References
Jung, H. D.; Jang, T. S.; Wang, L. F.; Kim, H. E.; Koh, Y. H.; Song, J. Novel strategy for mechanically tunable and bioactive metal implants. Biomaterials 2015, 37, 49–61.
Morinaga, K.; Sasaki, H.; Park, S.; Hokugo, A.; Okawa, H.; Tahara, Y.; Colwell, C. S.; Nishimura, I. Neuronal PAS domain 2 (Npas2) facilitated osseointegration of titanium implant with rough surface through a neuroskeletal mechanism. Biomaterials 2019, 192, 62–74.
Ma, X. Y.; Feng, Y. F.; Ma, Z. S.; Li, X.; Wang, J.; Wang, L.; Lei, W. The promotion of osteointegration under diabetic conditions using chitosan/hydroxyapatite composite coating on porous titanium surfaces. Biomaterials 2014, 35, 7259–7270.
Park, J.; Bauer, S.; Schmuki, P. von der Mark, K. Narrow window in nanoscale dependent activation of endothelial cell growth and differentiation on TiO2 nanotube surfaces. Nano Lett. 2009, 9, 3157–3164.
Hou, Y.; Xie, W. Y.; Yu, L. X.; Camacho, L. C.; Nie, C. X.; Zhang, M.; Haag, R.; Wei, Q. Surface roughness gradients reveal topography-specific mechanosensitive responses in human mesenchymal stem cells. Small 2020, 16, 1905422.
Anguiano-Sanchez, J.; Martinez-Romero, O.; Siller, H. R.; Diaz-Elizondo, J. A.; Flores-Villalba, E.; Rodriguez, CA. Influence of PEEK coating on hip implant stress shielding: A finite element analysis. Comput. Math. Methods Med. 2016, 2016, 6183679.
Sie Kiong, A. L.; Arjunkumar, R. Tissue-engineered ligament: Implant constructs for tooth replacement (ligaplants). J. Pharm. Sci. Res. 2014, 6, 158–160.
Hedia, H. S. Effect of coating thickness and its material on the stress distribution for dental implants. J. Med. Eng. Technol. 2007, 31, 280–287.
Oskui, I. Z.; Hashemi, A. Dynamic tensile properties of bovine periodontal ligament: A nonlinear viscoelastic model. J. Biomech. 2016, 49, 756–764.
Amato, A.; Terreni, S.; Granata, M.; Michel, C.; Sassolas, B.; Pinard, L.; Canepa, M.; Cagnoli, G. Observation of a correlation between internal friction and urbach energy in amorphous oxides thin films. Sci. Rep. 2020, 10, 1670.
Si, Y.; Wang, X. Q.; Dou, L. Y.; Yu, J. Y.; Ding, B. Ultralight and fire-resistant ceramic nanofibrous aerogels with temperature-invariant superelasticity. Sci. Adv. 2018, 4, eaas8925.
Li, F. S.; Zhao, H. W.; Yue, Y. H.; Yang, Z.; Zhang, Y. W.; Guo, L. Dual-phase super-strong and elastic ceramic. ACS Nano 2019, 13, 4191–4198.
Yu, Y. L.; Shen, X. K.; Luo, Z.; Hu, Y.; Li, M. H.; Ma, P. P.; Ran, Q. C.; Dai, L. L.; He, Y.; Cai, K. Y. Osteogenesis potential of different titania nanotubes in oxidative stress microenvironment. Biomaterials 2018, 167, 44–57.
Dalby, M. J.; Gadegaard, N.; Oreffo, R. O. C. Harnessing nanotopography and integrin-matrix interactions to influence stem cell fate. Nat. Mater. 2014, 13, 558–569.
Hou, J. Y.; Xiao, Z. H.; Liu, Z. Q.; Zhao, H. W.; Zhu, Y. K.; Guo, L.; Zhang, Z. F.; Ritchie, R. O.; Wei, Y.; Deng, X. L. An amorphous peri-implant ligament with combined osteointegration and energy-dissipation. Adv. Mater. 2021, 33, 2103727.