Discover the SciOpen Platform and Achieve Your Research Goals with Ease.
Search articles, authors, keywords, DOl and etc.
Surface-enhanced Raman scattering (SERS) as a powerful non-invasive spectroscopic technique has been intensively used in bio/chemical sensing, enabling ultrasensitive detection of various analytes and high specificity with a fingerprint-like characteristic. Flexible SERS sensors conformally adapting to nonplanar surfaces and allowing swab-sampling or in-situ detection of analytes, which are not achievable for rigid SERS sensors, greatly meet the demand of onsite and real-time diagnostics. However, the rational design and fabrication of flexible SERS-based sensors for point-of-care diagnostics aiming to simultaneously achieve extremely high sensitivity, stability, and good signal reproducibility remain many challenges. We present a state-of-the-art review of the flexible SERS sensors. Attentions are devoted to engineering plasmonic substrates for improving the performance of flexible SERS devices. Strategies of constructing the flexible SERS sensors toward point-of-care detection are investigated in depth. Advanced algorithms assisting the SERS data process are also presented for intelligently distinguishing the species and contents of analytes. The promising applications of flexible SERS sensors in medical diagnostics, environmental analyses, food safety, and forensic science are displayed. The flexible SERS devices serving as powerful analytical tools shed new light on the in-situ and point-of-care detection of real-world analytes in a convenient, facile, and non-destructive manner, and especially are conceivable to serve as next-generation wearable sensors for healthcare.
Fleischmann, M.; Hendra, P. J.; McQuillan, A. J. Raman spectra of pyridine adsorbed at a silver electrode. Chem. Phys. Lett. 1974, 26, 163–166.
Ding, S. Y.; Yi, J.; Li, J. F.; Ren, B.; Wu, D. Y.; Panneerselvam, R.; Tian, Z. Q. Nanostructure-based plasmon-enhanced Raman spectroscopy for surface analysis of materials. Nat. Rev. Mater. 2016, 1, 16021.
Kneipp, K.; Wang, Y.; Kneipp, H.; Itzkan, I.; Dasari, R. R.; Feld, M. S. Population pumping of excited vibrational states by spontaneous surface-enhanced Raman scattering. Phys. Rev. Lett. 1996, 76, 2444–2447.
Zong, C.; Xu, M. X.; Xu, L. J.; Wei, T.; Ma, X.; Zheng, X. S.; Hu, R.; Ren, B. Surface-enhanced Raman spectroscopy for bioanalysis: Reliability and challenges. Chem. Rev. 2018, 118, 4946–4980.
Garcia-Rico, E.; Alvarez-Puebla, R. A.; Guerrini, L. Direct surface-enhanced Raman scattering (SERS) spectroscopy of nucleic acids: From fundamental studies to real-life applications. Chem. Soc. Rev. 2018, 47, 4909–4923.
Camden, J. P.; Dieringer, J. A.; Wang, Y. M.; Masiello, D. J.; Marks, L. D.; Schatz, G. C.; Van Duyne, R. P. Probing the structure of single-molecule surface-enhanced Raman scattering hot spots. J. Am. Chem. Soc. 2008, 130, 12616–12617.
Laing, S.; Jamieson, L. E.; Faulds, K.; Graham, D. Surface-enhanced Raman spectroscopy for in vivo biosensing. Nat. Rev. Chem. 2017, 1, 0060.
Zeng, Y.; Koo, K. M.; Trau, M.; Shen, A. G.; Hu, J. M. Watching SERS glow for multiplex biomolecular analysis in the clinic: A review. Appl. Mater. Today 2019, 15, 431–444.
Lenzi, E.; De Aberasturi, D. J.; Liz-Marzán, L. M. Surface-enhanced Raman scattering tags for three-dimensional bioimaging and biomarker detection. ACS Sens. 2019, 4, 1126–1137.
Luo, S. C.; Sivashanmugan, K.; Liao, J. D.; Yao, C. K.; Peng, H. C. Nanofabricated SERS-active substrates for single-molecule to virus detection in vitro: A review. Biosens. Bioelectron. 2014, 61, 232–240.
Cialla-May, D.; Zheng, X. S.; Weber, K.; Popp, J. Recent progress in surface-enhanced Raman spectroscopy for biological and biomedical applications: From cells to clinics. Chem. Soc. Rev. 2017, 46, 3945–3961.
Bruzas, I.; Lum, W.; Gorunmez, Z.; Sagle, L. Advances in surface-enhanced Raman spectroscopy (SERS) substrates for lipid and protein characterization: Sensing and beyond. Analyst 2018, 143, 3990–4008.
Nie, S. M.; Emory, S. R. Probing single molecules and single nanoparticles by surface-enhanced Raman scattering. Science 1997, 275, 1102–1106.
Albrecht, M. G.; Creighton, J. A. Anomalously intense Raman spectra of pyridine at a silver electrode. J. Am. Chem. Soc. 1977, 99, 5215–5217.
Xu, K. C.; Zhou, R.; Takei, K.; Hong, M. H. Toward flexible surface-enhanced Raman scattering (SERS) sensors for point-of-care diagnostics. Adv. Sci. 2019, 6, 1900925.
Restaino, S. M.; White, I. M. A critical review of flexible and porous SERS sensors for analytical chemistry at the point-of-sample. Anal. Chim. Acta 2019, 1060, 17–29.
Ma, Y.; Chen, Y.; Tian, Y. R.; Gu, C. J.; Jiang, T. Contrastive study of in situ sensing and swabbing detection based on SERS-active gold nanobush-PDMS hybrid film. J. Agric. Food Chem. 2021, 69, 1975–1983.
Kang, H.; Heo, C. J.; Jeon, H. C.; Lee, S. Y.; Yang, S. M. Durable plasmonic cap arrays on flexible substrate with real-time optical tunability for high-fidelity SERS devices. ACS Appl. Mater. Interfaces 2013, 5, 4569–4574.
Xu, K. C.; Wang, Z. Y.; Tan, C. F.; Kang, N.; Chen, L. W.; Ren, L.; Thian, E. S.; Ho, G. W.; Ji, R.; Hong, M. H. Uniaxially stretched flexible surface plasmon resonance film for versatile surface enhanced Raman scattering diagnostics. ACS Appl. Mater. Interfaces 2017, 9, 26341–26349.
Wang, P.; Wu, L.; Lu, Z. C.; Li, Q.; Yin, W. M.; Ding, F.; Han, H. Y. Gecko-inspired nanotentacle surface-enhanced Raman spectroscopy substrate for sampling and reliable detection of pesticide residues in fruits and vegetables. Anal. Chem. 2017, 89, 2424–2431.
Park, M.; Jung, H.; Jeong, Y.; Jeong, K. H. Plasmonic schirmer strip for human tear-based gouty arthritis diagnosis using surface-enhanced Raman scattering. ACS Nano 2017, 11, 438–443.
Liyanage, T.; Rael, A.; Shaffer, S.; Zaidi, S.; Goodpaster, J. V.; Sardar, R. Fabrication of a self-assembled and flexible SERS nanosensor for explosive detection at parts-per-quadrillion levels from fingerprints. Analyst 2018, 143, 2012–2022.
Kalachyova, Y.; Erzina, M.; Postnikov, P.; Svorcik, V.; Lyutakov, O. Flexible SERS substrate for portable Raman analysis of biosamples. Appl. Surf. Sci. 2018, 458, 95–99.
Shi, R. Y.; Liu, X. J.; Ying, Y. B. Facing challenges in real-life application of surface-enhanced Raman scattering: Design and nanofabrication of surface-enhanced Raman scattering substrates for rapid field test of food contaminants. J. Agric. Food Chem. 2018, 66, 6525–6543.
Polavarapu, L.; Liz-Marzán, L. M. Towards low-cost flexible substrates for nanoplasmonic sensing. Phys. Chem. Chem. Phys. 2013, 15, 5288–5300.
Zhang, D. R.; Pu, H. B.; Huang, L. J.; Sun, D. W. Advances in flexible surface-enhanced Raman scattering (SERS) substrates for nondestructive food detection: Fundamentals and recent applications. Trends Food Sci. Technol. 2021, 109, 690–701.
Liu, H. Q.; He, Y. N.; Cao, K. Z. Flexible surface-enhanced Raman scattering substrates: A review on constructions, applications, and challenges. Adv. Mater. Interfaces 2021, 8, 2100982.
Li, Z. Y.; Huang, X.; Lu, G. Recent developments of flexible and transparent SERS substrates. J. Mater. Chem. C 2020, 8, 3956–3969.
Wei, H. R.; Abtahi, S. M. H.; Vikesland, P. J. Plasmonic colorimetric and SERS sensors for environmental analysis. Environ. Sci. :Nano 2015, 2, 120–135.
Campion, A.; Kambhampati, P. Surface-enhanced Raman scattering. Chem. Soc. Rev. 1998, 27, 241–250.
Cardinal, M. F.; Ende, E. V.; Hackler, R. A.; McAnally, M. O.; Stair, P. C.; Schatz, G. C.; Van Duyne, R. P. Expanding applications of SERS through versatile nanomaterials engineering. Chem. Soc. Rev. 2017, 46, 3886–3903.
Han, X. X.; Ji, W.; Zhao, B.; Ozaki, Y. Semiconductor-enhanced Raman scattering: Active nanomaterials and applications. Nanoscale 2017, 9, 4847–4861.
Jensen, L.; Aikens, C. M.; Schatz, G. C. Electronic structure methods for studying surface-enhanced Raman scattering. Chem. Soc. Rev. 2008, 37, 1061–1073.
Phan-Quang, G. C.; Han, X. M.; Koh, C. S. L.; Sim, H. Y. F.; Lay, C. L.; Leong, S. X.; Lee, Y. H.; Pazos-Perez, N.; Alvarez-Puebla, R. A.; Ling, X. Y. Three-dimensional surface-enhanced Raman scattering platforms: Large-scale plasmonic hotspots for new applications in sensing, microreaction, and data storage. Acc. Chem. Res. 2019, 52, 1844–1854.
Huang, Y.; Zhang, X.; Ringe, E.; Ma, L. W.; Zhai, X.; Wang, L. L.; Zhang, Z. J. Detailed correlations between SERS enhancement and plasmon resonances in subwavelength closely spaced Au nanorod arrays. Nanoscale 2018, 10, 4267–4275.
McFarland, A. D.; Young, M. A.; Dieringer, J. A.; Van Duyne, R. P. Wavelength-scanned surface-enhanced Raman excitation spectroscopy. J. Phys. Chem. B 2005, 109, 11279–11285.
Yang, L. L.; Peng, Y. S.; Yang, Y.; Liu, J. J.; Huang, H. L.; Yu, B. H.; Zhao, J. M.; Lu, Y. L.; Huang, Z. R.; Li, Z. Y. et al. A novel ultra-sensitive semiconductor SERS substrate boosted by the coupled resonance effect. Adv. Sci. 2019, 6, 1900310.
Wang, Y. C.; Jin, Y. H.; Xiao, X. Y.; Zhang, T. F.; Yang, H. T.; Zhao, Y. D.; Wang, J. P.; Jiang, K. L.; Fan, S. S.; Li, Q. Q. Flexible, transparent and highly sensitive SERS substrates with cross-nanoporous structures for fast on-site detection. Nanoscale 2018, 10, 15195–15204.
Gao, R. K.; Song, X. F.; Zhan, C. B.; Weng, C. G.; Cheng, S.; Guo, K.; Ma, N.; Chang, H. F.; Guo, Z. Y.; Luo, L. B. et al. Light trapping induced flexible wrinkled nanocone SERS substrate for highly sensitive explosive detection. Sens. Actuators B:Chem. 2020, 314, 128081.
Jiao, L. Y.; Fan, B.; Xian, X. J.; Wu, Z. Y.; Zhang, J.; Liu, Z. F. Creation of nanostructures with poly(methyl methacrylate)-mediated nanotransfer printing. J. Am. Chem. Soc. 2008, 130, 12612–12613.
Hatab, N. A. A.; Oran, J. M.; Sepaniak, M. J. Surface-enhanced Raman spectroscopy substrates created via electron beam lithography and nanotransfer printing. ACS Nano 2008, 2, 377–385.
Zhao, X. F.; Yu, J.; Zhang, C.; Chen, C. S.; Xu, S. C.; Li, C. H.; Li, Z.; Zhang, S. Z.; Liu, A. H.; Man, B. Y. Flexible and stretchable SERS substrate based on a pyramidal PMMA structure hybridized with graphene oxide assivated AgNPs. Appl. Surf. Sci. 2018, 455, 1171–1178.
Wu, S. J.; Duan, N.; Shen, M. F.; Wang, J.; Wang, Z. P. Surface-enhanced Raman spectroscopic single step detection of Vibrio parahaemolyticus using gold coated polydimethylsiloxane as the active substrate and aptamer modified gold nanoparticles. Microchim. Acta 2019, 186, 401.
Ma, Y.; Du, Y. Y.; Chen, Y.; Gu, C. J.; Jiang, T.; Wei, G. D.; Zhou, J. Intrinsic Raman signal of polymer matrix induced quantitative multiphase SERS analysis based on stretched PDMS film with anchored Ag nanoparticles/Au nanowires. Chem. Eng. J. 2020, 381, 122710.
Cheng, Y. W.; Hsiao, C. W.; Zeng, Z. L.; Syu, W. L.; Liu, T. Y. The interparticle gap manipulation of Au-Ag nanoparticle arrays deposited on flexible and atmospheric plasma-treated PDMS substrate for SERS detection. Surf. Coat. Technol. 2020, 389, 125653.
Zhang, H.; Zhang, W.; Xiao, L. F.; Liu, Y.; Gilbertson, T. A.; Zhou, A. H. Use of surface-enhanced Raman scattering (SERS) probes to detect fatty acid receptor activity in a microfluidic device. Sensors 2019, 19, 1663.
Ariaeenejad, S.; Hosseini, E.; Motamedi, E.; Moosavi-Movahedi, A. A.; Salekdeh, G. H. Application of carboxymethyl cellulose-g-poly(acrylic acid-co-acrylamide) hydrogel sponges for improvement of efficiency, reusability and thermal stability of a recombinant xylanase. Chem. Eng. J. 2019, 375, 122022.
Ahn, S.; Lee, S. J. Nano/micro natural patterns of hydrogels against water loss. ACS Appl. Bio Mater. 2020, 3, 1293–1304.
He, Y.; Yang, X.; Yuan, R.; Chai, Y. Q. Switchable target-responsive 3D DNA hydrogels as a signal amplification strategy combining with SERS technique for ultrasensitive detection of miRNA 155. Anal. Chem. 2017, 89, 8538–8544.
He, X.; Zhou, X.; Liu, W.; Liu, Y.; Wang, X. L. Flexible DNA hydrogel SERS active biofilms for conformal ultrasensitive detection of uranyl ions from aquatic products. Langmuir 2020, 36, 2930–2936.
Wang, C.; Wong, K. W.; Wang, Q.; Zhou, Y. F.; Tang, C. Y.; Fan, M. K.; Mei, J.; Lau, W. M. Silver-nanoparticles-loaded chitosan foam as a flexible SERS substrate for active collecting analytes from both solid surface and solution. Talanta 2019, 191, 241–247.
Fu, H. P.; Chen, J. M.; Chen, L. J.; Zhu, X.; Chen, Z. L.; Qiu, B.; Lin, Z. Y.; Guo, L. H.; Chen, G. N. A calcium alginate sponge with embedded gold nanoparticles as a flexible SERS substrate for direct analysis of pollutant dyes. Microchim. Acta 2019, 186, 64.
Sun, J.; Gong, L.; Lu, Y. T.; Wang, D. M.; Gong, Z. J.; Fan, M. K. Dual functional PDMS sponge SERS substrate for the on-site detection of pesticides both on fruit surfaces and in juice. Analyst 2018, 143, 2689–2695.
Chen, J. M.; Huang, Y. J.; Kannan, P.; Zhang, L.; Lin, Z. Y.; Zhang, J. W.; Chen, T.; Guo, L. H. Flexible and adhesive surface enhance Raman scattering active tape for rapid detection of pesticide residues in fruits and vegetables. Anal. Chem. 2016, 88, 2149–2155.
Sitjar, J.; Liao, J. D.; Lee, H.; Pan, L. P.; Liu, B. H.; Fu, W. E.; Chen, G. D. Ag nanostructures with spikes on adhesive tape as a flexible SERS-active substrate for in situ trace detection of pesticides on fruit skin. Nanomaterials 2019, 9, 1750.
Liu, X. J.; Wang, J. J.; Wang, J. J.; Tang, L. H.; Ying, Y. B. Flexible and transparent surface-enhanced Raman scattering (SERS)-active metafilm for visualizing trace molecules via Raman spectral mapping. Anal. Chem. 2016, 88, 6166–6173.
Jiang, J. L.; Zou, S. M.; Li, Y. R.; Zhao, F. T.; Chen, J.; Wang, S. F.; Wu, H. X.; Xu, J. S.; Chu, M. F.; Liao, J. S. et al. Flexible and adhesive tape decorated with silver nanorods for in-situ analysis of pesticides residues and colorants. Microchim. Acta 2019, 186, 603.
Pang, S.; Yang, T. X.; He, L. L. Review of surface enhanced Raman spectroscopic (SERS) detection of synthetic chemical pesticides. TrAC Trends Anal. Chem. 2016, 85, 73–82.
Cate, D. M.; Adkins, J. A.; Mettakoonpitak, J.; Henry, C. S. Recent developments in paper-based microfluidic devices. Anal. Chem. 2015, 87, 19–41.
Hansora, D. P.; Shimpi, N. G.; Mishra, S. Performance of hybrid nanostructured conductive cotton materials as wearable devices: An overview of materials, fabrication, properties and applications. RSC Adv. 2015, 5, 107716–107770.
Xie, L. P.; Zi, X. Y.; Zeng, H.; Sun, J. J.; Xu, L. S.; Chen, S. Low-cost fabrication of a paper-based microfluidic using a folded pattern paper. Anal. Chim. Acta 2019, 1053, 131–138.
Xiong, Z. Y.; Chen, X. W.; Liou, P.; Lin, M. S. Development of nanofibrillated cellulose coated with gold nanoparticles for measurement of melamine by SERS. Cellulose 2017, 24, 2801–2811.
Ogundare, S. A.; Van Zyl, W. E. A review of cellulose-based substrates for SERS: Fundamentals, design principles, applications. Cellulose 2019, 26, 6489–6528.
Yan, D.; Qiu, L. L.; Xue, M.; Meng, Z. H.; Wang, Y. F. A flexible surface-enhanced Raman substrates based on cellulose photonic crystal/Ag-nanoparticles composite. Mater. Des. 2019, 165, 107601.
Oliveira, M. J.; Quaresma, P.; De Almeida, M. P.; Araújo, A.; Pereira, E.; Fortunato, E.; Martins, R.; Franco, R.; Águas, H. Office paper decorated with silver nanostars—An alternative cost effective platform for trace analyte detection by SERS. Sci. Rep. 2017, 7, 2480.
Huang, L. Q.; Wu, C. J.; Xie, L. J.; Yuan, X.; Wei, X. Y.; Huang, Q.; Chen, Y. Q.; Lu, Y. D. Silver-nanocellulose composite used as SERS substrate for detecting carbendazim. Nanomaterials 2019, 9, 355.
Chen, L. Y.; Ying, B. B.; Song, P. F.; Liu, X. Y. A nanocellulose-paper-based SERS multiwell plate with high sensitivity and high signal homogeneity. Adv. Mater. Interfaces 2019, 6, 1901346.
Ballerini, D. R.; Ngo, Y. H.; Garnier, G.; Ladewig, B. P.; Shen, W.; Jarujamrus, P. Gold nanoparticle-functionalized thread as a substrate for SERS study of analytes both bound and unbound to gold. AIChE J. 2014, 60, 1598–1605.
Gu, H. X.; Li, D. W.; Xue, L.; Zhang, Y. F.; Long, Y. T. A portable microcolumn based on silver nanoparticle functionalized glass fibers and its SERS application. Analyst 2015, 140, 7934–7938.
Emamian, S.; Eshkeiti, A.; Narakathu, B. B.; Avuthu, S. G. R.; Atashbar, M. Z. Gravure printed flexible surface enhanced Raman spectroscopy (SERS) substrate for detection of 2, 4-dinitrotoluene (DNT) vapor. Sens. Actuators B:Chem. 2015, 217, 129–135.
Mitomo, H.; Horie, K.; Matsuo, Y.; Niikura, K.; Tani, T.; Naya, M.; Ijiro, K. Active gap SERS for the sensitive detection of biomacromolecules with plasmonic nanostructures on hydrogels. Adv. Opt. Mater. 2016, 4, 259–263.
Korkmaz, A.; Kenton, M.; Aksin, G.; Kahraman, M.; Wachsmann-Hogiu, S. Inexpensive and flexible SERS substrates on adhesive tape based on biosilica plasmonic nanocomposites. ACS Appl. Nano Mater. 2018, 1, 5316–5326.
Kumar, S.; Goel, P.; Singh, J. P. Flexible and robust SERS active substrates for conformal rapid detection of pesticide residues from fruits. Sens. Actuators B:Chem. 2017, 241, 577–583.
Kolluru, C.; Gupta, R.; Jiang, Q. S.; Williams, M.; Derami, H. G.; Cao, S. S.; Noel, R. K.; Singamaneni, S.; Prausnitz, M. R. Plasmonic paper microneedle patch for on-patch detection of molecules in dermal interstitial fluid. ACS Sens. 2019, 4, 1569–1576.
Lee, M.; Oh, K.; Choi, H. K.; Lee, S. G.; Youn, H. J.; Lee, H. L.; Jeong, D. H. Subnanomolar sensitivity of filter paper-based SERS sensor for pesticide detection by hydrophobicity change of paper surface. ACS Sens. 2018, 3, 151–159.
Xiong, Z. Y.; Lin, M. S.; Lin, H. T.; Huang, M. Z. Facile synthesis of cellulose nanofiber nanocomposite as a SERS substrate for detection of thiram in juice. Carbohydr. Polym. 2018, 189, 79–86.
Parnsubsakul, A.; Ngoensawat, U.; Wutikhun, T.; Sukmanee, T.; Sapcharoenkun, C.; Pienpinijtham, P.; Ekgasit, S. Silver nanoparticle/bacterial nanocellulose paper composites for paste-and-read SERS detection of pesticides on fruit surfaces. Carbohydr. Polym. 2020, 235, 115956.
Chen, J.; Huang, M. Z.; Kong, L. L.; Lin, M. S. Jellylike flexible nanocellulose SERS substrate for rapid in-situ non-invasive pesticide detection in fruits/vegetables. Carbohydr. Polym. 2019, 205, 596–600.
Chen, J.; Huang, M. Z.; Kong, L. L. Flexible Ag/nanocellulose fibers SERS substrate and its applications for in-situ hazardous residues detection on food. Appl. Surf. Sci. 2020, 533, 147454.
Kurita, M.; Arakawa, R.; Kawasaki, H. Silver nanoparticle functionalized glass fibers for combined surface-enhanced Raman scattering spectroscopy (SERS)/surface-assisted laser desorption/ionization (SALDI) mass spectrometry via plasmonic/thermal hot spots. Analyst 2016, 141, 5835–5841.
Deng, D.; Lin, Q. Y.; Li, H.; Huang, Z. P.; Kuang, Y. Y.; Chen, H.; Kong, J. L. Rapid detection of malachite green residues in fish using a surface-enhanced Raman scattering-active glass fiber paper prepared by in situ reduction method. Talanta 2019, 200, 272–278.
Xu, J. T.; Li, X. T.; Wang, Y. X.; Guo, R. H.; Shang, S. M.; Jiang, S. X. Flexible and reusable cap-like thin Fe2O3 film for SERS applications. Nano Res. 2019, 12, 381–388.
Ge, F. Y.; Chen, Y. M.; Liu, A. R.; Guang, S. Y.; Cai, Z. S. Flexible and recyclable SERS substrate fabricated by decorated TiO2 film with Ag NPs on the cotton fabric. Cellulose 2019, 26, 2689–2697.
Gong, Z. J.; Du, H. J.; Cheng, F. S.; Wang, C.; Wang, C. C.; Fan, M. K. Fabrication of SERS swab for direct detection of trace explosives in fingerprints. ACS Appl. Mater. Interfaces 2014, 6, 21931–21937.
Gao, W.; Xu, J. T.; Cheng, C.; Qiu, S.; Jiang, S. X. Rapid and highly sensitive SERS detection of fungicide based on flexible “wash free” metallic textile. Appl. Surf. Sci. 2020, 512, 144693.
Cheng, D. S.; He, M. T.; Ran, J. H.; Cai, G. M.; Wu, J. H.; Wang, X. Depositing a flexible substrate of triangular silver nanoplates onto cotton fabrics for sensitive SERS detection. Sens. Actuators B:Chem. 2018, 270, 508–517.
Huang, J. A.; Zhang, Y. L.; Zhao, Y. Q.; Zhang, X. L.; Sun, M. L.; Zhang, W. J. Superhydrophobic SERS chip based on a Ag coated natural taro-leaf. Nanoscale 2016, 8, 11487–11493.
Sharma, V.; Balaji, R.; Walia, R.; Krishnan, V. Au nanoparticle aggregates assembled on 3D mirror-like configuration using Canna generalis leaves for SERS applications. Colloids Interface Sci. Commun. 2017, 18, 9–12.
Ding, Q.; Kang, Z. W.; He, X. S.; Wang, M. G.; Lin, M. S.; Lin, H. T.; Yang, D. P. Eggshell membrane-templated gold nanoparticles as a flexible SERS substrate for detection of thiabendazole. Microchim. Acta 2019, 186, 453.
Wang, M. L.; Shi, G. C.; Zhu, Y. Y.; Wang, Y. H.; Ma, W. L. Au-decorated dragonfly wing bioscaffold arrays as flexible surface-enhanced Raman scattering (SERS) substrate for simultaneous determination of pesticide residues. Nanomaterials 2018, 8, 289.
Zhang, M. F.; Meng, J. T.; Wang, D. P.; Tang, Q.; Chen, T.; Rong, S. Z.; Liu, J. Q.; Wu, Y. C. Biomimetic synthesis of hierarchical 3D Ag butterfly wing scale arrays/graphene composites as ultrasensitive SERS substrates for efficient trace chemical detection. J. Mater. Chem. C 2018, 6, 1933–1943.
Zhao, N.; Li, H. F.; Tian, C. W.; Xie, Y. R.; Feng, Z. B.; Wang, Z. L.; Yan, X. L.; Wang, W. J.; Yu, H. S. Bioscaffold arrays decorated with Ag nanoparticles as a SERS substrate for direct detection of melamine in infant formula. RSC Adv. 2019, 9, 21771–21776.
Chou, S. Y.; Yu, C. C.; Yen, Y. T.; Lin, K. T.; Chen, H. L.; Su, W. F. Romantic story or Raman scattering? Rose petals as ecofriendly, low-cost substrates for ultrasensitive surface-enhanced Raman scattering. Anal. Chem. 2015, 87, 6017–6024.
Shi, G. C.; Wang, M. L.; Zhu, Y. Y.; Shen, L.; Ma, W. L.; Wang, Y. H.; Li, R. F. Dragonfly wing decorated by gold nanoislands as flexible and stable substrates for surface-enhanced Raman scattering (SERS). Sci. Rep. 2018, 8, 6916.
Godoy, N. V.; García-Lojo, D.; Sigoli, F. A.; Pérez-Juste, J.; Pastoriza-Santos, I.; Mazali, I. O. Ultrasensitive inkjet-printed based SERS sensor combining a high-performance gold nanosphere ink and hydrophobic paper. Sens. Actuators B:Chem. 2020, 320, 128412.
Xu, M.; Tu, G. P.; Ji, M. W.; Wan, X. D.; Liu, J. J.; Liu, J.; Rong, H. P.; Yang, Y. L.; Wang, C.; Zhang, J. T. Vacuum-tuned-atmosphere induced assembly of Au@Ag core/shell nanocubes into multi-dimensional superstructures and the ultrasensitive IAPP proteins SERS detection. Nano Res. 2019, 12, 1375–1379.
Tong, J. H.; Xu, Z. X.; Bian, Y. X.; Niu, Y. T.; Zhang, Y. Y.; Wang, Z. N. Flexible and smart fibers decorated with Ag nanoflowers for highly active surface-enhanced Raman scattering detection. J. Raman Spectrosc. 2019, 50, 1468–1476.
Park, S.; Lee, J.; Ko, H. Transparent and flexible surface-enhanced Raman scattering (SERS) sensors based on gold nanostar arrays embedded in silicon rubber film. ACS Appl. Mater. Interfaces 2017, 9, 44088–44095.
Aparicio-Martínez, E.; Estrada-Moreno, I. A.; Dominguez, R. B. Fabrication of flexible composite of laser reduced graphene@Ag dendrites as active material for surface enhanced Raman spectroscopy. Mater. Lett. 2020, 277, 128380.
Tian, Y. R.; Liu, H. M.; Chen, Y.; Zhou, C. L.; Jiang, Y.; Gu, C. J.; Jiang, T.; Zhou, J. Seedless one-spot synthesis of 3D and 2D Ag nanoflowers for multiple phase SERS-based molecule detection. Sens. Actuators B:Chem. 2019, 301, 127142.
Gao, R. K.; Qian, H. Y.; Weng, C. G.; Wang, X. L.; Xie, C.; Guo, K.; Zhang, S. S.; Xuan, S. H.; Guo, Z. Y.; Luo, L. B. A SERS stamp: Multiscale coupling effect of silver nanoparticles and highly ordered nano-micro hierarchical substrates for ultrasensitive explosive detection. Sens. Actuators B:Chem. 2020, 321, 128543.
Ding, S. Y.; You, E. M.; Tian, Z. Q.; Moskovits, M. Electromagnetic theories of surface-enhanced Raman spectroscopy. Chem. Soc. Rev. 2017, 46, 4042–4076.
Cao, Y. Q.; Zhang, J. W.; Yang, Y.; Huang, Z. R.; Long, N. V.; Fu, C. L. Engineering of SERS substrates based on noble metal nanomaterials for chemical and biomedical applications. Appl. Spectrosc. Rev. 2015, 50, 499–525.
Zhang, Y.; Yang, C. L.; Xue, B.; Peng, Z. H.; Cao, Z. L.; Mu, Q. Q.; Xuan, L. Highly effective and chemically stable surface enhanced Raman scattering substrates with flower-like 3D Ag-Au hetero-nanostructures. Sci. Rep. 2018, 8, 898.
Wang, K. Q.; Sun, D. W.; Pu, H. B.; Wei, Q. Y.; Huang, L. J. Stable, flexible, and high-performance SERS chip enabled by a ternary film-packaged plasmonic nanoparticle array. ACS Appl. Mater. Interfaces 2019, 11, 29177–29186.
Nganou, C.; Carrier, A. J.; Yang, D. C.; Chen, Y. L.; Yu, N. Z.; Richards, D. D.; Bennett, C.; Oakes, K. D.; Zhang, X. Ultrasensitive and remote SERS enabled by oxygen-free integrated plasmonic field transmission. Cell Rep. Phys. Sci. 2020, 1, 100189.
Yan, X. Y.; Wang, M. L.; Sun, X.; Wang, Y. H.; Shi, G. C.; Ma, W. L.; Hou, P. Sandwich-like Ag@Cu@CW SERS substrate with tunable nanogaps and component based on the Plasmonic nanonodule structures for sensitive detection crystal violet and 4-aminothiophenol. Appl. Surf. Sci. 2019, 479, 879–886.
Encina, E. R.; Coronado, E. A. Near field enhancement in Ag Au nanospheres heterodimers. J. Phys. Chem. C 2011, 115, 15908–15914.
Yan, X. Y.; Wang, Y. H.; Shi, G. C.; Wang, M. L.; Zhang, J. Z.; Sun, X.; Xu, H. J. Flower-like Cu nanoislands decorated onto the cicada wing as SERS substrates for the rapid detection of crystal violet. Optik 2018, 172, 812–821.
Zhao, X. H.; Deng, M.; Rao, G. F.; Yan, Y. C.; Wu, C. Y.; Jiao, Y.; Deng, A. Q.; Yan, C. Y.; Huang, J. W.; Wu, S. H. et al. High-performance SERS substrate based on hierarchical 3D Cu nanocrystals with efficient morphology control. Small 2018, 14, 1802477.
Chen, L. Y.; Yu, J. S.; Fujita, T.; Chen, M. W. Nanoporous copper with tunable nanoporosity for SERS applications. Adv. Funct. Mater. 2009, 19, 1221–1226.
Chen, K.; Zhang, X.; Zhang, Y. L.; Lei, D. Y.; Li, H. T.; Williams, T.; MacFarlane, D. R. Highly ordered Ag/Cu hybrid nanostructure arrays for ultrasensitive surface-enhanced Raman spectroscopy. Adv. Mater. Interfaces 2016, 3, 1600115.
Zheng, Z. H.; Cong, S.; Gong, W. B.; Xuan, J. N.; Li, G. H.; Lu, W. B.; Geng, F. X.; Zhao, Z. G. Semiconductor SERS enhancement enabled by oxygen incorporation. Nat. Commun. 2017, 8, 1993.
Wang, X. T.; Guo, L. SERS activity of semiconductors: Crystalline and amorphous nanomaterials. Angew. Chem., Int. Ed. 2020, 59, 4231–4239.
Hou, X. Y.; Fan, X. C.; Wei, P. H.; Qiu, T. Planar transition metal oxides SERS chips: A general strategy. J. Mater. Chem. C 2019, 7, 11134–11141.
Zhang, N.; Tong, L. M.; Zhang, J. Graphene-based enhanced Raman scattering toward analytical applications. Chem. Mater. 2016, 28, 6426–6435.
Pan, X.; Li, L. H.; Lin, H. D.; Tan, J. Y.; Wang, H. T.; Liao, M. L.; Chen, C. J.; Shan, B. B.; Chen, Y. F.; Li, M. A graphene oxide-gold nanostar hybrid based-paper biosensor for label-free SERS detection of serum bilirubin for diagnosis of jaundice. Biosens. Bioelectron. 2019, 145, 111713.
Lv, P.; Chen, Z. D.; Ma, Z. C.; Mao, J. W.; Han, B.; Han, D. D.; Zhang, Y. L. Ag nanoparticle ink coupled with graphene oxide cellulose paper: A flexible and tunable SERS sensing platform. Opt. Lett. 2020, 45, 4208–4211.
Liang, X.; Liang, B. L.; Pan, Z. H.; Lang, X. F.; Zhang, Y. G.; Wang, G. S.; Yin, P. G.; Guo, L. Tuning plasmonic and chemical enhancement for SERS detection on graphene-based Au hybrids. Nanoscale 2015, 7, 20188–20196.
Naqvi, T. K.; Srivastava, A. K.; Kulkarni, M. M.; Siddiqui, A. M.; Dwivedi, P. K. Silver nanoparticles decorated reduced graphene oxide (rGO) SERS sensor for multiple analytes. Appl. Surf. Sci. 2019, 478, 887–895.
Nair, A. K.; Bhavitha, K. B.; Perumbilavil, S.; Sankar, P.; Rouxel, D.; Kala, M. S.; Thomas, S.; Kalarikkal, N. Multifunctional nitrogen sulfur co-doped reduced graphene oxide-Ag nano hybrids (sphere, cube and wire) for nonlinear optical and SERS applications. Carbon 2018, 132, 380–393.
Zhang, X. G.; Dai, Z. G.; Si, S. Y.; Zhang, X. L.; Wu, W.; Deng, H. B.; Wang, F. B.; Xiao, X. H.; Jiang, C. Z. Ultrasensitive SERS substrate integrated with uniform subnanometer scale “Hot Spots” created by a graphene spacer for the detection of mercury ions. Small 2017, 13, 1603347.
Ponlamuangdee, K.; Hornyak, G. L.; Bora, T.; Bamrungsap, S. Graphene oxide/gold nanorod plasmonic paper—A simple and cost-effective SERS substrate for anticancer drug analysis. New J. Chem. 2020, 44, 14087–14094.
Xin, W. B.; Yang, J. M.; Li, C.; Goorsky, M. S.; Carlson, L.; De Rosa, I. M. Novel strategy for one-pot synthesis of gold nanoplates on carbon nanotube sheet as an effective flexible SERS substrate. ACS Appl. Mater. Interfaces 2017, 9, 6246–6254.
Fortuni, B.; Fujita, Y.; Ricci, M.; Inose, T.; Aubert, R.; Lu, G.; Hutchison, J. A.; Hofkens, J.; Latterini, L.; Uji-i, H. A novel method for in situ synthesis of SERS-active gold nanostars on polydimethylsiloxane film. Chem. Commun. 2017, 53, 5121–5124.
Zong, C. H.; Ge, M. Y.; Pan, H.; Wang, J.; Nie, X. M.; Zhang, Q. Q.; Zhao, W. F.; Liu, X. J.; Yu, Y. In situ synthesis of low-cost and large-scale flexible metal nanoparticle-polymer composite films as highly sensitive SERS substrates for surface trace analysis. RSC Adv. 2019, 9, 2857–2864.
Fortuni, B.; Inose, T.; Uezono, S.; Toyouchi, S.; Umemoto, K.; Sekine, S.; Fujita, Y.; Ricci, M.; Lu, G.; Masuhara, A. et al. In situ synthesis of Au-shelled Ag nanoparticles on PDMS for flexible, long-life, and broad spectrum-sensitive SERS substrates. Chem. Commun. 2017, 53, 11298–11301.
Chen, D. Z.; Zhang, L.; Ning, P.; Yuan, H. Z.; Zhang, Y.; Zhang, M.; Fu, T.; He, X. H. In-situ growth of gold nanoparticles on electrospun flexible multilayered PVDF nanofibers for SERS sensing of molecules and bacteria. Nano Res. 2021, 14, 4885–4893.
Liu, X. F.; Ma, J. M.; Jiang, P. F.; Shen, J. L.; Wang, R. W.; Wang, Y.; Tu, G. L. Large-scale flexible surface-enhanced Raman scattering (SERS) sensors with high stability and signal homogeneity. ACS Appl. Mater. Interfaces 2020, 12, 45332–45341.
Jia, K.; Xie, J. N.; He, X. H.; Zhang, D. W.; Hou, B. S.; Li, X. S.; Zhou, X.; Hong, Y.; Liu, X. B. Polymeric micro-reactors mediated synthesis and assembly of Ag nanoparticles into cube-like superparticles for SERS application. Chem. Eng. J. 2020, 395, 125123.
Zhang, L. L.; Li, X. D.; Liu, W. H.; Hao, R.; Jia, H. R.; Dai, Y. Z.; Amin, M. U.; You, H. J.; Li, T.; Fang, J. X. Highly active Au NP microarray films for direct SERS detection. J. Mater. Chem. C 2019, 7, 15259–15268.
George, J. E.; Unnikrishnan, V. K.; Mathur, D.; Chidangil, S.; George, S. D. Flexible superhydrophobic SERS substrates fabricated by in situ reduction of Ag on femtosecond laser-written hierarchical surfaces. Sens. Actuators B:Chem. 2018, 272, 485–493.
Yang, F.; Chen, L.; Li, D. Y.; Xu, Y.; Li, S. B.; Wang, L. Printer-assisted array flexible surface-enhanced Raman spectroscopy chip preparation for rapid and label-free detection of bacteria. J. Raman Spectrosc. 2020, 51, 932–940.
Fu, F. Y.; Yang, B. B.; Hu, X. M.; Tang, H. Y.; Zhang, Y. P.; Xu, X. Y.; Zhang, Y. Y.; Touhid, S. S. B.; Liu, X. D.; Zhu, Y. F. et al. Biomimetic synthesis of 3D Au-decorated chitosan nanocomposite for sensitive and reliable SERS detection. Chem. Eng. J. 2020, 392, 123693.
Cai, J.; Wang, Z. H.; Wang, M. J.; Zhang, D. Y. Au nanoparticle-grafted hierarchical pillars array replicated from diatom as reliable SERS substrates. Appl. Surf. Sci. 2021, 541, 148374.
Nowicka, A. B.; Czaplicka, M.; Kowalska, A. A.; Szymborski, T.; Kamińska, A. Flexible PET/ITO/Ag SERS platform for label-free detection of pesticides. Biosensors 2019, 9, 111.
Zhang, C. P.; Yi, P. Y.; Peng, L. F.; Lai, X. M.; Chen, J.; Huang, M. Z.; Ni, J. Continuous fabrication of nanostructure arrays for flexible surface enhanced Raman scattering substrate. Sci. Rep. 2017, 7, 39814.
Kralchevsky, P. A.; Nagayama, K. Capillary forces between colloidal particles. Langmuir 1994, 10, 23–36.
Zhou, N. N.; Meng, G. W.; Huang, Z. L.; Ke, Y.; Zhou, Q. T.; Hu, X. Y. A flexible transparent Ag-NC@PE film as a cut-and-paste SERS substrate for rapid in situ detection of organic pollutants. Analyst 2016, 141, 5864–5869.
Alyami, A.; Quinn, A. J.; Iacopino, D. Flexible and transparent surface enhanced Raman scattering (SERS)-active Ag NPs/PDMS composites for in-situ detection of food contaminants. Talanta 2019, 201, 58–64.
Wu, P.; Zhong, L. B.; Liu, Q.; Zhou, X.; Zheng, Y. M. Polymer induced one-step interfacial self-assembly method for the fabrication of flexible, robust and free-standing SERS substrates for rapid on-site detection of pesticide residues. Nanoscale 2019, 11, 12829–12836.
Marta, S. D.; Novara, C.; Giorgis, F.; Bonifacio, A.; Sergo, V. Optimization and characterization of paper-made surface enhanced Raman scattering (SERS) substrates with Au and Ag NPs for quantitative analysis. Materials 2017, 10, 1365.
Villa, J. E. L.; Quiñones, N. R.; Fantinatti-Garboggini, F.; Poppi, R. J. Fast discrimination of bacteria using a filter paper-based SERS platform and PLS-DA with uncertainty estimation. Anal. Bioanal. Chem. 2019, 411, 705–713.
Deegan, R. D.; Bakajin, O.; Dupont, T. F.; Huber, G.; Nagel, S. R.; Witten, T. A. Capillary flow as the cause of ring stains from dried liquid drops. Nature 1997, 389, 827–829.
Liu, Y.; Zhou, F.; Wang, H. C.; Huang, X. Y.; Ling, D. X. Micro-coffee-ring-patterned fiber SERS probes and their in situ detection application in complex liquid environments. Sens. Actuators B:Chem. 2019, 299, 126990.
Wu, W.; Liu, L.; Dai, Z. G.; Liu, J. H.; Yang, S. L.; Zhou, L.; Xiao, X. H.; Jiang, C. Z.; Roy, V. A. L. Low-cost, disposable, flexible and highly reproducible screen printed SERS substrates for the detection of various chemicals. Sci. Rep. 2015, 5, 10208.
Weng, G. J.; Yang, Y.; Zhao, J.; Li, J. J.; Zhu, J.; Zhao, J. W. Improving the SERS enhancement and reproducibility of inkjet-printed Au NP paper substrates by second growth of Ag nanoparticles. Mater. Chem. Phys. 2020, 253, 123416.
Liao, W. J.; Roy, P. K.; Chattopadhyay, S. An ink-jet printed, surface enhanced Raman scattering paper for food screening. RSC Adv. 2014, 4, 40487–40493.
Sykam, N.; Jayram, N. D.; Rao, G. M. Exfoliation of graphite as flexible SERS substrate with high dye adsorption capacity for Rhodamine 6G. Appl. Surf. Sci. 2019, 471, 375–386.
Purwidyantri, A.; Hsu, C. H.; Yang, C. M.; Prabowo, B. A.; Tian, Y. C.; Lai, C. S. Plasmonic nanomaterial structuring for SERS enhancement. RSC Adv. 2019, 9, 4982–4992.
Xu, D. P.; Kang, W. G.; Zhang, S.; Yang, W.; Jiang, H. Z.; Lei, Y. P.; Chen, J. Fractal theory and controllable preparation of centimeter level silver nanowire arrays and their application in melamine detection as SERS substrates. Spectrochim. Acta Part A:Mol. Biomol. Spectrosc. 2019, 221, 117184.
Liu, Y.; Kim, M.; Cho, S. H.; Jung, Y. S. Vertically aligned nanostructures for a reliable and ultrasensitive SERS-active platform: Fabrication and engineering strategies. Nano Today 2021, 37, 101063.
Zang, S. Y.; Liu, H.; Wang, Q.; Yang, J. W.; Pang, Z. Q.; Liu, K.; Cai, S. W.; Ren, X. M. Facile fabrication of Au nanoworms covered polyethylene terephthalate (PET) film: Towards flexible SERS substrates. Mater. Lett. 2021, 294, 129643.
Guo, X. F.; Wang, D. P.; Khan, R. Nafion stabilized Ag nanopillar arrays as a flexible SERS substrate for trace chemical detection. Mater. Chem. Phys. 2020, 252, 123291.
Wei, W.; Du, Y. X.; Zhang, L. M.; Yang, Y.; Gao, Y. F. Improving SERS hot spots for on-site pesticide detection by combining silver nanoparticles with nanowires. J. Mater. Chem. C 2018, 6, 8793–8803.
Zhao, P. N.; Liu, H. Y.; Zhang, L. N.; Zhu, P. H.; Ge, S. G.; Yu, J. H. Paper-based SERS sensing platform based on 3D silver dendrites and molecularly imprinted identifier sandwich hybrid for neonicotinoid quantification. ACS Appl. Mater. Interfaces 2020, 12, 8845–8854.
He, X. C.; Yang, S. J.; Xu, T. L.; Song, Y. C.; Zhang, X. J. Microdroplet-captured tapes for rapid sampling and SERS detection of food contaminants. Biosens. Bioelectron. 2020, 152, 112013.
Liu, H. Y.; Zhao, P. N.; Wang, Y.; Li, S. S.; Zhang, L. N.; Zhang, Y.; Ge, S. G.; Yu, J. H. Paper-based sandwich type SERS sensor based on silver nanoparticles and biomimetic recognizer. Sens. Actuators B:Chem. 2020, 313, 127989.
Cheung, M.; Lee, W. W. Y.; McCracken, J. N.; Larmour, I. A.; Brennan, S.; Bell, S. E. J. Raman analysis of dilute aqueous samples by localized evaporation of submicroliter droplets on the tips of superhydrophobic copper wires. Anal. Chem. 2016, 88, 4541–4547.
Lu, S. C.; You, T. T.; Yang, N.; Gao, Y. K.; Yin, P. G. Flexible SERS substrate based on Ag nanodendrite-coated carbon fiber cloth: Simultaneous detection for multiple pesticides in liquid droplet. Anal. Bioanal. Chem. 2020, 412, 1159–1167.
Sun, Y. N.; Chen, X. D.; Zheng, Y. X.; Song, Y. H.; Zhang, H. R.; Zhang, S. S. Surface-enhanced Raman scattering trace-detection platform based on continuous-rolling-assisted evaporation on superhydrophobic surfaces. ACS Appl. Nano Mater. 2020, 3, 4767–4776.
Villa, J. E. L.; Afonso, M. A. S.; Dos Santos, D. P.; Mercadal, P. A.; Coronado, E. A.; Poppi, R. J. Colloidal gold clusters formation and chemometrics for direct SERS determination of bioanalytes in complex media. Spectrochim. Acta Part A:Mol. Biomol. Spectrosc. 2020, 224, 117380.
Pérez-Jiménez, A. I.; Lyu, D. Y.; Lu, Z. X.; Liu, G. K.; Ren, B. Surface-enhanced Raman spectroscopy: Benefits, trade-offs and future developments. Chem. Sci. 2020, 11, 4563–4577.
Ye, D. D.; Lei, X. J.; Li, T.; Cheng, Q. Y.; Chang, C. Y.; Hu, L. B.; Zhang, L. N. Ultrahigh tough, super clear, and highly anisotropic nanofiber-structured regenerated cellulose films. ACS Nano 2019, 13, 4843–4853.
Hu, X. M.; Yang, B. B.; Wen, X. D.; Su, J. N.; Jia, B. Q.; Fu, F. Y.; Zhang, Y. Y.; Yu, Q. L.; Liu, X. D. One-pot synthesis of a three-dimensional Au-decorated cellulose nanocomposite as a surface-enhanced Raman scattering sensor for selective detection and in situ monitoring. ACS Sustainable Chem. Eng. 2021, 9, 3324–3336.
Wang, X. J.; Xu, Q. L.; Hu, X. Y.; Han, F. M.; Zhu, C. H. Silver-nanoparticles/graphene hybrids for effective enrichment and sensitive SERS detection of polycyclic aromatic hydrocarbons. Spectrochim. Acta Part A:Mol. Biomol. Spectrosc. 2020, 228, 117783.
Li, J. Y.; Heng, H.; Lv, J. L.; Jiang, T. T.; Wang, Z. Y.; Dai, Z. H. Graphene oxide-assisted and DNA-modulated SERS of AuCu alloy for the fabrication of apurinic/apyrimidinic endonuclease 1 biosensor. Small 2019, 15, 1901506.
Shafer-Peltier, K. E.; Haynes, C. L.; Glucksberg, M. R.; Van Duyne, R. P. Toward a glucose biosensor based on surface-enhanced Raman scattering. J. Am. Chem. Soc. 2003, 125, 588–593.
Yun, B. J.; Koh, W. G. Highly-sensitive SERS-based immunoassay platform prepared on silver nanoparticle-decorated electrospun polymeric fibers. J. Ind. Eng. Chem. 2020, 82, 341–348.
Carneiro, M. C. C. G.; Sousa-Castillo, A.; Correa-Duarte, M. A.; Sales, M. G. F. Dual biorecognition by combining molecularly-imprinted polymer and antibody in SERS detection. Application to carcinoembryonic antigen. Biosens. Bioelectron. 2019, 146, 111761.
Khlebtsov, B. N.; Bratashov, D. N.; Byzova, N. A.; Dzantiev, B. B.; Khlebtsov, N. G. SERS-based lateral flow immunoassay of troponin I by using gap-enhanced Raman tags. Nano Res. 2019, 12, 413–420.
Safar, W.; Tatar, A. S.; Leray, A.; Potara, M.; Liu, Q. Q.; Edely, M.; Djaker, N.; Spadavecchia, J.; Fu, W. L.; Derouich, S. G. et al. New insight into the aptamer conformation and aptamer/protein interaction by surface-enhanced Raman scattering and multivariate statistical analysis. Nanoscale 2021, 13, 12443–12453.
Fan, W. L.; Yang, S. W.; Zhang, Y. Z.; Huang, B.; Gong, Z. J.; Wang, D. M.; Fan, M. K. Multifunctional flexible SERS sensor on a fixate gel pad: Capturing, derivation, and selective picogram indirect detection of explosive 2, 2′, 4, 4′, 6, 6′-hexanitrostilbene. ACS Sens. 2020, 5, 3599–3606.
Reokrungruang, P.; Chatnuntawech, I.; Dharakul, T.; Bamrungsap, S. A simple paper-based surface enhanced Raman scattering (SERS) platform and magnetic separation for cancer screening. Sens. Actuators B:Chem. 2019, 285, 462–469.
Blanco-Covián, L.; Montes-García, V.; Girard, A.; Fernández-Abedul, M. T.; Pérez-Juste, J.; Pastoriza-Santos, I.; Faulds, K.; Graham, D.; Blanco-López, M. C. Au@Ag SERRS tags coupled to a lateral flow immunoassay for the sensitive detection of pneumolysin. Nanoscale 2017, 9, 2051–2058.
Lim, W. Y.; Goh, C. H.; Thevarajah, T. M.; Goh, B. T.; Khor, S. M. Using SERS-based microfluidic paper-based device (μPAD) for calibration-free quantitative measurement of AMI cardiac biomarkers. Biosens. Bioelectron. 2020, 147, 111792.
Liu, X. X.; Yang, X. S.; Li, K.; Liu, H. F.; Xiao, R.; Wang, W. Y.; Wang, C. W.; Wang, S. Q. Fe3O4@Au SERS tags-based lateral flow assay for simultaneous detection of serum amyloid A and C-reactive protein in unprocessed blood sample. Sens. Actuators B:Chem. 2020, 320, 128350.
Lu, T.; Wang, L. P.; Xia, Y. H.; Jin, Y.; Zhang, L. Y.; Du, S. H. A multimer-based SERS aptasensor for highly sensitive and homogeneous assay of carcinoembryonic antigens. Analyst 2021, 146, 3016–3024.
Yang, M. X.; Liu, G. K.; Mehedi, H. M.; Ouyang, Q.; Chen, Q. S. A universal SERS aptasensor based on DTNB labeled GNTs/Ag core–shell nanotriangle and CS-Fe3O4 magnetic-bead trace detection of Aflatoxin B1. Anal. Chim. Acta 2017, 986, 122–130.
Dunn, M. R.; McCloskey, C. M.; Buckley, P.; Rhea, K.; Chaput, J. C. Generating biologically stable TNA aptamers that function with high affinity and thermal stability. J. Am. Chem. Soc. 2020, 142, 7721–7724.
Zhu, L. J.; Li, S. T.; Shao, X. L.; Feng, Y. X.; Xie, P. Y.; Luo, Y. B.; Huang, K. L.; Xu, W. T. Colorimetric detection and typing of E. coli lipopolysaccharides based on a dual aptamer-functionalized gold nanoparticle probe. Microchim. Acta 2019, 186, 111.
Alizadeh, N.; Memar, M. Y.; Moaddab, S. R.; Kafil, H. S. Aptamer-assisted novel technologies for detecting bacterial pathogens. Biomed. Pharmacother. 2017, 93, 737–745.
Zhu, A. F.; Ali, S.; Xu, Y.; Ouyang, Q.; Chen, Q. S. A SERS aptasensor based on AuNPs functionalized PDMS film for selective and sensitive detection of Staphylococcus aureus. Biosens. Bioelectron. 2021, 172, 112806.
Haupt, K.; Rangel, P. X. M.; Bui, B. T. S. Molecularly imprinted polymers: Antibody mimics for bioimaging and therapy. Chem. Rev. 2020, 120, 9554–9582.
Til, R. F.; Alizadeh-Khaledabad, M.; Mohammadi, R.; Pirsa, S.; Wilson, L. D. Molecular imprinted polymers for the controlled uptake of sinapic acid from aqueous media. Food Funct. 2020, 11, 895–906.
Marcelo, G.; Ferreira, I. C.; Viveiros, R.; Casimiro, T. Development of itaconic acid-based molecular imprinted polymers using supercritical fluid technology for pH-triggered drug delivery. Int. J. Pharmaceut. 2018, 542, 125–131.
Li, Y. T.; Yang, Y. Y.; Sun, Y. X.; Cao, Y.; Huang, Y. S.; Han, S. Electrochemical fabrication of reduced MoS2-based portable molecular imprinting nanoprobe for selective SERS determination of theophylline. Microchim. Acta 2020, 187, 203.
Guo, X. T.; Li, J. H.; Arabi, M.; Wang, X. Y.; Wang, Y. Q.; Chen, L. X. Molecular-imprinting-based surface-enhanced Raman scattering sensors. ACS Sens. 2020, 5, 601–619.
Prakash, J. Fundamentals and applications of recyclable SERS substrates. Int. Rev. Phys. Chem. 2019, 38, 201–242.
Pal, A. K.; Chandra, G. K.; Umapathy, S.; Mohan, D. B. Ultra-sensitive, reusable, and superhydrophobic Ag/ZnO/Ag 3D hybrid surface enhanced Raman scattering substrate for hemoglobin detection. J. Appl. Phys. 2020, 127, 164501.
Li, C. C.; Huang, Y. M.; Li, X. Y.; Zhang, Y. R.; Chen, Q. L.; Ye, Z. W.; Alqarni, Z.; Bell, S. E. J.; Xu, Y. K. Towards practical and sustainable SERS: A review of recent developments in the construction of multifunctional enhancing substrates. J. Mater. Chem. C 2021, 9, 11517–11552.
Sakir, M.; Salem, S.; Sanduvac, S. T.; Sahmetlioglu, E.; Sarp, G.; Onses, M. S.; Yilmaz, E. Photocatalytic green fabrication of Au nanoparticles on ZnO nanorods modified membrane as flexible and photocatalytic active reusable SERS substrates. Colloids Surf. A:Physicochem. Eng. Aspects 2020, 585, 124088.
Li, J. T.; Wu, N. Q. Semiconductor-based photocatalysts and photoelectrochemical cells for solar fuel generation: A review. Catal. Sci. Technol. 2015, 5, 1360–1384.
Khan, S. A.; Arshad, Z.; Shahid, S.; Arshad, I.; Rizwan, K.; Sher, M.; Fatima, U. Synthesis of TiO2/graphene oxide nanocomposites for their enhanced photocatalytic activity against methylene blue dye and ciprofloxacin. Compos. Part B:Eng. 2019, 175, 107120.
Xiong, L. Q.; Tang, J. W. Strategies and challenges on selectivity of photocatalytic oxidation of organic substances. Adv. Energy Mater. 2021, 11, 2003216.
Kou, J. H.; Lu, C. H.; Wang, J.; Chen, Y. K.; Xu, Z. Z.; Varma, R. S. Selectivity enhancement in heterogeneous photocatalytic transformations. Chem. Rev. 2017, 117, 1445–1514.
Zhu, T.; Wang, H.; Zang, L. B.; Jin, S. L.; Guo, S.; Park, E.; Mao, Z.; Jung, Y. M. Flexible and reusable Ag coated TiO2 nanotube arrays for highly sensitive SERS detection of formaldehyde. Molecules 2020, 25, 1199.
Hao, Q.; Li, M. Z.; Wang, J. W.; Fan, X. C.; Jiang, J.; Wang, X. X.; Zhu, M. S.; Qiu, T.; Ma, L. B.; Chu, P. K. et al. Flexible surface-enhanced Raman scattering chip: A universal platform for real-time interfacial molecular analysis with femtomolar sensitivity. ACS Appl. Mater. Interfaces 2020, 12, 54174–54180.
Yang, J.; Xu, J. T.; Bian, X. Y.; Pu, Y.; Chiu, K. L.; Miao, D. G.; Jiang, S. X. Flexible and reusable SERS substrate for rapid conformal detection of residue on irregular surface. Cellulose 2021, 28, 921–936.
Bamrungsap, S.; Treetong, A.; Apiwat, C.; Wuttikhun, T.; Dharakul, T. SERS-fluorescence dual mode nanotags for cervical cancer detection using aptamers conjugated to gold–silver nanorods. Microchim. Acta 2016, 183, 249–256.
Villa, J. E. L.; Poppi, R. J. A portable SERS method for the determination of uric acid using a paper-based substrate and multivariate curve resolution. Analyst 2016, 141, 1966–1972.
Tang, S. Q.; Liu, H. M.; Tian, Y. R.; Chen, D.; Gu, C. J.; Wei, G. D.; Jiang, T.; Zhou, J. Surface-enhanced Raman scattering-based lateral flow immunoassay mediated by hydrophilic–hydrophobic Ag-modified PMMA substrate. Spectrochim. Acta Part A:Mol. Biomol. Spectrosc. 2021, 262, 120092.
Crawford, A. C.; Laurentius, L. B.; Mulvihill, T. S.; Granger, J. H.; Spencer, J. S.; Chatterjee, D.; Hanson, K. E.; Porter, M. D. Detection of the tuberculosis antigenic marker mannose-capped lipoarabinomannan in pretreated serum by surface-enhanced Raman scattering. Analyst 2017, 142, 186–196.
Kim, W.; Lee, S. H.; Kim, J. H.; Ahn, Y. J.; Kim, Y. H.; Yu, J. S.; Choi, S. Paper-based surface-enhanced Raman spectroscopy for diagnosing prenatal diseases in women. ACS Nano 2018, 12, 7100–7108.
Narasimhan, V.; Siddique, R. H.; Park, H.; Choo, H. Bioinspired disordered flexible metasurfaces for human tear analysis using broadband surface-enhanced Raman scattering. ACS Omega 2020, 5, 12915–12922.
Wang, Y. L.; Zhao, C.; Wang, J. J.; Luo, X.; Xie, L. J.; Zhan, S. J.; Kim, J.; Wang, X. Z.; Liu, X. J.; Ying, Y. B. Wearable plasmonic-metasurface sensor for noninvasive and universal molecular fingerprint detection on biointerfaces. Sci. Adv. 2021, 7, e4553.
He, X.; Zhou, X.; Liu, Y.; Wang, X. L. Ultrasensitive, recyclable and portable microfluidic surface-enhanced Raman scattering (SERS) biosensor for uranyl ions detection. Sens. Actuators B:Chem. 2020, 311, 127676.
Jin, X. Y.; Guo, P. R.; Guan, P.; Wang, S.; Lei, Y. Q.; Wang, G. H. The fabrication of paper separation channel based SERS substrate and its recyclable separation and detection of pesticides. Spectrochim. Acta Part A:Mol. Biomol. Spectrosc. 2020, 240, 118561.
Li, H. J.; Wang, M. C.; Shen, X. X.; Liu, S.; Wang, Y.; Li, Y.; Wang, Q. W.; Che, G. B. Rapid and sensitive detection of enrofloxacin hydrochloride based on surface enhanced Raman scattering-active flexible membrane assemblies of Ag nanoparticles. J. Environ. Manage. 2019, 249, 109387.
Sun, H. M.; Li, X. T.; Hu, Z. Y.; Gu, C. J.; Chen, D.; Wang, J.; Li, B.; Jiang, T.; Zhou, X. F. Hydrophilic–hydrophobic silver nanowire-paper based SERS substrate for in-situ detection of furazolidone under various environments. Appl. Surf. Sci. 2021, 556, 149748.
Salthammer, T.; Mentese, S.; Marutzky, R. Formaldehyde in the indoor environment. Chem. Rev. 2010, 110, 2536–2572.
Sun, J. J.; Zhang, Z. Q.; Liu, C.; Dai, X. D.; Zhou, W. P.; Jiang, K. M.; Zhang, T.; Yin, J.; Gao, J.; Yin, H. C. et al. Continuous in situ portable SERS analysis of pollutants in water and air by a highly sensitive gold nanoparticle-decorated PVDF substrate. Anal. Bioanal. Chem. 2021, 413, 5469–5482.
Li, L. M.; Chin, W. S. Rapid fabrication of a flexible and transparent Ag nanocubes@PDMS film as a SERS substrate with high performance. ACS Appl. Mater. Interfaces 2020, 12, 37538–37548.
Zeisel, S. H.; Da Costa, K. A. Choline: An essential nutrient for public health. Nutr. Rev. 2009, 67, 615–623.
Weng, G. J.; Feng, Y.; Zhao, J.; Li, J. J.; Zhu, J.; Zhao, J. W. Sensitive detection of choline in infant formulas by SERS marker transformation occurring on a filter-based flexible substrate. Sens. Actuators B:Chem. 2020, 308, 127754.
Li, Z. B.; Meng, G. W.; Huang, Q.; Hu, X. Y.; He, X.; Tang, H. B.; Wang, Z. W.; Li, F. D. Ag nanoparticle-grafted PAN-nanohump array films with 3D high-density hot spots as flexible and reliable SERS substrates. Small 2015, 11, 5452–5459.
Wu, J. J.; Feng, Y.; Zhang, L.; Wu, W. B. Nanocellulose-based surface-enhanced Raman spectroscopy sensor for highly sensitive detection of TNT. Carbohydr. Polym. 2020, 248, 116766.
Shi, Y. E.; Wang, W. S.; Zhan, J. H. A positively charged silver nanowire membrane for rapid on-site swabbing extraction and detection of trace inorganic explosives using a portable Raman spectrometer. Nano Res. 2016, 9, 2487–2497.
Lussier, F.; Thibault, V.; Charron, B.; Wallace, G. Q.; Masson, J. F. Deep learning and artificial intelligence methods for Raman and surface-enhanced Raman scattering. TrAC Trends Anal. Chem. 2020, 124, 115796.
Lussier, F.; Missirlis, D.; Spatz, J. P.; Masson, J. F. Machine-learning-driven surface-enhanced Raman scattering optophysiology reveals multiplexed metabolite gradients near cells. ACS Nano 2019, 13, 1403–1411.
Huang, Z. F.; Siddhanta, S.; Zheng, G.; Kickler, T.; Barman, I. Rapid, label-free optical spectroscopy platform for diagnosis of heparin-induced thrombocytopenia. Angew. Chem., Int. Ed. 2020, 59, 5972–5978.
Liu, X. B.; Zhang, Z. M.; Sousa, P. F. M.; Chen, C.; Ouyang, M. L.; Wei, Y. C.; Liang, Y. Z.; Chen, Y.; Zhang, C. P. Selective iteratively reweighted quantile regression for baseline correction. Anal. Bioanal. Chem. 2014, 406, 1985–1998.
Steinier, J.; Termonia, Y.; Deltour, J. Smoothing and differentiation of data by simplified least square procedure. Anal. Chem. 1972, 44, 1906–1909.
Xi, Y.; Li, Y. E.; Duan, Z. Z.; Lu, Y. A novel pre-processing algorithm based on the wavelet transform for Raman spectrum. Appl. Spectrosc. 2018, 72, 1752–1763.
Feuerstein, D.; Parker, K. H.; Boutelle, M. G. Practical methods for noise removal: Applications to spikes, nonstationary quasi-periodic noise, and baseline drift. Anal. Chem. 2009, 81, 4987–4994.
Eilers, P. H. C. A perfect smoother. Anal. Chem. 2003, 75, 3631–3636.
Zhang, Z. M.; Chen, S.; Liang, Y. Z. Baseline correction using adaptive iteratively reweighted penalized least squares. Analyst 2010, 135, 1138–1146.
Sattlecker, M.; Stone, N.; Bessant, C. Current trends in machine-learning methods applied to spectroscopic cancer diagnosis. TrAC Trends Anal. Chem. 2014, 59, 17–25.
Shin, H.; Jeong, H.; Park, J.; Hong, S.; Choi, Y. Correlation between cancerous exosomes and protein markers based on surface-enhanced Raman spectroscopy (SERS) and principal component analysis (PCA). ACS Sens. 2018, 3, 2637–2643.
Taylor, J. N.; Mochizuki, K.; Hashimoto, K.; Kumamoto, Y.; Harada, Y.; Fujita, K.; Komatsuzaki, T. High-resolution Raman microscopic detection of follicular thyroid cancer cells with unsupervised machine learning. J. Phys. Chem. B 2019, 123, 4358–4372.
Lim, J. Y.; Nam, J. S.; Shin, H.; Park, J.; Song, H. I.; Kang, M.; Lim, K. I.; Choi, Y. Identification of newly emerging influenza viruses by detecting the virally infected cells based on surface enhanced Raman spectroscopy and principal component analysis. Anal. Chem. 2019, 91, 5677–5684.
Xie, L. P.; Li, Z. L.; Zhou, Y. H.; He, Y. L.; Zhu, J. X. Computational diagnostic techniques for electrocardiogram signal analysis. Sensors 2020, 20, 6318.
Feng, S. Y.; Lin, D.; Lin, J. Q.; Li, B. H.; Huang, Z. F.; Chen, G. N.; Zhang, W.; Wang, L.; Pan, J. J.; Chen, R. et al. Blood plasma surface-enhanced Raman spectroscopy for non-invasive optical detection of cervical cancer. Analyst 2013, 138, 3967–3974.
Szymańska, E.; Gerretzen, J.; Engel, J.; Geurts, B.; Blanchet, L.; Buydens, L. M. C. Chemometrics and qualitative analysis have a vibrant relationship. TrAC Trends Anal. Chem. 2015, 69, 34–51.
Gromski, P. S.; Muhamadali, H.; Ellis, D. I.; Xu, Y.; Correa, E.; Turner, M. L.; Goodacre, R. A tutorial review: Metabolomics and partial least squares-discriminant analysis—A marriage of convenience or a shotgun wedding. Anal. Chim. Acta 2015, 879, 10–23.
Li, S. X.; Zhang, Y. J.; Xu, J. F.; Li, L. F.; Zeng, Q. Y.; Lin, L.; Guo, Z. Y.; Liu, Z. M.; Xiong, H. L.; Liu, S. H. Noninvasive prostate cancer screening based on serum surface-enhanced Raman spectroscopy and support vector machine. Appl. Phys. Lett. 2014, 105, 091104.
Shin, H.; Oh, S.; Hong, S.; Kang, M.; Kang, D.; Ji, Y. G.; Choi, B. H.; Kang, K. W.; Jeong, H.; Park, Y. et al. Early-stage lung cancer diagnosis by deep learning-based spectroscopic analysis of circulating exosomes. ACS Nano 2020, 14, 5435–5444.
Liao, M. H.; Zheng, S. S.; Pan, S. X.; Lu, D. J.; He, W. Q.; Situ, G. H.; Peng, X. Deep-learning-based ciphertext-only attack on optical double random phase encryption. Opto-Electron. Adv. 2021, 4, 200016.
Tadesse, L. F.; Safir, F.; Ho, C. S.; Hasbach, X.; Khuri-Yakub, B. P.; Jeffrey, S. S.; Saleh, A. A. E.; Dionne, J. Toward rapid infectious disease diagnosis with advances in surface-enhanced Raman spectroscopy. J. Chem. Phys. 2020, 152, 240902.
Ho, C. S.; Jean, N.; Hogan, C. A.; Blackmon, L.; Jeffrey, S. S.; Holodniy, M.; Banaei, N.; Saleh, A. A. E.; Ermon, S.; Dionne, J. Rapid identification of pathogenic bacteria using Raman spectroscopy and deep learning. Nat. Commun. 2019, 10, 4927.
Zhang, X. L.; Lin, T.; Xu, J. F.; Luo, X.; Ying, Y. B. DeepSpectra: An end-to-end deep learning approach for quantitative spectral analysis. Anal. Chim. Acta 2019, 1058, 48–57.
Acquarelli, J.; Van Laarhoven, T.; Gerretzen, J.; Tran, T. N.; Buydens, L. M. C.; Marchiori, E. Convolutional neural networks for vibrational spectroscopic data analysis. Anal. Chim. Acta 2017, 954, 22–31.
Erzina, M.; Trelin, A.; Guselnikova, O.; Dvorankova, B.; Strnadova, K.; Perminova, A.; Ulbrich, P.; Mares, D.; Jerabek, V.; Elashnikov, R. et al. Precise cancer detection via the combination of functionalized SERS surfaces and convolutional neural network with independent inputs. Sens. Actuators B:Chem. 2020, 308, 127660.
Tran, V.; Walkenfort, B.; König, M.; Salehi, M.; Schlücker, S. Rapid, quantitative, and ultrasensitive point-of-care testing: A portable SERS reader for lateral flow assays in clinical chemistry. Angew. Chem., Int. Ed. 2019, 58, 442–446.