Discover the SciOpen Platform and Achieve Your Research Goals with Ease.
Search articles, authors, keywords, DOl and etc.
Unidirectionally aligned nanorods (NRs) are of great importance for different applications, including displays, lighting, and photodetectors. Recently, many alignment techniques were studied to align quantum rods (QRs). However, the brightness of these films, due to the limited concentration of aligned quantum rods in the film, is not enough for their implementation as brightness enhancement films (BEFs) in displays. This can be ascribed to the poor miscibility of quantum rods in polymer and strong concentration dependence of the polarized emission. The ligands of NR are very important for the alignment and brightness. In this article, we proposed a ligand combination comprising T-shape promesogenic phosphonic acid, which on being photoaligned provides mutually parallel alignment of the quantum rods. The T-shape ligands enable the fabrication of hybrid films with a QRs concentration as high as 10 wt.%–20 wt.% retaining high brightness and luminescence polarization property. Later, we used these films in the in-plane switching (IPS) display backlight that shows the color gamut up to 121% of national television system committee (NTSC) (CIE1931), liquid-crystal display (LCD) efficiency up to 7.9%, power efficacy 103 ± 2 nits/W, and the high brightness of ~ 550 ± 10 nits. Thus, the proposed ligands can be used for the alignment of a variety of nanorods.
Boles, M. A.; Engel, M.; Talapin, D. V. Self-assembly of colloidal nanocrystals: From intricate structures to functional materials. Chem. Rev. 2016, 116, 11220–11289.
Wood, V.; Bulović, V. Colloidal quantum dot light-emitting devices. Nano Rev. 2010, 1, 5202.
McKittrick, J.; Shea-Rohwer, L. E. Review: Down conversion materials for solid-state lighting. J. Am. Ceram. Soc. 2014, 97, 1327–1352.
Qasim, K.; Lei, W.; Li, Q. Quantum dots for light emitting diodes. J. Nanosci. Nanotechnol. 2013, 13, 3173–3185.
Shirasaki, Y.; Supran, G. J.; Bawendi, M. G.; Bulović, V. Emergence of colloidal quantum-dot light-emitting technologies. Nat. Photonics 2013, 7, 13–23.
Jiang, Y. R.; Cho, S. Y.; Shim, M. Light-emitting diodes of colloidal quantum dots and nanorod heterostructures for future emissive displays. J. Mater. Chem. C 2018, 6, 2618–2634.
Choi, M. K.; Yang, J.; Hyeon, T.; Kim, D. H. Flexible quantum dot light-emitting diodes for next-generation displays. npj Flex. Electron. 2018, 2, 10.
Kim, S. Y.; Jeong, W. I.; Mayr, C.; Park, Y. S.; Kim, K. H.; Lee, J. H.; Moon, C. K.; Brütting, W.; Kim, J. J. Light-emitting diodes: Organic light-emitting diodes with 30% external quantum efficiency based on a horizontally oriented emitter (Adv. Funct. Mater. 31/2013). Adv. Funct. Mater. 2013, 23, 3829–3829.
Kim, J. S.; Ho, P. K. H.; Greenham, N. C.; Friend, R. H. Electroluminescence emission pattern of organic light-emitting diodes: Implications for device efficiency calculations. J. Appl. Phys. 2000, 88, 1073–1081.
Brütting, W.; Frischeisen, J.; Schmidt, T. D.; Scholz, B. J.; Mayr, C. Device Efficiency of organic light-emitting diodes: Progress by improved light outcoupling. Phys. Status Solidi A 2013, 210, 44–65.
Srivastava, A. K.; Zhang, W. L.; Schneider, J.; Rogach, A. L.; Chigrinov, V. G.; Kwok, H. S. Photoaligned nanorod enhancement films with polarized emission for liquid-crystal-display applications. Adv. Mater. 2017, 29, 1701091.
Prodanov, M. F.; Gupta, S. K.; Kang, C. B.; Diakov, M. Y.; Vashchenko, V. V.; Srivastava, A. K. Thermally stable quantum rods, covering full visible range for display and lighting application. Small 2021, 17, 2004487.
Prodanov, M. F.; Vashchenko, V. V.; Srivastava, A. K. Progress toward blue-emitting (460−475 Nm) nanomaterials in display applications. Nanophotonics 2021, 10, 1801–1836.
Burrows, N. D.; Vartanian, A. M.; Abadeer, N. S.; Grzincic, E. M.; Jacob, L. M.; Lin, W.; Li, J.; Dennison, J. M.; Hinman, J. G.; Murphy, C. J. Anisotropic nanoparticles and anisotropic surface chemistry. J. Phys. Chem. Lett. 2016, 7, 632–641.
Thorkelsson, K.; Bai, P.; Xu, T. Self-assembly and applications of anisotropic nanomaterials: A review. Nano Today 2015, 10, 48–66.
Yang, L. J.; Zhou, Z. J.; Song, J. B.; Chen, X. Y. Anisotropic nanomaterials for shape-dependent physicochemical and biomedical applications. Chem. Soc. Rev. 2019, 48, 5140–5176.
Li, L. S.; Alivisatos, A. P. Semiconductor nanorod liquid crystals and their assembly on a substrate. Adv. Mater. 2003, 15, 408–411.
Schäfer, S.; Srikantharajah, R.; Klaumünzer, M.; Lobaz, V.; Voigt, M.; Peukert, W. Self-alignment of zinc oxide nanorods into a 3D-smectic phase. Thin Solid Films 2014, 562, 659–667.
Wang, M. S.; He, L.; Zorba, S.; Yin, Y. D. Magnetically actuated liquid crystals. Nano Lett. 2014, 14, 3966–3971.
Kim, F.; Kwan, S.; Akana, J.; Yang, P. D. Langmuir-blodgett nanorod assembly. J. Am. Chem. Soc. 2001, 123, 4360–4361.
Baker, J. L.; Widmer-Cooper, A.; Toney, M. F.; Geissler, P. L.; Alivisatos, A. P. Device-scale perpendicular alignment of colloidal nanorods. Nano Lett. 2010, 10, 195–201.
Hu, Z. H.; Fischbein, M. D.; Querner, C.; Drndić, M. Electric-field-driven accumulation and alignment of CdSe and CdTe nanorods in nanoscale devices. Nano Lett. 2006, 6, 2585–2591.
Wang, T.; Zhuang, J. Q.; Lynch, J.; Chen, O.; Wang, Z. L.; Wang, X. R.; LaMontagne, D.; Wu, H. M.; Wang, Z. W.; Cao, Y. C. Self-assembled colloidal superparticles from nanorods. Science 2012, 338, 358–363.
Lutich, A.; Carbone, L.; Volchek, S.; Yakovtseva, V.; Sokol, V.; Manna, L.; Gaponenko, S. Macroscale alignment of CdSe/CdS nanorods by porous anodic alumina templates. Phys. Status Solidi C 2009, 3, 151–153.
Amit, Y.; Faust, A.; Lieberman, I.; Yedidya, L.; Banin, U. Semiconductor nanorod layers aligned through mechanical rubbing. Phys Status Solidi A 2012, 209, 235–242.
Du, T.; Schneider, J.; Srivastava, A. K.; Susha, A. S.; Chigrinov, V. G.; Kwok, H. S.; Rogach, A. L. Combination of photoinduced alignment and self-assembly to realize polarized emission from ordered semiconductor nanorods. ACS Nano 2015, 9, 11049–11055.
Hasegawa, M.; Hirayama, Y.; Dertinger, S. Polarized fluorescent emission from aligned electrospun nanofiber sheets containing semiconductor nanorods. Appl. Phys. Lett. 2015, 106, 051103.
Cunningham, P. D.; Souza, J. B. Jr.; Fedin, I.; She, C. X.; Lee, B.; Talapin, D. V. Assessment of anisotropic semiconductor nanorod and nanoplatelet heterostructures with polarized emission for liquid crystal display technology. ACS Nano 2016, 10, 5769–5781.
Schneider, J.; Zhang, W. L.; Srivastava, A. K.; Chigrinov, V. G.; Kwok, H. S.; Rogach, A. L. Photoinduced micropattern alignment of semiconductor nanorods with polarized emission in a liquid crystal polymer matrix. Nano Lett. 2017, 17, 3133–3138.
Dudka, T.; Zhang, W. L.; Schneider, J.; Gupta, S. K.; Prodanov, M. F.; Vashchenko, V. V.; Srivastava, A. K.; Rogach, A. L. Formulation of a composite system of liquid crystals and light-emitting semiconductor quantum rods: From assemblies in solution to photoaligned films. Adv. Mater. Technol. 2019, 4, 1900695.
Crooker, S. A.; Hollingsworth, J. A.; Tretiak, S.; Klimov, V. I. Spectrally resolved dynamics of energy transfer in quantum-dot assemblies: Towards engineered energy flows in artificial materials. Phys. Rev. Lett. 2002, 89, 186802.
Zhang, W. L.; Prodanov, M. F.; Schneider, J.; Gupta, S. K.; Dudka, T.; Vashchenko, V. V.; Rogach, A. L.; Srivastava, A. K. Ligand shell engineering to achieve optimal photoalignment of semiconductor quantum rods for liquid crystal displays. Adv. Funct. Mater. 2018, 29, 1805094.
Matvienko, O. O.; Prodanov, M. F.; Gorobets, N. Y.; Vashchenko, V. V.; Vovk, O. M.; Babayevskaya, N. V.; Savin, Y. N. Impact of dendritic interface modifiers on phase behavior of polyvinylcarbazol-CdSe/ZnS nanocomposite films. Colloid Polym. Sci. 2014, 292, 707–713.
Noh, M.; Kim, T.; Lee, H.; Kim, C. K.; Joo, S. W.; Lee, K. Fluorescence quenching caused by aggregation of water-soluble CdSe quantum dots. Colloids Surf. A Physicochem. Eng. Aspects 2010, 359, 39–44.
Koole, R.; Liljeroth, P.; de Mello Donegá, C.; Vanmaekelbergh, D.; Meijerink, A. Electronic coupling and exciton energy transfer in CdTe quantum-dot molecules. J. Am. Chem. Soc. 2006, 128, 10436–10441.
Kagan, C. R.; Murray, C. B.; Nirmal, M.; Bawendi, M. G. Electronic energy transfer in CdSe quantum dot solids. Phys. Rev. Lett. 1996, 76, 1517–1520.
Zhang, Y.; Mi, L.; Wang, P. N.; Ma, J.; Chen, J. Y. PH-dependent aggregation and photoluminescence behavior of thiol-capped CdTe quantum dots in aqueous solutions. J. Lumin. 2008, 128, 1948–1951.
Sapsford, K. E.; Berti, L.; Medintz, I. L. Materials for fluorescence resonance energy transfer analysis: Beyond traditional donor-acceptor combinations. Angew. Chem., Int. Ed. 2006, 45, 4562–4589.
Prodanov, M. F.; Vashchenko, O. V.; Vashchenko, V. V. A synthetic strategy toward branched oligomesogenic phosphonic acids: Comparison of alternative pathways. Tetrahedron Lett. 2014, 55, 275–278.
Prodanov, M. P.; Diakov, M. Y.; Vlasenko, G. S.; Vashchenko, V. V. Towards new oligomesogenic phosphonic acids as stabilizers of nanoparticles colloids in nematic liquid crystals. Synlett 2015, 26, 1905–1910.
Kang, C. B.; Prodanov, M. F.; Gupta, S. K.; Gao, Y. Y.; Vashchenko, V. V.; Srivastava, A. K. P-104: Photo-aligned quantum rods with T-shaped ligands based on liquid-crystal polymer matrix. SID Symp. Digest Tech. Papers 2020, 51, 1745–1747.
Gupta, S. K.; Prodanov, M. F.; Zhang, W. L.; Vashchenko, V. V.; Dudka, T.; Rogach, A. L.; Srivastava, A. K. Inkjet-printed aligned quantum rod enhancement films for their application in liquid crystal displays. Nanoscale 2019, 11, 20837–20846.
Chou, K. F.; Dennis, A. M. Förster resonance energy transfer between quantum dot donors and quantum dot acceptors. Sensors 2015, 15, 13288–13325.
Zhang, H.; Su, Q.; Chen, S. M. Suppressing förster resonance energy transfer in close-packed quantum-dot thin film: Toward efficient quantum-dot light-emitting diodes with external quantum efficiency over 21.6%. Adv. Opt. Mater. 2020, 8, 1902092.
Prodanov, M. F.; Kolosov, M. A.; Krivoshey, A. I.; Fedoryako, A. P.; Yarmolenko, S. N.; Semynozhenko, V. P.; Goodby, J. W.; Vashchenko, V. V. Dispersion of magnetic nanoparticles in a polymorphic liquid crystal. Liquid Cryst. 2012, 39, 1512–1526.
Prodanov, M. F.; Popova, E. V.; Gamzaeva, S. A.; Fedoryako, A. P.; Vashchenko, V. V. Ferromagnetic nanoparticles in a ferroelectric liquid crystal: Properties of stable colloids in homogeneous cells. J. Mol. Liq. 2018, 267, 353–362.
Pang, Z. F.; Zhang, J.; Cao, W. C.; Kong, X. Q.; Peng, X. G. Partitioning surface ligands on nanocrystals for maximal solubility. Nat. Commun. 2019, 10, 2454.
Carbone, L.; Nobile, C.; De Giorgi, M.; Sala, F. D.; Morello, G.; Pompa, P.; Hytch, M.; Snoeck, E.; Fiore, A.; Franchini, I. R. et al. Synthesis and micrometer-scale assembly of colloidal CdSe/CdS nanorods prepared by a seeded growth approach. Nano Lett. 2007, 7, 2942–2950.
Diroll, B. T.; Greybush, N. J.; Kagan, C. R.; Murray, C. B. Smectic nanorod superlattices assembled on liquid subphases: Structure, orientation, defects, and optical polarization. Chem. Mater. 2015, 27, 2998–3008.
Song, J. J.; Wang, O. Y.; Shen, H. B.; Lin, Q. L.; Li, Z. H.; Wang, L.; Zhang, X. T.; Li, L. S. Over 30% external quantum efficiency light-emitting diodes by engineering quantum dot-assisted energy level match for hole transport layer. Adv. Funct. Mater. 2019, 29, 1808377.