substrate boosted by the coupled resonance effect. Adv. Sci. 2019, 6, 1900310.

38

Wang, Y. C.; Jin, Y. H.; Xiao, X. Y.; Zhang, T. F.; Yang, H. T.; Zhao, Y. D.; Wang, J. P.; Jiang, K. L.; Fan, S. S.; Li, Q. Q. Flexible, transparent and highly sensitive SERS substrates with cross-nanoporous structures for fast on-site detection. Nanoscale 2018, 10, 15195–15204.

39

Gao, R. K.; Song, X. F.; Zhan, C. B.; Weng, C. G.; Cheng, S.; Guo, K.; Ma, N.; Chang, H. F.; Guo, Z. Y.; Luo, L. B. et al. Light trapping induced flexible wrinkled nanocone SERS substrate for highly sensitive explosive detection. Sens. Actuators B:Chem. 2020, 314, 128081.

40

Jiao, L. Y.; Fan, B.; Xian, X. J.; Wu, Z. Y.; Zhang, J.; Liu, Z. F. Creation of nanostructures with poly(methyl methacrylate)-mediated nanotransfer printing. J. Am. Chem. Soc. 2008, 130, 12612–12613.

41

Hatab, N. A. A.; Oran, J. M.; Sepaniak, M. J. Surface-enhanced Raman spectroscopy substrates created via electron beam lithography and nanotransfer printing. ACS Nano 2008, 2, 377–385.

42

Zhao, X. F.; Yu, J.; Zhang, C.; Chen, C. S.; Xu, S. C.; Li, C. H.; Li, Z.; Zhang, S. Z.; Liu, A. H.; Man, B. Y. Flexible and stretchable SERS substrate based on a pyramidal PMMA structure hybridized with graphene oxide assivated AgNPs. Appl. Surf. Sci. 2018, 455, 1171–1178.

43

Wu, S. J.; Duan, N.; Shen, M. F.; Wang, J.; Wang, Z. P. Surface-enhanced Raman spectroscopic single step detection of Vibrio parahaemolyticus using gold coated polydimethylsiloxane as the active substrate and aptamer modified gold nanoparticles. Microchim. Acta 2019, 186, 401.

44

Ma, Y.; Du, Y. Y.; Chen, Y.; Gu, C. J.; Jiang, T.; Wei, G. D.; Zhou, J. Intrinsic Raman signal of polymer matrix induced quantitative multiphase SERS analysis based on stretched PDMS film with anchored Ag nanoparticles/Au nanowires. Chem. Eng. J. 2020, 381, 122710.

45

Cheng, Y. W.; Hsiao, C. W.; Zeng, Z. L.; Syu, W. L.; Liu, T. Y. The interparticle gap manipulation of Au-Ag nanoparticle arrays deposited on flexible and atmospheric plasma-treated PDMS substrate for SERS detection. Surf. Coat. Technol. 2020, 389, 125653.

46

Zhang, H.; Zhang, W.; Xiao, L. F.; Liu, Y.; Gilbertson, T. A.; Zhou, A. H. Use of surface-enhanced Raman scattering (SERS) probes to detect fatty acid receptor activity in a microfluidic device. Sensors 2019, 19, 1663.

47

Ariaeenejad, S.; Hosseini, E.; Motamedi, E.; Moosavi-Movahedi, A. A.; Salekdeh, G. H. Application of carboxymethyl cellulose-g-poly(acrylic acid-co-acrylamide) hydrogel sponges for improvement of efficiency, reusability and thermal stability of a recombinant xylanase. Chem. Eng. J. 2019, 375, 122022.

48

Ahn, S.; Lee, S. J. Nano/micro natural patterns of hydrogels against water loss. ACS Appl. Bio Mater. 2020, 3, 1293–1304.

49

He, Y.; Yang, X.; Yuan, R.; Chai, Y. Q. Switchable target-responsive 3D DNA hydrogels as a signal amplification strategy combining with SERS technique for ultrasensitive detection of miRNA 155. Anal. Chem. 2017, 89, 8538–8544.

50

He, X.; Zhou, X.; Liu, W.; Liu, Y.; Wang, X. L. Flexible DNA hydrogel SERS active biofilms for conformal ultrasensitive detection of uranyl ions from aquatic products. Langmuir 2020, 36, 2930–2936.

51

Wang, C.; Wong, K. W.; Wang, Q.; Zhou, Y. F.; Tang, C. Y.; Fan, M. K.; Mei, J.; Lau, W. M. Silver-nanoparticles-loaded chitosan foam as a flexible SERS substrate for active collecting analytes from both solid surface and solution. Talanta 2019, 191, 241–247.

52

Fu, H. P.; Chen, J. M.; Chen, L. J.; Zhu, X.; Chen, Z. L.; Qiu, B.; Lin, Z. Y.; Guo, L. H.; Chen, G. N. A calcium alginate sponge with embedded gold nanoparticles as a flexible SERS substrate for direct analysis of pollutant dyes. Microchim. Acta 2019, 186, 64.

53

Sun, J.; Gong, L.; Lu, Y. T.; Wang, D. M.; Gong, Z. J.; Fan, M. K. Dual functional PDMS sponge SERS substrate for the on-site detection of pesticides both on fruit surfaces and in juice. Analyst 2018, 143, 2689–2695.

54

Chen, J. M.; Huang, Y. J.; Kannan, P.; Zhang, L.; Lin, Z. Y.; Zhang, J. W.; Chen, T.; Guo, L. H. Flexible and adhesive surface enhance Raman scattering active tape for rapid detection of pesticide residues in fruits and vegetables. Anal. Chem. 2016, 88, 2149–2155.

55

Sitjar, J.; Liao, J. D.; Lee, H.; Pan, L. P.; Liu, B. H.; Fu, W. E.; Chen, G. D. Ag nanostructures with spikes on adhesive tape as a flexible SERS-active substrate for in situ trace detection of pesticides on fruit skin. Nanomaterials 2019, 9, 1750.

56

Liu, X. J.; Wang, J. J.; Wang, J. J.; Tang, L. H.; Ying, Y. B. Flexible and transparent surface-enhanced Raman scattering (SERS)-active metafilm for visualizing trace molecules via Raman spectral mapping. Anal. Chem. 2016, 88, 6166–6173.

57

Jiang, J. L.; Zou, S. M.; Li, Y. R.; Zhao, F. T.; Chen, J.; Wang, S. F.; Wu, H. X.; Xu, J. S.; Chu, M. F.; Liao, J. S. et al. Flexible and adhesive tape decorated with silver nanorods for in-situ analysis of pesticides residues and colorants. Microchim. Acta 2019, 186, 603.

58

Pang, S.; Yang, T. X.; He, L. L. Review of surface enhanced Raman spectroscopic (SERS) detection of synthetic chemical pesticides. TrAC Trends Anal. Chem. 2016, 85, 73–82.

59

Cate, D. M.; Adkins, J. A.; Mettakoonpitak, J.; Henry, C. S. Recent developments in paper-based microfluidic devices. Anal. Chem. 2015, 87, 19–41.

60

Hansora, D. P.; Shimpi, N. G.; Mishra, S. Performance of hybrid nanostructured conductive cotton materials as wearable devices: An overview of materials, fabrication, properties and applications. RSC Adv. 2015, 5, 107716–107770.

61

Xie, L. P.; Zi, X. Y.; Zeng, H.; Sun, J. J.; Xu, L. S.; Chen, S. Low-cost fabrication of a paper-based microfluidic using a folded pattern paper. Anal. Chim. Acta 2019, 1053, 131–138.

62

Xiong, Z. Y.; Chen, X. W.; Liou, P.; Lin, M. S. Development of nanofibrillated cellulose coated with gold nanoparticles for measurement of melamine by SERS. Cellulose 2017, 24, 2801–2811.

63

Ogundare, S. A.; Van Zyl, W. E. A review of cellulose-based substrates for SERS: Fundamentals, design principles, applications. Cellulose 2019, 26, 6489–6528.

64

Yan, D.; Qiu, L. L.; Xue, M.; Meng, Z. H.; Wang, Y. F. A flexible surface-enhanced Raman substrates based on cellulose photonic crystal/Ag-nanoparticles composite. Mater. Des. 2019, 165, 107601.

65

Oliveira, M. J.; Quaresma, P.; De Almeida, M. P.; Araújo, A.; Pereira, E.; Fortunato, E.; Martins, R.; Franco, R.; Águas, H. Office paper decorated with silver nanostars—An alternative cost effective platform for trace analyte detection by SERS. Sci. Rep. 2017, 7, 2480.

66

Huang, L. Q.; Wu, C. J.; Xie, L. J.; Yuan, X.; Wei, X. Y.; Huang, Q.; Chen, Y. Q.; Lu, Y. D. Silver-nanocellulose composite used as SERS substrate for detecting carbendazim. Nanomaterials 2019, 9, 355.

67

Chen, L. Y.; Ying, B. B.; Song, P. F.; Liu, X. Y. A nanocellulose-paper-based SERS multiwell plate with high sensitivity and high signal homogeneity. Adv. Mater. Interfaces 2019, 6, 1901346.

68

Ballerini, D. R.; Ngo, Y. H.; Garnier, G.; Ladewig, B. P.; Shen, W.; Jarujamrus, P. Gold nanoparticle-functionalized thread as a substrate for SERS study of analytes both bound and unbound to gold. AIChE J. 2014, 60, 1598–1605.

69

Gu, H. X.; Li, D. W.; Xue, L.; Zhang, Y. F.; Long, Y. T. A portable microcolumn based on silver nanoparticle functionalized glass fibers and its SERS application. Analyst 2015, 140, 7934–7938.

70

Emamian, S.; Eshkeiti, A.; Narakathu, B. B.; Avuthu, S. G. R.; Atashbar, M. Z. Gravure printed flexible surface enhanced Raman spectroscopy (SERS) substrate for detection of 2, 4-dinitrotoluene (DNT) vapor. Sens. Actuators B:Chem. 2015, 217, 129–135.

71

Mitomo, H.; Horie, K.; Matsuo, Y.; Niikura, K.; Tani, T.; Naya, M.; Ijiro, K. Active gap SERS for the sensitive detection of biomacromolecules with plasmonic nanostructures on hydrogels. Adv. Opt. Mater. 2016, 4, 259–263.

72

Korkmaz, A.; Kenton, M.; Aksin, G.; Kahraman, M.; Wachsmann-Hogiu, S. Inexpensive and flexible SERS substrates on adhesive tape based on biosilica plasmonic nanocomposites. ACS Appl. Nano Mater. 2018, 1, 5316–5326.

73

Kumar, S.; Goel, P.; Singh, J. P. Flexible and robust SERS active substrates for conformal rapid detection of pesticide residues from fruits. Sens. Actuators B:Chem. 2017, 241, 577–583.

74

Kolluru, C.; Gupta, R.; Jiang, Q. S.; Williams, M.; Derami, H. G.; Cao, S. S.; Noel, R. K.; Singamaneni, S.; Prausnitz, M. R. Plasmonic paper microneedle patch for on-patch detection of molecules in dermal interstitial fluid. ACS Sens. 2019, 4, 1569–1576.

75

Lee, M.; Oh, K.; Choi, H. K.; Lee, S. G.; Youn, H. J.; Lee, H. L.; Jeong, D. H. Subnanomolar sensitivity of filter paper-based SERS sensor for pesticide detection by hydrophobicity change of paper surface. ACS Sens. 2018, 3, 151–159.

76

Xiong, Z. Y.; Lin, M. S.; Lin, H. T.; Huang, M. Z. Facile synthesis of cellulose nanofiber nanocomposite as a SERS substrate for detection of thiram in juice. Carbohydr. Polym. 2018, 189, 79–86.

77

Parnsubsakul, A.; Ngoensawat, U.; Wutikhun, T.; Sukmanee, T.; Sapcharoenkun, C.; Pienpinijtham, P.; Ekgasit, S. Silver nanoparticle/bacterial nanocellulose paper composites for paste-and-read SERS detection of pesticides on fruit surfaces. Carbohydr. Polym. 2020, 235, 115956.

78

Chen, J.; Huang, M. Z.; Kong, L. L.; Lin, M. S. Jellylike flexible nanocellulose SERS substrate for rapid in-situ non-invasive pesticide detection in fruits/vegetables. Carbohydr. Polym. 2019, 205, 596–600.

79

Chen, J.; Huang, M. Z.; Kong, L. L. Flexible Ag/nanocellulose fibers SERS substrate and its applications for in-situ hazardous residues detection on food. Appl. Surf. Sci. 2020, 533, 147454.

80

Kurita, M.; Arakawa, R.; Kawasaki, H. Silver nanoparticle functionalized glass fibers for combined surface-enhanced Raman scattering spectroscopy (SERS)/surface-assisted laser desorption/ionization (SALDI) mass spectrometry via plasmonic/thermal hot spots. Analyst 2016, 141, 5835–5841.

81

Deng, D.; Lin, Q. Y.; Li, H.; Huang, Z. P.; Kuang, Y. Y.; Chen, H.; Kong, J. L. Rapid detection of malachite green residues in fish using a surface-enhanced Raman scattering-active glass fiber paper prepared by in situ reduction method. Talanta 2019, 200, 272–278.

82

Xu, J. T.; Li, X. T.; Wang, Y. X.; Guo, R. H.; Shang, S. M.; Jiang, S. X. Flexible and reusable cap-like thin Fe2O3 film for SERS applications. Nano Res. 2019, 12, 381–388.

83

Ge, F. Y.; Chen, Y. M.; Liu, A. R.; Guang, S. Y.; Cai, Z. S. Flexible and recyclable SERS substrate fabricated by decorated TiO2 film with Ag NPs on the cotton fabric. Cellulose 2019, 26, 2689–2697.

84

Gong, Z. J.; Du, H. J.; Cheng, F. S.; Wang, C.; Wang, C. C.; Fan, M. K. Fabrication of SERS swab for direct detection of trace explosives in fingerprints. ACS Appl. Mater. Interfaces 2014, 6, 21931–21937.

85

Gao, W.; Xu, J. T.; Cheng, C.; Qiu, S.; Jiang, S. X. Rapid and highly sensitive SERS detection of fungicide based on flexible “wash free” metallic textile. Appl. Surf. Sci. 2020, 512, 144693.

86

Cheng, D. S.; He, M. T.; Ran, J. H.; Cai, G. M.; Wu, J. H.; Wang, X. Depositing a flexible substrate of triangular silver nanoplates onto cotton fabrics for sensitive SERS detection. Sens. Actuators B:Chem. 2018, 270, 508–517.

87

Huang, J. A.; Zhang, Y. L.; Zhao, Y. Q.; Zhang, X. L.; Sun, M. L.; Zhang, W. J. Superhydrophobic SERS chip based on a Ag coated natural taro-leaf. Nanoscale 2016, 8, 11487–11493.

88

Sharma, V.; Balaji, R.; Walia, R.; Krishnan, V. Au nanoparticle aggregates assembled on 3D mirror-like configuration using Canna generalis leaves for SERS applications. Colloids Interface Sci. Commun. 2017, 18, 9–12.

89

Ding, Q.; Kang, Z. W.; He, X. S.; Wang, M. G.; Lin, M. S.; Lin, H. T.; Yang, D. P. Eggshell membrane-templated gold nanoparticles as a flexible SERS substrate for detection of thiabendazole. Microchim. Acta 2019, 186, 453.

90

Wang, M. L.; Shi, G. C.; Zhu, Y. Y.; Wang, Y. H.; Ma, W. L. Au-decorated dragonfly wing bioscaffold arrays as flexible surface-enhanced Raman scattering (SERS) substrate for simultaneous determination of pesticide residues. Nanomaterials 2018, 8, 289.

91

Zhang, M. F.; Meng, J. T.; Wang, D. P.; Tang, Q.; Chen, T.; Rong, S. Z.; Liu, J. Q.; Wu, Y. C. Biomimetic synthesis of hierarchical 3D Ag butterfly wing scale arrays/graphene composites as ultrasensitive SERS substrates for efficient trace chemical detection. J. Mater. Chem. C 2018, 6, 1933–1943.

92

Zhao, N.; Li, H. F.; Tian, C. W.; Xie, Y. R.; Feng, Z. B.; Wang, Z. L.; Yan, X. L.; Wang, W. J.; Yu, H. S. Bioscaffold arrays decorated with Ag nanoparticles as a SERS substrate for direct detection of melamine in infant formula. RSC Adv. 2019, 9, 21771–21776.

93

Chou, S. Y.; Yu, C. C.; Yen, Y. T.; Lin, K. T.; Chen, H. L.; Su, W. F. Romantic story or Raman scattering? Rose petals as ecofriendly, low-cost substrates for ultrasensitive surface-enhanced Raman scattering. Anal. Chem. 2015, 87, 6017–6024.

94

Shi, G. C.; Wang, M. L.; Zhu, Y. Y.; Shen, L.; Ma, W. L.; Wang, Y. H.; Li, R. F. Dragonfly wing decorated by gold nanoislands as flexible and stable substrates for surface-enhanced Raman scattering (SERS). Sci. Rep. 2018, 8, 6916.

95

Godoy, N. V.; García-Lojo, D.; Sigoli, F. A.; Pérez-Juste, J.; Pastoriza-Santos, I.; Mazali, I. O. Ultrasensitive inkjet-printed based SERS sensor combining a high-performance gold nanosphere ink and hydrophobic paper. Sens. Actuators B:Chem. 2020, 320, 128412.

96

Xu, M.; Tu, G. P.; Ji, M. W.; Wan, X. D.; Liu, J. J.; Liu, J.; Rong, H. P.; Yang, Y. L.; Wang, C.; Zhang, J. T. Vacuum-tuned-atmosphere induced assembly of Au@Ag core/shell nanocubes into multi-dimensional superstructures and the ultrasensitive IAPP proteins SERS detection. Nano Res. 2019, 12, 1375–1379.

97

Tong, J. H.; Xu, Z. X.; Bian, Y. X.; Niu, Y. T.; Zhang, Y. Y.; Wang, Z. N. Flexible and smart fibers decorated with Ag nanoflowers for highly active surface-enhanced Raman scattering detection. J. Raman Spectrosc. 2019, 50, 1468–1476.

98

Park, S.; Lee, J.; Ko, H. Transparent and flexible surface-enhanced Raman scattering (SERS) sensors based on gold nanostar arrays embedded in silicon rubber film. ACS Appl. Mater. Interfaces 2017, 9, 44088–44095.

99

Aparicio-Martínez, E.; Estrada-Moreno, I. A.; Dominguez, R. B. Fabrication of flexible composite of laser reduced graphene@Ag dendrites as active material for surface enhanced Raman spectroscopy. Mater. Lett. 2020, 277, 128380.

100

Tian, Y. R.; Liu, H. M.; Chen, Y.; Zhou, C. L.; Jiang, Y.; Gu, C. J.; Jiang, T.; Zhou, J. Seedless one-spot synthesis of 3D and 2D Ag nanoflowers for multiple phase SERS-based molecule detection. Sens. Actuators B:Chem. 2019, 301, 127142.

101

Gao, R. K.; Qian, H. Y.; Weng, C. G.; Wang, X. L.; Xie, C.; Guo, K.; Zhang, S. S.; Xuan, S. H.; Guo, Z. Y.; Luo, L. B. A SERS stamp: Multiscale coupling effect of silver nanoparticles and highly ordered nano-micro hierarchical substrates for ultrasensitive explosive detection. Sens. Actuators B:Chem. 2020, 321, 128543.

102

Ding, S. Y.; You, E. M.; Tian, Z. Q.; Moskovits, M. Electromagnetic theories of surface-enhanced Raman spectroscopy. Chem. Soc. Rev. 2017, 46, 4042–4076.

103

Cao, Y. Q.; Zhang, J. W.; Yang, Y.; Huang, Z. R.; Long, N. V.; Fu, C. L. Engineering of SERS substrates based on noble metal nanomaterials for chemical and biomedical applications. Appl. Spectrosc. Rev. 2015, 50, 499–525.

104

Zhang, Y.; Yang, C. L.; Xue, B.; Peng, Z. H.; Cao, Z. L.; Mu, Q. Q.; Xuan, L. Highly effective and chemically stable surface enhanced Raman scattering substrates with flower-like 3D Ag-Au hetero-nanostructures. Sci. Rep. 2018, 8, 898.

105

Wang, K. Q.; Sun, D. W.; Pu, H. B.; Wei, Q. Y.; Huang, L. J. Stable, flexible, and high-performance SERS chip enabled by a ternary film-packaged plasmonic nanoparticle array. ACS Appl. Mater. Interfaces 2019, 11, 29177–29186.

106

Nganou, C.; Carrier, A. J.; Yang, D. C.; Chen, Y. L.; Yu, N. Z.; Richards, D. D.; Bennett, C.; Oakes, K. D.; Zhang, X. Ultrasensitive and remote SERS enabled by oxygen-free integrated plasmonic field transmission. Cell Rep. Phys. Sci. 2020, 1, 100189.

107

Yan, X. Y.; Wang, M. L.; Sun, X.; Wang, Y. H.; Shi, G. C.; Ma, W. L.; Hou, P. Sandwich-like Ag@Cu@CW SERS substrate with tunable nanogaps and component based on the Plasmonic nanonodule structures for sensitive detection crystal violet and 4-aminothiophenol. Appl. Surf. Sci. 2019, 479, 879–886.

108

Encina, E. R.; Coronado, E. A. Near field enhancement in Ag Au nanospheres heterodimers. J. Phys. Chem. C 2011, 115, 15908–15914.

109

Yan, X. Y.; Wang, Y. H.; Shi, G. C.; Wang, M. L.; Zhang, J. Z.; Sun, X.; Xu, H. J. Flower-like Cu nanoislands decorated onto the cicada wing as SERS substrates for the rapid detection of crystal violet. Optik 2018, 172, 812–821.

110

Zhao, X. H.; Deng, M.; Rao, G. F.; Yan, Y. C.; Wu, C. Y.; Jiao, Y.; Deng, A. Q.; Yan, C. Y.; Huang, J. W.; Wu, S. H. et al. High-performance SERS substrate based on hierarchical 3D Cu nanocrystals with efficient morphology control. Small 2018, 14, 1802477.

111

Chen, L. Y.; Yu, J. S.; Fujita, T.; Chen, M. W. Nanoporous copper with tunable nanoporosity for SERS applications. Adv. Funct. Mater. 2009, 19, 1221–1226.

112

Chen, K.; Zhang, X.; Zhang, Y. L.; Lei, D. Y.; Li, H. T.; Williams, T.; MacFarlane, D. R. Highly ordered Ag/Cu hybrid nanostructure arrays for ultrasensitive surface-enhanced Raman spectroscopy. Adv. Mater. Interfaces 2016, 3, 1600115.

113

Zheng, Z. H.; Cong, S.; Gong, W. B.; Xuan, J. N.; Li, G. H.; Lu, W. B.; Geng, F. X.; Zhao, Z. G. Semiconductor SERS enhancement enabled by oxygen incorporation. Nat. Commun. 2017, 8, 1993.

114

Wang, X. T.; Guo, L. SERS activity of semiconductors: Crystalline and amorphous nanomaterials. Angew. Chem., Int. Ed. 2020, 59, 4231–4239.

115

Hou, X. Y.; Fan, X. C.; Wei, P. H.; Qiu, T. Planar transition metal oxides SERS chips: A general strategy. J. Mater. Chem. C 2019, 7, 11134–11141.

116

Zhang, N.; Tong, L. M.; Zhang, J. Graphene-based enhanced Raman scattering toward analytical applications. Chem. Mater. 2016, 28, 6426–6435.

117

Pan, X.; Li, L. H.; Lin, H. D.; Tan, J. Y.; Wang, H. T.; Liao, M. L.; Chen, C. J.; Shan, B. B.; Chen, Y. F.; Li, M. A graphene oxide-gold nanostar hybrid based-paper biosensor for label-free SERS detection of serum bilirubin for diagnosis of jaundice. Biosens. Bioelectron. 2019, 145, 111713.

118

Lv, P.; Chen, Z. D.; Ma, Z. C.; Mao, J. W.; Han, B.; Han, D. D.; Zhang, Y. L. Ag nanoparticle ink coupled with graphene oxide cellulose paper: A flexible and tunable SERS sensing platform. Opt. Lett. 2020, 45, 4208–4211.

119

Liang, X.; Liang, B. L.; Pan, Z. H.; Lang, X. F.; Zhang, Y. G.; Wang, G. S.; Yin, P. G.; Guo, L. Tuning plasmonic and chemical enhancement for SERS detection on graphene-based Au hybrids. Nanoscale 2015, 7, 20188–20196.

120

Naqvi, T. K.; Srivastava, A. K.; Kulkarni, M. M.; Siddiqui, A. M.; Dwivedi, P. K. Silver nanoparticles decorated reduced graphene oxide (rGO) SERS sensor for multiple analytes. Appl. Surf. Sci. 2019, 478, 887–895.

121

Nair, A. K.; Bhavitha, K. B.; Perumbilavil, S.; Sankar, P.; Rouxel, D.; Kala, M. S.; Thomas, S.; Kalarikkal, N. Multifunctional nitrogen sulfur co-doped reduced graphene oxide-Ag nano hybrids (sphere, cube and wire) for nonlinear optical and SERS applications. Carbon 2018, 132, 380–393.

122

Zhang, X. G.; Dai, Z. G.; Si, S. Y.; Zhang, X. L.; Wu, W.; Deng, H. B.; Wang, F. B.; Xiao, X. H.; Jiang, C. Z. Ultrasensitive SERS substrate integrated with uniform subnanometer scale “Hot Spots” created by a graphene spacer for the detection of mercury ions. Small 2017, 13, 1603347.

123

Ponlamuangdee, K.; Hornyak, G. L.; Bora, T.; Bamrungsap, S. Graphene oxide/gold nanorod plasmonic paper—A simple and cost-effective SERS substrate for anticancer drug analysis. New J. Chem. 2020, 44, 14087–14094.

124

Xin, W. B.; Yang, J. M.; Li, C.; Goorsky, M. S.; Carlson, L.; De Rosa, I. M. Novel strategy for one-pot synthesis of gold nanoplates on carbon nanotube sheet as an effective flexible SERS substrate. ACS Appl. Mater. Interfaces 2017, 9, 6246–6254.

125

Fortuni, B.; Fujita, Y.; Ricci, M.; Inose, T.; Aubert, R.; Lu, G.; Hutchison, J. A.; Hofkens, J.; Latterini, L.; Uji-i, H. A novel method for in situ synthesis of SERS-active gold nanostars on polydimethylsiloxane film. Chem. Commun. 2017, 53, 5121–5124.

126

Zong, C. H.; Ge, M. Y.; Pan, H.; Wang, J.; Nie, X. M.; Zhang, Q. Q.; Zhao, W. F.; Liu, X. J.; Yu, Y. In situ synthesis of low-cost and large-scale flexible metal nanoparticle-polymer composite films as highly sensitive SERS substrates for surface trace analysis. RSC Adv. 2019, 9, 2857–2864.

127

Fortuni, B.; Inose, T.; Uezono, S.; Toyouchi, S.; Umemoto, K.; Sekine, S.; Fujita, Y.; Ricci, M.; Lu, G.; Masuhara, A. et al. In situ synthesis of Au-shelled Ag nanoparticles on PDMS for flexible, long-life, and broad spectrum-sensitive SERS substrates. Chem. Commun. 2017, 53, 11298–11301.

128

Chen, D. Z.; Zhang, L.; Ning, P.; Yuan, H. Z.; Zhang, Y.; Zhang, M.; Fu, T.; He, X. H. In-situ growth of gold nanoparticles on electrospun flexible multilayered PVDF nanofibers for SERS sensing of molecules and bacteria. Nano Res. 2021, 14, 4885–4893.

129

Liu, X. F.; Ma, J. M.; Jiang, P. F.; Shen, J. L.; Wang, R. W.; Wang, Y.; Tu, G. L. Large-scale flexible surface-enhanced Raman scattering (SERS) sensors with high stability and signal homogeneity. ACS Appl. Mater. Interfaces 2020, 12, 45332–45341.

130

Jia, K.; Xie, J. N.; He, X. H.; Zhang, D. W.; Hou, B. S.; Li, X. S.; Zhou, X.; Hong, Y.; Liu, X. B. Polymeric micro-reactors mediated synthesis and assembly of Ag nanoparticles into cube-like superparticles for SERS application. Chem. Eng. J. 2020, 395, 125123.

131

Zhang, L. L.; Li, X. D.; Liu, W. H.; Hao, R.; Jia, H. R.; Dai, Y. Z.; Amin, M. U.; You, H. J.; Li, T.; Fang, J. X. Highly active Au NP microarray films for direct SERS detection. J. Mater. Chem. C 2019, 7, 15259–15268.

132

George, J. E.; Unnikrishnan, V. K.; Mathur, D.; Chidangil, S.; George, S. D. Flexible superhydrophobic SERS substrates fabricated by in situ reduction of Ag on femtosecond laser-written hierarchical surfaces. Sens. Actuators B:Chem. 2018, 272, 485–493.

133

Yang, F.; Chen, L.; Li, D. Y.; Xu, Y.; Li, S. B.; Wang, L. Printer-assisted array flexible surface-enhanced Raman spectroscopy chip preparation for rapid and label-free detection of bacteria. J. Raman Spectrosc. 2020, 51, 932–940.

134

Fu, F. Y.; Yang, B. B.; Hu, X. M.; Tang, H. Y.; Zhang, Y. P.; Xu, X. Y.; Zhang, Y. Y.; Touhid, S. S. B.; Liu, X. D.; Zhu, Y. F. et al. Biomimetic synthesis of 3D Au-decorated chitosan nanocomposite for sensitive and reliable SERS detection. Chem. Eng. J. 2020, 392, 123693.

135

Cai, J.; Wang, Z. H.; Wang, M. J.; Zhang, D. Y. Au nanoparticle-grafted hierarchical pillars array replicated from diatom as reliable SERS substrates. Appl. Surf. Sci. 2021, 541, 148374.

136

Nowicka, A. B.; Czaplicka, M.; Kowalska, A. A.; Szymborski, T.; Kamińska, A. Flexible PET/ITO/Ag SERS platform for label-free detection of pesticides. Biosensors 2019, 9, 111.

137

Zhang, C. P.; Yi, P. Y.; Peng, L. F.; Lai, X. M.; Chen, J.; Huang, M. Z.; Ni, J. Continuous fabrication of nanostructure arrays for flexible surface enhanced Raman scattering substrate. Sci. Rep. 2017, 7, 39814.

138

Kralchevsky, P. A.; Nagayama, K. Capillary forces between colloidal particles. Langmuir 1994, 10, 23–36.

139

Zhou, N. N.; Meng, G. W.; Huang, Z. L.; Ke, Y.; Zhou, Q. T.; Hu, X. Y. A flexible transparent Ag-NC@PE film as a cut-and-paste SERS substrate for rapid in situ detection of organic pollutants. Analyst 2016, 141, 5864–5869.

140

Alyami, A.; Quinn, A. J.; Iacopino, D. Flexible and transparent surface enhanced Raman scattering (SERS)-active Ag NPs/PDMS composites for in-situ detection of food contaminants. Talanta 2019, 201, 58–64.

141

Wu, P.; Zhong, L. B.; Liu, Q.; Zhou, X.; Zheng, Y. M. Polymer induced one-step interfacial self-assembly method for the fabrication of flexible, robust and free-standing SERS substrates for rapid on-site detection of pesticide residues. Nanoscale 2019, 11, 12829–12836.

142

Marta, S. D.; Novara, C.; Giorgis, F.; Bonifacio, A.; Sergo, V. Optimization and characterization of paper-made surface enhanced Raman scattering (SERS) substrates with Au and Ag NPs for quantitative analysis. Materials 2017, 10, 1365.

143

Villa, J. E. L.; Quiñones, N. R.; Fantinatti-Garboggini, F.; Poppi, R. J. Fast discrimination of bacteria using a filter paper-based SERS platform and PLS-DA with uncertainty estimation. Anal. Bioanal. Chem. 2019, 411, 705–713.

144

Deegan, R. D.; Bakajin, O.; Dupont, T. F.; Huber, G.; Nagel, S. R.; Witten, T. A. Capillary flow as the cause of ring stains from dried liquid drops. Nature 1997, 389, 827–829.

145

Liu, Y.; Zhou, F.; Wang, H. C.; Huang, X. Y.; Ling, D. X. Micro-coffee-ring-patterned fiber SERS probes and their in situ detection application in complex liquid environments. Sens. Actuators B:Chem. 2019, 299, 126990.

146

Wu, W.; Liu, L.; Dai, Z. G.; Liu, J. H.; Yang, S. L.; Zhou, L.; Xiao, X. H.; Jiang, C. Z.; Roy, V. A. L. Low-cost, disposable, flexible and highly reproducible screen printed SERS substrates for the detection of various chemicals. Sci. Rep. 2015, 5, 10208.

147

Weng, G. J.; Yang, Y.; Zhao, J.; Li, J. J.; Zhu, J.; Zhao, J. W. Improving the SERS enhancement and reproducibility of inkjet-printed Au NP paper substrates by second growth of Ag nanoparticles. Mater. Chem. Phys. 2020, 253, 123416.

148

Liao, W. J.; Roy, P. K.; Chattopadhyay, S. An ink-jet printed, surface enhanced Raman scattering paper for food screening. RSC Adv. 2014, 4, 40487–40493.

149

Sykam, N.; Jayram, N. D.; Rao, G. M. Exfoliation of graphite as flexible SERS substrate with high dye adsorption capacity for Rhodamine 6G. Appl. Surf. Sci. 2019, 471, 375–386.

150

Purwidyantri, A.; Hsu, C. H.; Yang, C. M.; Prabowo, B. A.; Tian, Y. C.; Lai, C. S. Plasmonic nanomaterial structuring for SERS enhancement. RSC Adv. 2019, 9, 4982–4992.

151

Xu, D. P.; Kang, W. G.; Zhang, S.; Yang, W.; Jiang, H. Z.; Lei, Y. P.; Chen, J. Fractal theory and controllable preparation of centimeter level silver nanowire arrays and their application in melamine detection as SERS substrates. Spectrochim. Acta Part A:Mol. Biomol. Spectrosc. 2019, 221, 117184.

152

Liu, Y.; Kim, M.; Cho, S. H.; Jung, Y. S. Vertically aligned nanostructures for a reliable and ultrasensitive SERS-active platform: Fabrication and engineering strategies. Nano Today 2021, 37, 101063.

153

Zang, S. Y.; Liu, H.; Wang, Q.; Yang, J. W.; Pang, Z. Q.; Liu, K.; Cai, S. W.; Ren, X. M. Facile fabrication of Au nanoworms covered polyethylene terephthalate (PET) film: Towards flexible SERS substrates. Mater. Lett. 2021, 294, 129643.

154

Guo, X. F.; Wang, D. P.; Khan, R. Nafion stabilized Ag nanopillar arrays as a flexible SERS substrate for trace chemical detection. Mater. Chem. Phys. 2020, 252, 123291.

155

Wei, W.; Du, Y. X.; Zhang, L. M.; Yang, Y.; Gao, Y. F. Improving SERS hot spots for on-site pesticide detection by combining silver nanoparticles with nanowires. J. Mater. Chem. C 2018, 6, 8793–8803.

156

Zhao, P. N.; Liu, H. Y.; Zhang, L. N.; Zhu, P. H.; Ge, S. G.; Yu, J. H. Paper-based SERS sensing platform based on 3D silver dendrites and molecularly imprinted identifier sandwich hybrid for neonicotinoid quantification. ACS Appl. Mater. Interfaces 2020, 12, 8845–8854.

157

He, X. C.; Yang, S. J.; Xu, T. L.; Song, Y. C.; Zhang, X. J. Microdroplet-captured tapes for rapid sampling and SERS detection of food contaminants. Biosens. Bioelectron. 2020, 152, 112013.

158

Liu, H. Y.; Zhao, P. N.; Wang, Y.; Li, S. S.; Zhang, L. N.; Zhang, Y.; Ge, S. G.; Yu, J. H. Paper-based sandwich type SERS sensor based on silver nanoparticles and biomimetic recognizer. Sens. Actuators B:Chem. 2020, 313, 127989.

159

Cheung, M.; Lee, W. W. Y.; McCracken, J. N.; Larmour, I. A.; Brennan, S.; Bell, S. E. J. Raman analysis of dilute aqueous samples by localized evaporation of submicroliter droplets on the tips of superhydrophobic copper wires. Anal. Chem. 2016, 88, 4541–4547.

160

Lu, S. C.; You, T. T.; Yang, N.; Gao, Y. K.; Yin, P. G. Flexible SERS substrate based on Ag nanodendrite-coated carbon fiber cloth: Simultaneous detection for multiple pesticides in liquid droplet. Anal. Bioanal. Chem. 2020, 412, 1159–1167.

161

Sun, Y. N.; Chen, X. D.; Zheng, Y. X.; Song, Y. H.; Zhang, H. R.; Zhang, S. S. Surface-enhanced Raman scattering trace-detection platform based on continuous-rolling-assisted evaporation on superhydrophobic surfaces. ACS Appl. Nano Mater. 2020, 3, 4767–4776.

162

Villa, J. E. L.; Afonso, M. A. S.; Dos Santos, D. P.; Mercadal, P. A.; Coronado, E. A.; Poppi, R. J. Colloidal gold clusters formation and chemometrics for direct SERS determination of bioanalytes in complex media. Spectrochim. Acta Part A:Mol. Biomol. Spectrosc. 2020, 224, 117380.

163

Pérez-Jiménez, A. I.; Lyu, D. Y.; Lu, Z. X.; Liu, G. K.; Ren, B. Surface-enhanced Raman spectroscopy: Benefits, trade-offs and future developments. Chem. Sci. 2020, 11, 4563–4577.

164

Ye, D. D.; Lei, X. J.; Li, T.; Cheng, Q. Y.; Chang, C. Y.; Hu, L. B.; Zhang, L. N. Ultrahigh tough, super clear, and highly anisotropic nanofiber-structured regenerated cellulose films. ACS Nano 2019, 13, 4843–4853.

165

Hu, X. M.; Yang, B. B.; Wen, X. D.; Su, J. N.; Jia, B. Q.; Fu, F. Y.; Zhang, Y. Y.; Yu, Q. L.; Liu, X. D. One-pot synthesis of a three-dimensional Au-decorated cellulose nanocomposite as a surface-enhanced Raman scattering sensor for selective detection and in situ monitoring. ACS Sustainable Chem. Eng. 2021, 9, 3324–3336.

166

Wang, X. J.; Xu, Q. L.; Hu, X. Y.; Han, F. M.; Zhu, C. H. Silver-nanoparticles/graphene hybrids for effective enrichment and sensitive SERS detection of polycyclic aromatic hydrocarbons. Spectrochim. Acta Part A:Mol. Biomol. Spectrosc. 2020, 228, 117783.

167

Li, J. Y.; Heng, H.; Lv, J. L.; Jiang, T. T.; Wang, Z. Y.; Dai, Z. H. Graphene oxide-assisted and DNA-modulated SERS of AuCu alloy for the fabrication of apurinic/apyrimidinic endonuclease 1 biosensor. Small 2019, 15, 1901506.

168

Shafer-Peltier, K. E.; Haynes, C. L.; Glucksberg, M. R.; Van Duyne, R. P. Toward a glucose biosensor based on surface-enhanced Raman scattering. J. Am. Chem. Soc. 2003, 125, 588–593.

169

Yun, B. J.; Koh, W. G. Highly-sensitive SERS-based immunoassay platform prepared on silver nanoparticle-decorated electrospun polymeric fibers. J. Ind. Eng. Chem. 2020, 82, 341–348.

170

Carneiro, M. C. C. G.; Sousa-Castillo, A.; Correa-Duarte, M. A.; Sales, M. G. F. Dual biorecognition by combining molecularly-imprinted polymer and antibody in SERS detection. Application to carcinoembryonic antigen. Biosens. Bioelectron. 2019, 146, 111761.

171

Khlebtsov, B. N.; Bratashov, D. N.; Byzova, N. A.; Dzantiev, B. B.; Khlebtsov, N. G. SERS-based lateral flow immunoassay of troponin I by using gap-enhanced Raman tags. Nano Res. 2019, 12, 413–420.

172

Safar, W.; Tatar, A. S.; Leray, A.; Potara, M.; Liu, Q. Q.; Edely, M.; Djaker, N.; Spadavecchia, J.; Fu, W. L.; Derouich, S. G. et al. New insight into the aptamer conformation and aptamer/protein interaction by surface-enhanced Raman scattering and multivariate statistical analysis. Nanoscale 2021, 13, 12443–12453.

173

Fan, W. L.; Yang, S. W.; Zhang, Y. Z.; Huang, B.; Gong, Z. J.; Wang, D. M.; Fan, M. K. Multifunctional flexible SERS sensor on a fixate gel pad: Capturing, derivation, and selective picogram indirect detection of explosive 2, 2′, 4, 4′, 6, 6′-hexanitrostilbene. ACS Sens. 2020, 5, 3599–3606.

174

Reokrungruang, P.; Chatnuntawech, I.; Dharakul, T.; Bamrungsap, S. A simple paper-based surface enhanced Raman scattering (SERS) platform and magnetic separation for cancer screening. Sens. Actuators B:Chem. 2019, 285, 462–469.

175

Blanco-Covián, L.; Montes-García, V.; Girard, A.; Fernández-Abedul, M. T.; Pérez-Juste, J.; Pastoriza-Santos, I.; Faulds, K.; Graham, D.; Blanco-López, M. C. Au@Ag SERRS tags coupled to a lateral flow immunoassay for the sensitive detection of pneumolysin. Nanoscale 2017, 9, 2051–2058.

176

Lim, W. Y.; Goh, C. H.; Thevarajah, T. M.; Goh, B. T.; Khor, S. M. Using SERS-based microfluidic paper-based device (μPAD) for calibration-free quantitative measurement of AMI cardiac biomarkers. Biosens. Bioelectron. 2020, 147, 111792.

177

Liu, X. X.; Yang, X. S.; Li, K.; Liu, H. F.; Xiao, R.; Wang, W. Y.; Wang, C. W.; Wang, S. Q. Fe3O4@Au SERS tags-based lateral flow assay for simultaneous detection of serum amyloid A and C-reactive protein in unprocessed blood sample. Sens. Actuators B:Chem. 2020, 320, 128350.

178

Lu, T.; Wang, L. P.; Xia, Y. H.; Jin, Y.; Zhang, L. Y.; Du, S. H. A multimer-based SERS aptasensor for highly sensitive and homogeneous assay of carcinoembryonic antigens. Analyst 2021, 146, 3016–3024.

179

Yang, M. X.; Liu, G. K.; Mehedi, H. M.; Ouyang, Q.; Chen, Q. S. A universal SERS aptasensor based on DTNB labeled GNTs/Ag core–shell nanotriangle and CS-Fe3O4 magnetic-bead trace detection of Aflatoxin B1. Anal. Chim. Acta 2017, 986, 122–130.

180

Dunn, M. R.; McCloskey, C. M.; Buckley, P.; Rhea, K.; Chaput, J. C. Generating biologically stable TNA aptamers that function with high affinity and thermal stability. J. Am. Chem. Soc. 2020, 142, 7721–7724.

181

Zhu, L. J.; Li, S. T.; Shao, X. L.; Feng, Y. X.; Xie, P. Y.; Luo, Y. B.; Huang, K. L.; Xu, W. T. Colorimetric detection and typing of E. coli lipopolysaccharides based on a dual aptamer-functionalized gold nanoparticle probe. Microchim. Acta 2019, 186, 111.

182

Alizadeh, N.; Memar, M. Y.; Moaddab, S. R.; Kafil, H. S. Aptamer-assisted novel technologies for detecting bacterial pathogens. Biomed. Pharmacother. 2017, 93, 737–745.

183

Zhu, A. F.; Ali, S.; Xu, Y.; Ouyang, Q.; Chen, Q. S. A SERS aptasensor based on AuNPs functionalized PDMS film for selective and sensitive detection of Staphylococcus aureus. Biosens. Bioelectron. 2021, 172, 112806.

184

Haupt, K.; Rangel, P. X. M.; Bui, B. T. S. Molecularly imprinted polymers: Antibody mimics for bioimaging and therapy. Chem. Rev. 2020, 120, 9554–9582.

185

Til, R. F.; Alizadeh-Khaledabad, M.; Mohammadi, R.; Pirsa, S.; Wilson, L. D. Molecular imprinted polymers for the controlled uptake of sinapic acid from aqueous media. Food Funct. 2020, 11, 895–906.

186

Marcelo, G.; Ferreira, I. C.; Viveiros, R.; Casimiro, T. Development of itaconic acid-based molecular imprinted polymers using supercritical fluid technology for pH-triggered drug delivery. Int. J. Pharmaceut. 2018, 542, 125–131.

187

Li, Y. T.; Yang, Y. Y.; Sun, Y. X.; Cao, Y.; Huang, Y. S.; Han, S. Electrochemical fabrication of reduced MoS2-based portable molecular imprinting nanoprobe for selective SERS determination of theophylline. Microchim. Acta 2020, 187, 203.

188

Guo, X. T.; Li, J. H.; Arabi, M.; Wang, X. Y.; Wang, Y. Q.; Chen, L. X. Molecular-imprinting-based surface-enhanced Raman scattering sensors. ACS Sens. 2020, 5, 601–619.

189

Prakash, J. Fundamentals and applications of recyclable SERS substrates. Int. Rev. Phys. Chem. 2019, 38, 201–242.

190

Pal, A. K.; Chandra, G. K.; Umapathy, S.; Mohan, D. B. Ultra-sensitive, reusable, and superhydrophobic Ag/ZnO/Ag 3D hybrid surface enhanced Raman scattering substrate for hemoglobin detection. J. Appl. Phys. 2020, 127, 164501.

191

Li, C. C.; Huang, Y. M.; Li, X. Y.; Zhang, Y. R.; Chen, Q. L.; Ye, Z. W.; Alqarni, Z.; Bell, S. E. J.; Xu, Y. K. Towards practical and sustainable SERS: A review of recent developments in the construction of multifunctional enhancing substrates. J. Mater. Chem. C 2021, 9, 11517–11552.

192

Sakir, M.; Salem, S.; Sanduvac, S. T.; Sahmetlioglu, E.; Sarp, G.; Onses, M. S.; Yilmaz, E. Photocatalytic green fabrication of Au nanoparticles on ZnO nanorods modified membrane as flexible and photocatalytic active reusable SERS substrates. Colloids Surf. A:Physicochem. Eng. Aspects 2020, 585, 124088.

193

Li, J. T.; Wu, N. Q. Semiconductor-based photocatalysts and photoelectrochemical cells for solar fuel generation: A review. Catal. Sci. Technol. 2015, 5, 1360–1384.

194

Khan, S. A.; Arshad, Z.; Shahid, S.; Arshad, I.; Rizwan, K.; Sher, M.; Fatima, U. Synthesis of TiO2/graphene oxide nanocomposites for their enhanced photocatalytic activity against methylene blue dye and ciprofloxacin. Compos. Part B:Eng. 2019, 175, 107120.

195

Xiong, L. Q.; Tang, J. W. Strategies and challenges on selectivity of photocatalytic oxidation of organic substances. Adv. Energy Mater. 2021, 11, 2003216.

196

Kou, J. H.; Lu, C. H.; Wang, J.; Chen, Y. K.; Xu, Z. Z.; Varma, R. S. Selectivity enhancement in heterogeneous photocatalytic transformations. Chem. Rev. 2017, 117, 1445–1514.

197

Zhu, T.; Wang, H.; Zang, L. B.; Jin, S. L.; Guo, S.; Park, E.; Mao, Z.; Jung, Y. M. Flexible and reusable Ag coated TiO2 nanotube arrays for highly sensitive SERS detection of formaldehyde. Molecules 2020, 25, 1199.

198

Hao, Q.; Li, M. Z.; Wang, J. W.; Fan, X. C.; Jiang, J.; Wang, X. X.; Zhu, M. S.; Qiu, T.; Ma, L. B.; Chu, P. K. et al. Flexible surface-enhanced Raman scattering chip: A universal platform for real-time interfacial molecular analysis with femtomolar sensitivity. ACS Appl. Mater. Interfaces 2020, 12, 54174–54180.

199

Yang, J.; Xu, J. T.; Bian, X. Y.; Pu, Y.; Chiu, K. L.; Miao, D. G.; Jiang, S. X. Flexible and reusable SERS substrate for rapid conformal detection of residue on irregular surface. Cellulose 2021, 28, 921–936.

200

Bamrungsap, S.; Treetong, A.; Apiwat, C.; Wuttikhun, T.; Dharakul, T. SERS-fluorescence dual mode nanotags for cervical cancer detection using aptamers conjugated to gold–silver nanorods. Microchim. Acta 2016, 183, 249–256.

201

Villa, J. E. L.; Poppi, R. J. A portable SERS method for the determination of uric acid using a paper-based substrate and multivariate curve resolution. Analyst 2016, 141, 1966–1972.

202

Tang, S. Q.; Liu, H. M.; Tian, Y. R.; Chen, D.; Gu, C. J.; Wei, G. D.; Jiang, T.; Zhou, J. Surface-enhanced Raman scattering-based lateral flow immunoassay mediated by hydrophilic–hydrophobic Ag-modified PMMA substrate. Spectrochim. Acta Part A:Mol. Biomol. Spectrosc. 2021, 262, 120092.

203

Crawford, A. C.; Laurentius, L. B.; Mulvihill, T. S.; Granger, J. H.; Spencer, J. S.; Chatterjee, D.; Hanson, K. E.; Porter, M. D. Detection of the tuberculosis antigenic marker mannose-capped lipoarabinomannan in pretreated serum by surface-enhanced Raman scattering. Analyst 2017, 142, 186–196.

204

Kim, W.; Lee, S. H.; Kim, J. H.; Ahn, Y. J.; Kim, Y. H.; Yu, J. S.; Choi, S. Paper-based surface-enhanced Raman spectroscopy for diagnosing prenatal diseases in women. ACS Nano 2018, 12, 7100–7108.

205

Narasimhan, V.; Siddique, R. H.; Park, H.; Choo, H. Bioinspired disordered flexible metasurfaces for human tear analysis using broadband surface-enhanced Raman scattering. ACS Omega 2020, 5, 12915–12922.

206

Wang, Y. L.; Zhao, C.; Wang, J. J.; Luo, X.; Xie, L. J.; Zhan, S. J.; Kim, J.; Wang, X. Z.; Liu, X. J.; Ying, Y. B. Wearable plasmonic-metasurface sensor for noninvasive and universal molecular fingerprint detection on biointerfaces. Sci. Adv. 2021, 7, e4553.

207

He, X.; Zhou, X.; Liu, Y.; Wang, X. L. Ultrasensitive, recyclable and portable microfluidic surface-enhanced Raman scattering (SERS) biosensor for uranyl ions detection. Sens. Actuators B:Chem. 2020, 311, 127676.

208

Jin, X. Y.; Guo, P. R.; Guan, P.; Wang, S.; Lei, Y. Q.; Wang, G. H. The fabrication of paper separation channel based SERS substrate and its recyclable separation and detection of pesticides. Spectrochim. Acta Part A:Mol. Biomol. Spectrosc. 2020, 240, 118561.

209

Li, H. J.; Wang, M. C.; Shen, X. X.; Liu, S.; Wang, Y.; Li, Y.; Wang, Q. W.; Che, G. B. Rapid and sensitive detection of enrofloxacin hydrochloride based on surface enhanced Raman scattering-active flexible membrane assemblies of Ag nanoparticles. J. Environ. Manage. 2019, 249, 109387.

210

Sun, H. M.; Li, X. T.; Hu, Z. Y.; Gu, C. J.; Chen, D.; Wang, J.; Li, B.; Jiang, T.; Zhou, X. F. Hydrophilic–hydrophobic silver nanowire-paper based SERS substrate for in-situ detection of furazolidone under various environments. Appl. Surf. Sci. 2021, 556, 149748.

211

Salthammer, T.; Mentese, S.; Marutzky, R. Formaldehyde in the indoor environment. Chem. Rev. 2010, 110, 2536–2572.

212

Sun, J. J.; Zhang, Z. Q.; Liu, C.; Dai, X. D.; Zhou, W. P.; Jiang, K. M.; Zhang, T.; Yin, J.; Gao, J.; Yin, H. C. et al. Continuous in situ portable SERS analysis of pollutants in water and air by a highly sensitive gold nanoparticle-decorated PVDF substrate. Anal. Bioanal. Chem. 2021, 413, 5469–5482.

213

Li, L. M.; Chin, W. S. Rapid fabrication of a flexible and transparent Ag nanocubes@PDMS film as a SERS substrate with high performance. ACS Appl. Mater. Interfaces 2020, 12, 37538–37548.

214

Zeisel, S. H.; Da Costa, K. A. Choline: An essential nutrient for public health. Nutr. Rev. 2009, 67, 615–623.

215

Weng, G. J.; Feng, Y.; Zhao, J.; Li, J. J.; Zhu, J.; Zhao, J. W. Sensitive detection of choline in infant formulas by SERS marker transformation occurring on a filter-based flexible substrate. Sens. Actuators B:Chem. 2020, 308, 127754.

216

Li, Z. B.; Meng, G. W.; Huang, Q.; Hu, X. Y.; He, X.; Tang, H. B.; Wang, Z. W.; Li, F. D. Ag nanoparticle-grafted PAN-nanohump array films with 3D high-density hot spots as flexible and reliable SERS substrates. Small 2015, 11, 5452–5459.

217

Wu, J. J.; Feng, Y.; Zhang, L.; Wu, W. B. Nanocellulose-based surface-enhanced Raman spectroscopy sensor for highly sensitive detection of TNT. Carbohydr. Polym. 2020, 248, 116766.

218

Shi, Y. E.; Wang, W. S.; Zhan, J. H. A positively charged silver nanowire membrane for rapid on-site swabbing extraction and detection of trace inorganic explosives using a portable Raman spectrometer. Nano Res. 2016, 9, 2487–2497.

219

Lussier, F.; Thibault, V.; Charron, B.; Wallace, G. Q.; Masson, J. F. Deep learning and artificial intelligence methods for Raman and surface-enhanced Raman scattering. TrAC Trends Anal. Chem. 2020, 124, 115796.

220

Lussier, F.; Missirlis, D.; Spatz, J. P.; Masson, J. F. Machine-learning-driven surface-enhanced Raman scattering optophysiology reveals multiplexed metabolite gradients near cells. ACS Nano 2019, 13, 1403–1411.

221

Huang, Z. F.; Siddhanta, S.; Zheng, G.; Kickler, T.; Barman, I. Rapid, label-free optical spectroscopy platform for diagnosis of heparin-induced thrombocytopenia. Angew. Chem., Int. Ed. 2020, 59, 5972–5978.

222

Liu, X. B.; Zhang, Z. M.; Sousa, P. F. M.; Chen, C.; Ouyang, M. L.; Wei, Y. C.; Liang, Y. Z.; Chen, Y.; Zhang, C. P. Selective iteratively reweighted quantile regression for baseline correction. Anal. Bioanal. Chem. 2014, 406, 1985–1998.

223

Steinier, J.; Termonia, Y.; Deltour, J. Smoothing and differentiation of data by simplified least square procedure. Anal. Chem. 1972, 44, 1906–1909.

224

Xi, Y.; Li, Y. E.; Duan, Z. Z.; Lu, Y. A novel pre-processing algorithm based on the wavelet transform for Raman spectrum. Appl. Spectrosc. 2018, 72, 1752–1763.

225

Feuerstein, D.; Parker, K. H.; Boutelle, M. G. Practical methods for noise removal: Applications to spikes, nonstationary quasi-periodic noise, and baseline drift. Anal. Chem. 2009, 81, 4987–4994.

226

Eilers, P. H. C. A perfect smoother. Anal. Chem. 2003, 75, 3631–3636.

227

Zhang, Z. M.; Chen, S.; Liang, Y. Z. Baseline correction using adaptive iteratively reweighted penalized least squares. Analyst 2010, 135, 1138–1146.

228

Sattlecker, M.; Stone, N.; Bessant, C. Current trends in machine-learning methods applied to spectroscopic cancer diagnosis. TrAC Trends Anal. Chem. 2014, 59, 17–25.

229

Shin, H.; Jeong, H.; Park, J.; Hong, S.; Choi, Y. Correlation between cancerous exosomes and protein markers based on surface-enhanced Raman spectroscopy (SERS) and principal component analysis (PCA). ACS Sens. 2018, 3, 2637–2643.

230

Taylor, J. N.; Mochizuki, K.; Hashimoto, K.; Kumamoto, Y.; Harada, Y.; Fujita, K.; Komatsuzaki, T. High-resolution Raman microscopic detection of follicular thyroid cancer cells with unsupervised machine learning. J. Phys. Chem. B 2019, 123, 4358–4372.

231

Lim, J. Y.; Nam, J. S.; Shin, H.; Park, J.; Song, H. I.; Kang, M.; Lim, K. I.; Choi, Y. Identification of newly emerging influenza viruses by detecting the virally infected cells based on surface enhanced Raman spectroscopy and principal component analysis. Anal. Chem. 2019, 91, 5677–5684.

232

Xie, L. P.; Li, Z. L.; Zhou, Y. H.; He, Y. L.; Zhu, J. X. Computational diagnostic techniques for electrocardiogram signal analysis. Sensors 2020, 20, 6318.

233

Feng, S. Y.; Lin, D.; Lin, J. Q.; Li, B. H.; Huang, Z. F.; Chen, G. N.; Zhang, W.; Wang, L.; Pan, J. J.; Chen, R. et al. Blood plasma surface-enhanced Raman spectroscopy for non-invasive optical detection of cervical cancer. Analyst 2013, 138, 3967–3974.

234

Szymańska, E.; Gerretzen, J.; Engel, J.; Geurts, B.; Blanchet, L.; Buydens, L. M. C. Chemometrics and qualitative analysis have a vibrant relationship. TrAC Trends Anal. Chem. 2015, 69, 34–51.

235

Gromski, P. S.; Muhamadali, H.; Ellis, D. I.; Xu, Y.; Correa, E.; Turner, M. L.; Goodacre, R. A tutorial review: Metabolomics and partial least squares-discriminant analysis—A marriage of convenience or a shotgun wedding. Anal. Chim. Acta 2015, 879, 10–23.

236

Li, S. X.; Zhang, Y. J.; Xu, J. F.; Li, L. F.; Zeng, Q. Y.; Lin, L.; Guo, Z. Y.; Liu, Z. M.; Xiong, H. L.; Liu, S. H. Noninvasive prostate cancer screening based on serum surface-enhanced Raman spectroscopy and support vector machine. Appl. Phys. Lett. 2014, 105, 091104.

237

Shin, H.; Oh, S.; Hong, S.; Kang, M.; Kang, D.; Ji, Y. G.; Choi, B. H.; Kang, K. W.; Jeong, H.; Park, Y. et al. Early-stage lung cancer diagnosis by deep learning-based spectroscopic analysis of circulating exosomes. ACS Nano 2020, 14, 5435–5444.

238
Wani, J. A.; Sharma, S.; Muzamil, M.; Ahmed, S.; Sharma, S.; Singh, S. Machine learning and deep learning based computational techniques in automatic agricultural diseases detection: Methodologies, applications, and challenges. Arch. Comput. Methods Eng., in press, http://doi.org.10.1007/s11831-021-09588-5.
239

Liao, M. H.; Zheng, S. S.; Pan, S. X.; Lu, D. J.; He, W. Q.; Situ, G. H.; Peng, X. Deep-learning-based ciphertext-only attack on optical double random phase encryption. Opto-Electron. Adv. 2021, 4, 200016.

240

Tadesse, L. F.; Safir, F.; Ho, C. S.; Hasbach, X.; Khuri-Yakub, B. P.; Jeffrey, S. S.; Saleh, A. A. E.; Dionne, J. Toward rapid infectious disease diagnosis with advances in surface-enhanced Raman spectroscopy. J. Chem. Phys. 2020, 152, 240902.

241

Ho, C. S.; Jean, N.; Hogan, C. A.; Blackmon, L.; Jeffrey, S. S.; Holodniy, M.; Banaei, N.; Saleh, A. A. E.; Ermon, S.; Dionne, J. Rapid identification of pathogenic bacteria using Raman spectroscopy and deep learning. Nat. Commun. 2019, 10, 4927.

242

Zhang, X. L.; Lin, T.; Xu, J. F.; Luo, X.; Ying, Y. B. DeepSpectra: An end-to-end deep learning approach for quantitative spectral analysis. Anal. Chim. Acta 2019, 1058, 48–57.

243

Acquarelli, J.; Van Laarhoven, T.; Gerretzen, J.; Tran, T. N.; Buydens, L. M. C.; Marchiori, E. Convolutional neural networks for vibrational spectroscopic data analysis. Anal. Chim. Acta 2017, 954, 22–31.

244

Erzina, M.; Trelin, A.; Guselnikova, O.; Dvorankova, B.; Strnadova, K.; Perminova, A.; Ulbrich, P.; Mares, D.; Jerabek, V.; Elashnikov, R. et al. Precise cancer detection via the combination of functionalized SERS surfaces and convolutional neural network with independent inputs. Sens. Actuators B:Chem. 2020, 308, 127660.

245

Tran, V.; Walkenfort, B.; König, M.; Salehi, M.; Schlücker, S. Rapid, quantitative, and ultrasensitive point-of-care testing: A portable SERS reader for lateral flow assays in clinical chemistry. Angew. Chem., Int. Ed. 2019, 58, 442–446.

Nano Research
Pages 4374-4394
Cite this article:
Xie L, Zeng H, Zhu J, et al. State of the art in flexible SERS sensors toward label-free and onsite detection: From design to applications. Nano Research, 2022, 15(5): 4374-4394. https://doi.org/10.1007/s12274-021-4017-4
Topics:

1391

Views

67

Crossref

70

Web of Science

72

Scopus

3

CSCD

Altmetrics

Received: 13 October 2021
Revised: 23 November 2021
Accepted: 23 November 2021
Published: 06 January 2022
© Tsinghua University Press and Springer-Verlag GmbH Germany, part of Springer Nature 2021
Return