AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article

Inkjet printing of epitaxially connected nanocrystal superlattices

Daniel M. BalazsN. Deniz ErkanMichelle QuienTobias Hanrath( )
School of Chemical and Biomolecular Engineering, Cornell University, Ithaca, NY, USA
Present address: Institute of Science and Technology Austria, Am Campus 1, Klosterneuburg 3400, Austria
Show Author Information

Graphical Abstract

Monolayer TiSe2 with Pt adatoms adsorption on the line defects were successfully fabricated on the Au(111) substrate. The density functional theory calculations shows that the line defect itself has catalytic activity for hydrogen evlution reaction, and it will have better catalytic activity if it adsorbs Pt atoms.

Abstract

Access to a blossoming library of colloidal nanomaterials provides building blocks for complex assembled materials. The journey to bring these prospects to fruition stands to benefit from the application of advanced processing methods. Epitaxially connected nanocrystal (or quantum dot) superlattices present a captivating model system for mesocrystals with intriguing emergent properties. The conventional processing approach to creating these materials involves assembling and attaching the constituent nanocrystals at the interface between two immiscible fluids. Processing small liquid volumes of the colloidal nanocrystal solution involves several complexities arising from the concurrent spreading, evaporation, assembly, and attachment. The ability of inkjet printers to deliver small (typically picoliter) liquid volumes with precise positioning is attractive to advance fundamental insights into the processing science, and thereby potentially enable new routes to incorporate the epitaxially connected superlattices into technology platforms. In this study, we identified the processing window of opportunity, including nanocrystal ink formulation and printing approach to enable delivery of colloidal nanocrystals from an inkjet nozzle onto the surface of a sessile droplet of the immiscible subphase. We demonstrate how inkjet printing can be scaled-down to enable the fabrication of epitaxially connected superlattices on patterned sub-millimeter droplets. We anticipate that insights from this work will spur on future advances to enable more mechanistic insights into the assembly processes and new avenues to create high-fidelity superlattices.

Electronic Supplementary Material

Download File(s)
12274_2021_4022_MOESM1_ESM.pdf (1.1 MB)

References

1

Nie, Z. H.; Petukhova, A.; Kumacheva, E. Properties and emerging applications of self-assembled structures made from inorganic nanoparticles. Nat. Nanotechnol. 2010, 5, 15–25.

2

Kagan, C. R.; Lifshitz, E.; Sargent, E. H.; Talapin, D. V. Building devices from colloidal quantum dots. Science 2016, 353, aac5523.

3

Talapin, D. V.; Lee, J. S.; Kovalenko, M. V.; Shevchenko, E. V. Prospects of colloidal nanocrystals for electronic and optoelectronic applications. Chem. Rev. 2010, 110, 389–458.

4

Nozik, A. J.; Beard, M. C.; Luther, J. M.; Law, M.; Ellingson, R. J.; Johnson, J. C. Semiconductor quantum dots and quantum dot arrays and applications of multiple exciton generation to third-generation photovoltaic solar cells. Chem. Rev. 2010, 110, 6873–6890.

5

Vineis, C. J.; Shakouri, A.; Majumdar, A.; Kanatzidis, M. G. Nanostructured thermoelectrics: Big efficiency gains from small features. Adv. Mater. 2010, 22, 3970–3980.

6

Urban, J. J. Prospects for thermoelectricity in quantum dot hybrid arrays. Nat. Nanotechnol. 2015, 10, 997–1001.

7

Zhou, Z. Y.; Tian, N.; Li, J. T.; Broadwell, I.; Sun, S. G. Nanomaterials of high surface energy with exceptional properties in catalysis and energy storage. Chem. Soc. Rev. 2011, 40, 4167–4185.

8

Crabtree, G. W.; Sarrao, J. L. Opportunities for mesoscale science. MRS Bull. 2012, 37, 1079–1088.

9

Henry, C. R. 2D-arrays of nanoparticles as model catalysts. Catal. Lett. 2015, 145, 731–749.

10

Min, Y.; Akbulut, M.; Kristiansen, K.; Golan, Y.; Israelachvili, J. The role of interparticle and external forces in nanoparticle assembly. Nat. Mater. 2008, 7, 527–538.

11

Bishop, K. J. M.; Wilmer, C. E.; Soh, S.; Grzybowski, B. A. Nanoscale forces and their uses in self-assembly. Small 2009, 5, 1600–1630.

12

Lambert, K.; Čapek, R. K.; Bodnarchuk, M. I.; Kovalenko, M. V.; Van Thourhout, D.; Heiss, W.; Hens, Z. Langmuir-schaefer deposition of quantum dot multilayers. Langmuir 2010, 26, 7732–7736.

13

Dong, A. G.; Chen, J.; Vora, P. M.; Kikkawa, J. M.; Murray, C. B. Binary nanocrystal superlattice membranes self-assembled at the liquid-air interface. Nature 2010, 466, 474–477.

14

Evers, W. H.; Goris, B.; Bals, S.; Casavola, M.; De Graaf, J.; Van Roij, R.; Dijkstra, M.; Vanmaekelbergh, D. Low-dimensional semiconductor superlattices formed by geometric control over nanocrystal attachment. Nano Lett. 2013, 13, 2317–2323.

15

Boneschanscher, M. P.; Evers, W. H.; Geuchies, J. J.; Altantzis, T.; Goris, B.; Rabouw, F. T.; Van Rossum, S. A. P.; Van Der Zant, H. S. J.; Siebbeles, L. D. A.; Van Tendeloo, G. et al. Long-range orientation and atomic attachment of nanocrystals in 2D honeycomb superlattices. Science 2014, 344, 1377–1380.

16

Baumgardner, W. J.; Whitham, K.; Hanrath, T. Confined-but-connected quantum solids via controlled ligand displacement. Nano Lett. 2013, 13, 3225–3231.

17

Whitham, K.; Yang, J.; Savitzky, B. H.; Kourkoutis, L. F.; Wise, F.; Hanrath, T. Charge transport and localization in atomically coherent quantum dot solids. Nat. Mater. 2016, 15, 557–563.

18

Walravens, W.; De Roo, J.; Drijvers, E.; Brinck, S. T.; Solano, E.; Dendooven, J.; Detavernier, C.; Infante, I.; Hens, Z. Chemically triggered formation of two-dimensional epitaxial quantum dot superlattices. ACS Nano 2016, 10, 6861–6870.

19

Abelson, A.; Qian, C.; Salk, T.; Luan, Z. Y.; Fu, K.; Zheng, J. G.; Wardini, J. L.; Law, M. Collective topo-epitaxy in the self-assembly of a 3D quantum dot superlattice. Nat. Mater. 2020, 19, 49–55.

20

Balazs, D. M.; Matysiak, B. M.; Momand, J.; Shulga, A. G.; Ibáñez, M.; Kovalenko, M. V.; Kooi, B. J.; Loi, M. A. Electron mobility of 24 cm2·V−1·s−1 in PbSe colloidal-quantum-dot superlattices. Adv. Mater. 2018, 30, 1802265.

21

Walravens, W.; Solano, E.; Geenen, F.; Dendooven, J.; Gorobtsov, O.; Tadjine, A.; Mahmoud, N.; Ding, P. P.; Ruff, J. P. C.; Singer, A. et al. Setting carriers free: Healing faulty interfaces promotes delocalization and transport in nanocrystal solids. ACS Nano 2019, 13, 12774–12786.

22

Jazi, M. A.; Janssen, V. A. E. C.; Evers, W. H.; Tadjine, A.; Delerue, C.; Siebbeles, L. D. A.; Van Der Zant, H. S. J.; Houtepen, A. J.; Vanmaekelbergh, D. Transport properties of a two-dimensional PbSe square superstructure in an electrolyte-gated transistor. Nano Lett. 2017, 17, 5238–5243.

23

Evers, W. H.; Schins, J. M.; Aerts, M.; Kulkarni, A.; Capiod, P.; Berthe, M.; Grandidier, B.; Delerue, C.; Van Der Zant, H. S. J.; Van Overbeek, C. et al. High charge mobility in two-dimensional percolative networks of PbSe quantum dots connected by atomic bonds. Nat. Commun. 2015, 6, 8195.

24

Kalesaki, E.; Delerue, C.; Smith, C. M.; Beugeling, W.; Allan, G.; Vanmaekelbergh, D. Dirac cones, topological edge states, and nontrivial flat bands in two-dimensional semiconductors with a honeycomb nanogeometry. Phys. Rev. X 2014, 4, 011010.

25

Kalesaki, E.; Evers, W. H.; Allan, G.; Vanmaekelbergh, D.; Delerue, C. Electronic structure of atomically coherent square semiconductor superlattices with dimensionality below two. Phys. Rev. B 2013, 88, 115431.

26

Dasilva, J. C.; Smeaton, M. A.; Dunbar, T. A.; Xu, Y. Z.; Balazs, D. M.; Kourkoutis, L. F.; Hanrath, T. Mechanistic insights into superlattice transformation at a single nanocrystal level using nanobeam electron diffraction. Nano Lett. 2020, 20, 5267–5274.

27

Chen, I. Y.; Dasilva, J. C.; Balazs, D. M.; Smeaton, M. A.; Kourkoutis, L. F.; Hanrath, T.; Clancy, P. The role of dimer formation in the nucleation of superlattice transformations and its impact on disorder. ACS Nano 2020, 14, 11431–11441.

28

Balazs, D. M.; Dunbar, T. A.; Smilgies, D. M.; Hanrath, T. Coupled dynamics of colloidal nanoparticle spreading and self-assembly at a fluid-fluid interface. Langmuir 2020, 36, 6106–6115.

29

Minemawari, H.; Yamada, T.; Matsui, H.; Tsutsumi, J.; Haas, S.; Chiba, R.; Kumai, R.; Hasegawa, T. Inkjet printing of single-crystal films. Nature 2011, 475, 364–367.

30

Nallan, H. C.; Sadie, J. A.; Kitsomboonloha, R.; Volkman, S. K.; Subramanian, V. Systematic design of jettable nanoparticle-based inkjet inks: Rheology, acoustics, and jettability. Langmuir 2014, 30, 13470–13477.

31

Derby, B. Inkjet printing of functional and structural materials: Fluid property requirements, feature stability, and resolution. Ann. Rev. Mater. Res. 2010, 40, 395–414.

32

Derby, B. Inkjet printing ceramics: From drops to solid. J. Eur. Ceram. Soc. 2011, 31, 2543–2550.

33

Alamán, J.; Alicante, R.; Peña, J. I.; Sánchez-Somolinos, C. Inkjet printing of functional materials for optical and photonic applications. Materials 2016, 9, 910.

34

Nayak, L.; Mohanty, S.; Nayak, S. K.; Ramadoss, A. A review on inkjet printing of nanoparticle inks for flexible electronics. J. Mater. Chem. C 2019, 7, 8771–8795.

35

Böberl, M.; Kovalenko, M. V.; Gamerith, S.; List, E. J. W.; Heiss, W. Inkjet-printed nanocrystal photodetectors operating up to 3 μm wavelengths. Adv. Mater. 2007, 19, 3574–3578.

36

YousefiAmin, A.; Killilea, N. A.; Sytnyk, M.; Maisch, P.; Tam, K. C.; Egelhaaf, H. J.; Langner, S.; Stubhan, T.; Brabec, C. J.; Rejek, T. et al. Fully printed infrared photodetectors from PbS nanocrystals with perovskite ligands. ACS Nano 2019, 13, 2389–2397.

37

Sliz, R.; Lejay, M.; Fan, J. Z.; Choi, M. J.; Kinge, S.; Hoogland, S.; Fabritius, T.; De Arquer, F. P. G.; Sargent, E. H. Stable colloidal quantum dot inks enable inkjet-printed high-sensitivity infrared photodetectors. ACS Nano 2019, 13, 11988–11995.

38

Noda, Y.; Minemawari, H.; Matsui, H.; Yamada, T.; Arai, S.; Kajiya, T.; Doi, M.; Hasegawa, T. Underlying mechanism of inkjet printing of uniform organic semiconductor films through antisolvent crystallization. Adv. Funct. Mater. 2015, 25, 4022–4031.

39

Al-Milaji, K. N.; Secondo, R. R.; Ng, T. N.; Kinsey, N.; Zhao, H. Interfacial self-assembly of colloidal nanoparticles in dual-droplet inkjet printing. Adv. Mater. Interfaces 2018, 5, 1701561.

40

Bealing, C. R.; Baumgardner, W. J.; Choi, J. J.; Hanrath, T.; Hennig, R. G. Predicting nanocrystal shape through consideration of surface-ligand interactions. ACS Nano 2012, 6, 2118–2127.

41

Hassinen, A.; Moreels, I.; De Nolf, K.; Smet, P. F.; Martins, J. C.; Hens, Z. Short-chain alcohols strip X-type ligands and quench the luminescence of PbSe and CdSe quantum dots, acetonitrile does not. J. Am. Chem. Soc. 2012, 134, 20705–20712.

42

Kirmani, A. R.; Carey, G. H.; Abdelsamie, M.; Yan, B. Y.; Cha, D.; Rollny, L. R.; Cui, X. Y.; Sargent, E. H.; Amassian, A. Effect of solvent environment on colloidal-quantum-dot solar-cell manufacturability and performance. Adv. Mater. 2014, 26, 4717–4723.

43

Balazs, D. M.; Dirin, D. N.; Fang, H. H.; Protesescu, L.; Brink, G. H. T.; Kooi, B. J.; Kovalenko, M. V.; Loi, M. A. Counterion-mediated ligand exchange for PbS colloidal quantum dot superlattices. ACS Nano 2015, 9, 11951–11959.

44

Jang, D.; Kim, D.; Moon, J. Influence of fluid physical properties on ink-jet printability. Langmuir 2009, 25, 2629–2635.

45
Tai, J. Y.; Gan, H. Y.; Liang, Y. N.; Lok, B. K. Control of droplet formation in inkjet printing using Ohnesorge number category: Materials and processes. In 2008 10th Electronics Packaging Technology Conference, Singapore, 2008, pp 761–766.
46
Russel, W. B.; Saville, D. A.; Schowalter, W. R. Colloidal Dispersions; Cambridge University Press: Cambridge, 1991.
47

Doblas, D.; Kister, T.; Cano-Bonilla, M.; González-García, L.; Kraus, T. Colloidal solubility and agglomeration of apolar nanoparticles in different solvents. Nano Lett. 2019, 19, 5246–5252.

48

Krieger, I. M.; Dougherty, T. J. A mechanism for Non-Newtonian flow in suspensions of rigid spheres. Trans. Soc. Rheol. 1959, 3, 137–152.

49

Aveyard, R.; Haydon, D. A. Thermodynamic properties of aliphatic hydrocarbon/water interfaces. Trans. Faraday Soc. 1965, 61, 2255–2261.

50

Zeppieri, S.; Rodríguez, J.; De Ramos, A. L. L. Interfacial tension of alkane + water systems. J. Chem. Eng. Data 2001, 46, 1086–1088.

51

Geuchies, J. J.; Van Overbeek, C.; Evers, W. H.; Goris, B.; De Backer, A.; Gantapara, A. P.; Rabouw, F. T.; Hilhorst, J.; Peters, J. L.; Konovalov, O. et al. In situ study of the formation mechanism of two-dimensional superlattices from PbSe nanocrystals. Nat. Mater. 2016, 15, 1248–1254.

52

Weidman, M. C.; Smilgies, D. M.; Tisdale, W. A. Kinetics of the self-assembly of nanocrystal superlattices measured by real-time in situ X-ray scattering. Nat. Mater. 2016, 15, 775–781.

53

Whitham, K.; Smilgies, D. M.; Hanrath, T. Entropic, enthalpic, and kinetic aspects of interfacial nanocrystal superlattice assembly and attachment. Chem. Mater. 2018, 30, 54–63.

54

Whitham, K.; Hanrath, T. Formation of epitaxially connected quantum dot solids: Nucleation and coherent phase transition. J. Phys. Chem. Lett. 2017, 8, 2623–2628.

55

Peters, J. L.; Van Der Bok, J. C.; Hofmann, J. P.; Vanmaekelbergh, D. Hybrid oleate-iodide ligand shell for air-stable PbSe nanocrystals and superstructures. Chem. Mater. 2019, 31, 5808–5815.

56

Peng, X. X.; Abelson, A.; Wang, Y.; Qian, C.; Shangguan, J. Y.; Zhang, Q. B.; Yu, L.; Yin, Z. W.; Zheng, W. J.; Bustillo, K. C. et al. In situ TEM study of the degradation of PbSe nanocrystals in air. Chem. Mater. 2019, 31, 190–199.

57

Gao, Y. J.; Huang, J. Y.; Balazs, D. M.; Xu, Y. Z.; Hanrath, T. Photoinitiated transformation of nanocrystal superlattice polymorphs assembled at a fluid interface. Adv. Mater. Interfaces 2020, 7, 2001064.

Nano Research
Pages 4536-4543
Cite this article:
Balazs DM, Erkan ND, Quien M, et al. Inkjet printing of epitaxially connected nanocrystal superlattices. Nano Research, 2022, 15(5): 4536-4543. https://doi.org/10.1007/s12274-021-4022-7
Topics:

813

Views

6

Crossref

6

Web of Science

6

Scopus

0

CSCD

Altmetrics

Received: 22 September 2021
Revised: 04 November 2021
Accepted: 19 November 2021
Published: 28 December 2021
© Tsinghua University Press and Springer-Verlag GmbH Germany, part of Springer Nature 2021
Return