Article Link
Collect
Submit Manuscript
Show Outline
Outline
Graphical Abstract
Abstract
Keywords
Electronic Supplementary Material
References
Show full outline
Hide outline
Research Article

Single palladium atoms stabilized by β-FeOOH nanorod with superior performance for selective hydrogenation of cinnamaldehyde

Zhijun Li1()Leipeng Leng1Xiaowen Lu1Mingyang Zhang1Qian Xu2()J. Hugh Horton1,3Junfa Zhu2
Joint International Research Laboratory of Advanced Chemical Catalytic Materials & Surface Science, College of Chemistry and Chemical Engineering, Northeast Petroleum University, Daqing 163318, China
National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei 230029, China
Department of Chemistry, Queen′s University, Kingston, K7L 3N6, Canada
Show Author Information

Graphical Abstract

View original image Download original image
We report a facile method to fabricate defect-containing β-FeOOH doped with singly dispersed palladium atoms bond to the nearby oxygen and iron atoms. Its exceptional catalytic performance in the selective hydrogenation of cinnamaldehyde to yield hydrocinnamaldehyde is validated and investagetd by DFT calculations.

Abstract

Atomically dispersed single atom catalysts represent an ideal means of converting less valuable organics into value-added chemicals of interest with high efficiency. Herein, we describe a facile synthetic approach to create defect-containing β-FeOOH doped with isolated palladium atoms that bond covalently to the nearby oxygen and iron atoms. The presence of singly dispersed palladium atoms is confirmed by spherical aberration correction electron microscopy and extended X-ray absorption fine structure measurements. This single palladium atom catalyst manifests outstanding catalytic efficiency (conversion: 99%; selectivity 99%; turnover frequency: 2,440 h−1) in the selective hydrogenation of cinnamaldehyde to afford hydrocinnamaldehyde. Experimental measurements and density functional theory (DFT) calculations elucidate the high catalytic activity and the strong metal-support interaction stem from the unique coordination environment of the isolated palladium atoms. These findings may pave the way for the facile construction of single atom catalysts in a defect-mediated strategy for efficient organic transformations in heterogeneous catalysis.

Electronic Supplementary Material

Download File(s)
12274_2021_4028_MOESM1_ESM.pdf (2.9 MB)

References

1

Lan, X. C.; Wang, T. F. Highly selective catalysts for the hydrogenation of unsaturated aldehydes: A review. ACS Catal. 2020, 10, 2764–2790.

2

Ide, M. S.; Hao, B.; Neurock, M.; Davis, R. J. Mechanistic insights on the hydrogenation of α, β-unsaturated ketones and aldehydes to unsaturated alcohols over metal catalysts. ACS Catal. 2012, 2, 671–683.

3

Lang, R.; Du, X. R.; Huang, Y. K.; Jiang, X. Z.; Zhang, Q.; Guo, Y. L.; Liu, K. P.; Qiao, B. T.; Wang, A. Q.; Zhang, T. Single-atom catalysts based on the metal-oxide interaction. Chem. Rev. 2020, 120, 11986–12043.

4

Hu, T. J.; Zhang, L. N.; Wang, Y.; Yue, Z. Z.; Li, Y.; Ma, J. C.; Xiao, H.; Chen, W. W.; Zhao, M.; Zheng, Z. F. et al. Defect engineering in Pd/NiCo2O4-x for selective hydrogenation of α, β-unsaturated carbonyl compounds under ambient conditions. ACS Sustainable Chem. Eng. 2020, 8, 7851–7859.

5

Cattaneo, S.; Freakley, S. J.; Morgan, D. J.; Sankar, M.; Dimitratos, N.; Hutchings, G. J. Cinnamaldehyde hydrogenation using Au-Pd catalysts prepared by sol immobilisation. Catal. Sci. Technol. 2018, 8, 1677–1685.

6

Chen, Y. J.; Ji, S. F.; Chen, C.; Peng, Q.; Wang, D. S.; Li, Y. D. Single-atom catalysts: Synthetic strategies and electrochemical applications. Joule 2018, 2, 1242–1264.

7

Lou, Y.; Xu, J.; Zhang, Y.; Pan, C.; Dong, Y.; Zhu, Y. Metal-support interaction for heterogeneous catalysis: From nanoparticles to single atoms. Mater. Today Nano 2020, 12, 100093.

8

Li, Z. J.; Lu, X. W.; Sun, W. W.; Leng, L. P.; Zhang, M. Y.; Li, H. H.; Bai, L.; Yuan, D. D.; Horton, J. H.; Xu, Q. et al. One-step synthesis of single palladium atoms in WO2.72 with high efficiency in chemoselective hydrodeoxygenation of vanillin. Appl. Catal. B Environ. 2021, 298, 120535.

9

Wei, Y. S.; Zhang, M.; Zou, R. Q.; Xu, Q. Metal-organic framework-based catalysts with single metal sites. Chem. Rev. 2020, 120, 12089–12174.

10

Liu, Y. W.; Li, Z.; Yu, Q. Y.; Chen, Y. F.; Chai, Z. W.; Zhao, G. F.; Liu, S. J.; Cheong, W. C.; Pan, Y.; Zhang, Q. H. et al. A general strategy for fabricating isolated single metal atomic site catalysts in Y zeolite. J. Am. Chem. Soc. 2019, 141, 9305–9311.

11

Gao, C.; Low, J.; Long, R.; Kong, T. T.; Zhu, J. F.; Xiong, Y. J. Heterogeneous single-atom photocatalysts: Fundamentals and applications. Chem. Rev. 2020, 120, 12175–12216.

12

Xiong, Y.; Sun, W. M.; Han, Y. H.; Xin, P. Y.; Zheng, X. S.; Yan, W. S.; Dong, J. C.; Zhang, J.; Wang, D. S.; Li, Y. D. Cobalt single atom site catalysts with ultrahigh metal loading for enhanced aerobic oxidation of ethylbenzene. Nano Res. 2021, 14, 2418–2423.

13

Ji, S. F.; Chen, Y. J.; Wang, X. L.; Zhang, Z. D.; Wang, D. S.; Li, Y. D. Chemical synthesis of single atomic site catalysts. Chem. Rev. 2020, 120, 11900–11955.

14

Ding, S. P.; Hülsey, M. J.; Pérez-Ramírez, J.; Yan, N. Transforming energy with single-atom catalysts. Joule 2019, 3, 2897–2929.

15

Qin, R. X.; Liu, K. L.; Wu, Q. Y.; Zheng, N. F. Surface coordination chemistry of atomically dispersed metal catalysts. Chem. Rev. 2020, 120, 11810–11899.

16

Yang, J. R.; Li, W. H.; Wang, D. S.; Li, Y. D. Single-atom materials: Small structures determine macroproperties. Small Struct. 2021, 2, 2000051.

17

Qi, K.; Chhowalla, M.; Voiry, D. Single atom is not alone: Metal-support interactions in single-atom catalysis. Mater. Today 2020, 40, 173–192.

18

Lu, X. W.; Guo, C. M.; Zhang, M. Y.; Leng, L. P.; Horton, J. H.; Wu, W.; Li, Z. J. Rational design of palladium single-atoms and clusters supported on silicoaluminophosphate-31 by a photochemical route for chemoselective hydrodeoxygenation of vanillin. Nano Res. 2021, 14, 4347–4355.

19

Li, Z. J.; Wei, W.; Li, H. H.; Li, S. H.; Leng, L. P.; Zhang, M. Y.; Horton, J. H.; Wang, D. S.; Sun, W. W.; Guo, C. M. et al. Low-temperature synthesis of single palladium atoms supported on defective hexagonal boron nitride nanosheet for chemoselective hydrogenation of cinnamaldehyde. ACS Nano 2021, 15, 10175–10184.

20
Wang, Y.; Zheng, X. B.; Wang, D. S. Design concept for electrocatalysts. Nano Res., in press, DOI: 10.1007/s12274-021-3794-0.https://doi.org/10.1007/s12274-021-3794-0
21

Yang, J. R.; Li, W. H.; Tan, S. D.; Xu, K. N.; Wang, Y.; Wang, D. S.; Li, Y. D. The electronic metal-support interaction directing the design of single atomic site catalysts: Achieving high efficiency towards hydrogen evolution. Angew. Chem., Int. Ed. 2021, 60, 19085–19091.

22

Zhang, J.; Wang, Z. Y.; Chen, W. X.; Xiong, Y.; Cheong, W. C.; Zheng, L. R.; Yan, W. S.; Gu, L.; Chen, C.; Peng, Q. et al. Tuning polarity of Cu-O bond in heterogeneous Cu catalyst to promote additive-free hydroboration of alkynes. Chem 2020, 6, 725–737.

23

Chen, S. H.; Wang, B. Q.; Zhu, J. X.; Wang, L. Q.; Ou, H. H.; Zhang, Z. D.; Liang, X.; Zheng, L. R.; Zhou, L.; Su, Y. Q. et al. Lewis acid site-promoted single-atomic Cu catalyzes electrochemical CO2 methanation. Nano Lett. 2021, 21, 7325–7331.

24

Liu, Y. W.; Wang, B. X.; Fu, Q.; Liu, W.; Wang, Y.; Gu, L.; Wang, D. S.; Li, Y. D. Polyoxometalate-based metal-organic framework as molecular sieve for highly selective semi-hydrogenation of acetylene on isolated single Pd atom sites. Angew. Chem., Int. Ed. 2021, 60, 22522–22528.

25

Liu, Z. H.; Du, Y.; Zhang, P. F.; Zhuang, Z. C.; Wang, D. S. Bringing catalytic order out of chaos with nitrogen-doped ordered mesoporous carbon. Matter 2021, 4, 3161–3194.

26
Wang, G.; Huang, R.; Zhang, J. W.; Mao, J. J.; Wang, D. S.; Li, Y. D. Synergistic modulation of the separation of photo-generated carries via engineering of dual atomic sites for promoting photocatalytic performance. Adv. Mater., in press, DOI: 10.1002/adma.202105904.https://doi.org/10.1002/adma.202105904
27

Li, Z. J.; Li, H. H.; Yuan, D. D.; Leng, L. P.; Zhang, M. Y.; Di, M. H.; Horton, J. H.; Wang, J.; Sun, L. T.; Sun, W. W. Photoinduction of palladium single atoms supported on defect-containing γ-AlOOH nanoleaf for efficient trans-stilbene epoxidation. Chem. Eng. J. 2022, 429, 132149.

28

Chen, J. S.; Ding, J. J.; Li, H. Q.; Sun, J. F.; Rui, Z. B.; Ji, H. B. Pt supported on long-rod β-FeOOH as an efficient catalyst for HCHO oxidation at ambient temperature. Catal. Sci. Technol. 2019, 9, 3287–3294.

29

Mou, X. L.; Zhang, B. S.; Li, Y.; Yao, L. D.; Wei, X. J.; Su, D. S.; Shen, W. J. Rod-shaped Fe2O3 as an efficient catalyst for the selective reduction of nitrogen oxide by ammonia. Angew. Chem., Int. Ed. 2012, 51, 2989–2993.

30

Yang, M.; Li, Y. X.; Jiang, M.; Li, P. H.; Chen, S. H.; Liu, J. H.; Lin, C. H.; Huang, X. J.; Liu, W. Q. Identifying phase-dependent electrochemical stripping performance of FeOOH nanorod: Evidence from kinetic simulation and analyte-material interactions. Small 2020, 16, 1906830.

31

Li, F.; Du, J.; Li, X. N.; Shen, J. Y.; Wang, Y.; Zhu, Y.; Sun, L. C. Integration of FeOOH and zeolitic imidazolate framework-derived nanoporous carbon as an efficient electrocatalyst for water oxidation. Adv. Energy Mater. 2018, 8, 1702598.

32

Vernekar, D.; Jagadeesan, D. Tunable acid-base bifunctional catalytic activity of FeOOH in an orthogonal tandem reaction. Catal. Sci. Technol. 2015, 5, 4029–4038.

33

Xu, Y.; Chu, M. Y.; Liu, F. F.; Wang, X. C.; Liu, Y.; Cao, M. H.; Gong, J.; Luo, J.; Lin, H. P.; Li, Y. Y. et al. Revealing the correlation between catalytic selectivity and the local coordination environment of Pt single atom. Nano Lett. 2020, 20, 6865–6872.

34

He, Q.; Lee, J. H.; Liu, D. B.; Liu, Y. M.; Lin, Z. X.; Xie, Z. H.; Hwang, S.; Kattel, S.; Song, L.; Chen, J. G. Accelerating CO2 electroreduction to CO over Pd single-atom catalyst. Adv. Funct. Mater. 2020, 30, 2000407.

35

Zhou, S. Q.; Shang, L.; Zhao, Y. X.; Shi, R.; Waterhouse, G. I. N.; Huang, Y. C.; Zheng, L. R.; Zhang, T. R. Pd single-atom catalysts on nitrogen-doped graphene for the highly selective photothermal hydrogenation of acetylene to ethylene. Adv. Mater. 2019, 31, 1900509.

36

Hu, F. L.; Leng, L. P.; Zhang, M. Y.; Chen, W. X.; Yu, Y. L.; Wang, J.; Horton, J. H.; Li, Z. J. Direct synthesis of atomically dispersed palladium atoms supported on graphitic carbon nitride for efficient selective hydrogenation reactions. ACS Appl. Mater. Interfaces 2020, 12, 54146–54154.

37

Delley, B. An all-electron numerical method for solving the local density functional for polyatomic molecules. J. Chem. Phys. 1990, 92, 508–517.

38

Delley, B. From molecules to solids with the DMol3 approach. J. Chem. Phys. 2000, 113, 7756–7764.

39

Perdew, J. P.; Burke, K.; Ernzerhof, M. Generalized gradient approximation made simple. Phys. Rev. Lett. 1996, 77, 3865–3868.

40

Grimme, S. Semiempirical gga-type density functional constructed with a long-range dispersion correction. J. Comput. Chem. 2006, 27, 1787–1799.

41

Hu, J.; Li, S. W.; Chu, J. Y.; Niu, S. Q.; Wang, J.; Du, Y. C.; Li, Z. H.; Han, X. J.; Xu, P. Understanding the phase-induced electrocatalytic oxygen evolution reaction activity on FeOOH nanostructures. ACS Catal. 2019, 9, 10705–10711.

42

Tao, X. Q.; Long, R.; Wu, D.; Hu, Y. G.; Qiu, G. H.; Qi, Z. M.; Li, B. X.; Jiang, R. B.; Xiong, Y. J. Anchoring positively charged Pd single atoms in ordered porous ceria to boost catalytic activity and stability in suzuki coupling reactions. Small 2020, 16, 2001782.

43

Ren, Y. J.; Tang, Y.; Zhang, L. L.; Liu, X. Y.; Li, L.; Miao, S.; Su, D. S.; Wang, A. Q.; Li, J.; Zhang, T. Unraveling the coordination structure-performance relationship in Pt1/Fe2O3 single-atom catalyst. Nat. Commun. 2019, 10, 4500.

44

Gao, R. J.; Wang, J.; Huang, Z. F.; Zhang, R. R.; Wang, W.; Pan, L.; Zhang, J. F.; Zhu, W. K.; Zhang, X. W.; Shi, C. X. et al. Pt/Fe2O3 with Pt-Fe pair sites as a catalyst for oxygen reduction with ultralow Pt loading. Nat. Energy 2021, 6, 614–623.

45

Huang, Y. Y.; Zhao, X.; Tang, F. M.; Zheng, X. S.; Cheng, W. R.; Che, W.; Hu, F. C.; Jiang, Y.; Liu, Q. H.; Wei, S. Q. Strongly electrophilic heteroatoms confined in atomic CoOOH nanosheets realizing efficient electrocatalytic water oxidation. J. Mater. Chem. A 2018, 6, 3202–3210.

46

Carabineiro, S. A. C.; Bogdanchikova, N.; Tavares, P. B.; Figueiredo, J. L. Nanostructured iron oxidecatalysts with gold for the oxidation of carbon monoxide. RSC Adv. 2012, 2, 2957–2965.

47
Chen, B. B.; Zhu, X. B.; Crocker, M.; Wang, Y.; Shi, C. FeOx-supported gold catalysts for catalytic removal of formaldehyde at room temperature. Appl. Catal. B Environ. 2014, 154–155, 73–81.https://doi.org/10.1016/j.apcatb.2014.02.009
48

Zhang, L. L.; Zhou, M. X.; Wang, A. Q.; Zhang, T. Selective hydrogenation over supported metal catalysts: From nanoparticles to single atoms. Chem. Rev. 2020, 120, 683–733.

Nano Research
Pages 3114-3121
Cite this article:
Li Z, Leng L, Lu X, et al. Single palladium atoms stabilized by β-FeOOH nanorod with superior performance for selective hydrogenation of cinnamaldehyde. Nano Research, 2022, 15(4): 3114-3121. https://doi.org/10.1007/s12274-021-4028-1
Topics:
Metrics & Citations  
Article History
Copyright
Return