Discover the SciOpen Platform and Achieve Your Research Goals with Ease.
Search articles, authors, keywords, DOl and etc.
Pd-based nanomaterials have shown great promise as potential mimic enzymes, but conventional catalysts use only a small fraction of the Pd content that located on the catalyst’s surface. Herein, we demonstrated that maximum atom utilization could be achieved by using single-atom Pd catalysts as oxidase mimic. The single-atom Pd nanozymes exhibit significantly enhanced catalytic efficiency, with a catalytic rate constant (Kcat) and the catalytic efficiency (Kcat/Km) values more than 625 and 4,837 times higher than those of horseradish peroxidase, respectively. A combined experimental and theoretical calculation reveals reactive oxygen species involved catalytic mechanism which endows single-atom Pd catalysts with excellent colorimetric analysis performance. Benefiting from the maximum atom utilization efficiency and well-defined structural features, the single-atom Pd nanozymes could be successfully applied for the total antioxidant capacity of fruit, determining the serum acid phosphatase activity as well as constructing NAND logic gate. This finding not only provides an effective strategy to maximize the noble-metal atom utilization efficiency as enzyme mimics, but also provides a new idea for extending their possible applications.
Gao, L. Z.; Zhuang, J.; Nie, L.; Zhang, J. B.; Zhang, Y.; Gu, N.; Wang, T. H.; Feng, J.; Yang, D. L.; Perrett, S. et al. Intrinsic peroxidase-like activity of ferromagnetic nanoparticles. Nat. Nanotechnol. 2007, 2, 577–583.
Wei, H.; Gao, L. Z.; Fan, K. L.; Liu, J. W.; He, J. Y.; Qu, X. G.; Dong, S. J.; Wang, E. K.; Yan, X. Y. Nanozymes: A clear definition with fuzzy edges. Nano Today 2021, 40, 101269.
Sun, H. J.; Zhao, A. D.; Gao, N.; Li, K.; Ren, J. S.; Qu, X. G. Deciphering a nanocarbon-based artificial peroxidase: Chemical identification of the catalytically active and substrate-binding sites on graphene quantum dots. Angew. Chem., Int. Ed. 2015, 54, 7176–7180.
Wei, H.; Wang, E. K. Nanomaterials with enzyme-like characteristics (nanozymes): Next-generation artificial enzymes. Chem. Soc. Rev. 2013, 42, 6060–6093.
Liu, W. D.; Chu, L.; Zhang, C. H.; Ni, P. J.; Jiang, Y. Y.; Wang, B.; Lu, Y. Z.; Chen, C. X. Hemin-assisted synthesis of peroxidase-like Fe-N-C nanozymes for detection of ascorbic acid-generating bio-enzymes. Chem. Eng. J. 2021, 415, 128876.
Jiao, L.; Yan, H. Y.; Wu, Y.; Gu, W. L.; Zhu, C. Z.; Du, D.; Lin, Y. H. When nanozymes meet single-atom catalysis. Angew. Chem., Int. Ed. 2020, 59, 2565–2576.
Wu, J. J. X.; Wang, X. Y.; Wang, Q.; Lou, Z. P.; Li, S. R.; Zhu, Y. Y.; Qin, L.; Wei, H. Nanomaterials with enzyme-like characteristics (nanozymes): Next-generation artificial enzymes (II). Chem. Soc. Rev. 2019, 48, 1004–1076.
Ge, C. C.; Fang, G.; Shen, X. M.; Chong, Y.; Wamer, W. G.; Gao, X. F.; Chai, Z. F.; Chen, C. Y.; Yin, J. J. Facet energy versus enzyme-like activities: The unexpected protection of palladium nanocrystals against oxidative damage. ACS Nano 2016, 10, 10436–10445.
Xi, Z.; Wei, K. C.; Wang, Q. X.; Kim, M. J.; Sun, S. H.; Fung, V.; Xia, X. H. Nickel–platinum nanoparticles as peroxidase mimics with a record high catalytic efficiency. J. Am. Chem. Soc. 2021, 143, 2660–2664.
Ji, S. F.; Jiang, B.; Hao, H. G.; Chen, Y. J.; Dong, J. C.; Mao, Y.; Zhang, Z. D.; Gao, R.; Chen, W. X.; Zhang, R. F. et al. Matching the kinetics of natural enzymes with a single-atom iron nanozyme. Nat. Catal. 2021, 4, 407–417.
Xi, Z.; Cheng, X.; Gao, Z. Q.; Wang, M. J.; Cai, T.; Muzzio, M.; Davidson, E.; Chen, O.; Jung, Y.; Sun, S. H. et al. Strain effect in palladium nanostructures as nanozymes. Nano Lett. 2020, 20, 272–277.
Li, Z.; Liu, W. D.; Ni, P. J.; Zhang, C. H.; Wang, B.; Duan, G. B.; Chen, C. X.; Jiang, Y. Y.; Lu, Y. Z. Carbon dots confined in N-doped carbon as peroxidase-like nanozyme for detection of gastric cancer relevant D-amino acids. Chem. Eng. J. 2022, 428, 131396.
Wei, J. P.; Chen, X. L.; Shi, S. G.; Mo, S. G.; Zheng, N. F. An investigation of the mimetic enzyme activity of two-dimensional Pd-based nanostructures. Nanoscale 2015, 7, 19018–19026.
Chen, C. X.; Zhao, D.; Sun, J.; Yang, X. R. Colorimetric logic gate for pyrophosphate and pyrophosphatase via regulating the catalytic capability of horseradish peroxidase. ACS Appl. Mater. Interfaces 2016, 8, 29529–29535.
Chen, C. X.; Zhao, D.; Jiang, Y. Y.; Ni, P. J.; Zhang, C. H.; Wang, B.; Yang, F.; Lu, Y. Z.; Sun, J. Logically regulating peroxidase-like activity of gold nanoclusters for sensing phosphate-containing metabolites and alkaline phosphatase activity. Anal. Chem. 2019, 91, 15017–15024.
Ding, H.; Hu, B.; Zhang, B.; Zhang, H.; Yan, X. Y.; Nie, G. H.; Liang, M. M. Carbon-based nanozymes for biomedical applications. Nano Res. 2021, 14, 570–583.
Ding, H.; Wang, D. J.; Huang, H. B.; Chen, X. Z.; Wang, J.; Sun, J. J.; Zhang, J. L.; Lu, L.; Miao, B. P.; Cai, Y. J. et al. Black phosphorus quantum dots as multifunctional nanozymes for tumor photothermal/catalytic synergistic therapy. Nano Res. 2022, 15, 1554–1563.
Jiang, B.; Duan, D. M.; Gao, L. Z.; Zhou, M. J.; Fan, K. L.; Tang, Y.; Xi, J. Q.; Bi, Y. H.; Tong, Z.; Gao, G. F. et al. Standardized assays for determining the catalytic activity and kinetics of peroxidase-like nanozymes. Nat. Protoc. 2018, 13, 1506–1520.
Qiao, B. T.; Wang, A. Q.; Yang, X. F.; Allard, L. F.; Jiang, Z.; Cui, Y. T.; Liu, J. Y.; Li, J.; Zhang, T. Single-atom catalysis of Co oxidation using Pt1/FeOx. Nat. Chem. 2011, 3, 634–641.
Zhao, D.; Zhuang, Z. W.; Cao, X.; Zhang, C.; Peng, Q.; Chen, C.; Li, Y. D. Atomic site electrocatalysts for water splitting, oxygen reduction and selective oxidation. Chem. Soc. Rev. 2020, 49, 2215–2264.
Liu, Y. W.; Wang, B. X.; Fu, Q.; Liu, W.; Wang, Y.; Gu, L.; Wang, D. S.; Li, Y. D. Polyoxometalate-based metal-organic framework as molecular sieve for highly selective semi-hydrogenation of acetylene on isolated single Pd atom sites. Angew. Chem., Int. Ed. 2021, 60, 22522–22528.
Zhang, Z. D.; Zhou, M.; Chen, Y. J.; Liu, S. J.; Wang, H. F.; Zhang, J.; Ji, S. F.; Wang, D. S.; Li, Y. D. Pd single-atom monolithic catalyst: Functional 3D structure and unique chemical selectivity in hydrogenation reaction. Sci. China. Mater. 2021, 64, 1919–1929.
Giannakakis, G.; Flytzani-Stephanopoulos, M., Sykes, E. C. H. Single-atom alloys as a reductionist approach to the rational design of heterogeneous catalysts. Acc. Chem. Res. 2019, 52, 237–247.
Li, Z.; Chen, Y. J.; Ji, S. F.; Tang, Y.; Chen, W. X.; Li, A.; Zhao, J.; Xiong, Y.; Wu, Y. E.; Gong, Y. et al. Iridium single-atom catalyst on nitrogen-doped carbon for formic acid oxidation synthesized using a general host–guest strategy. Nat. Chem. 2020, 12, 764–772.
Xiong, Y.; Dong, J. C.; Huang, Z. Q.; Xin, P. Y.; Chen, W. X.; Wang, Y.; Li, Z.; Jin, Z.; Xing, W.; Zhuang, Z. B. et al. Single-atom Rh/N-doped carbon electrocatalyst for formic acid oxidation. Nat. Nanotechnol. 2020, 15, 390–397.
Liu, W. G.; Zhang, L. L.; Liu, X.; Liu, X. Y.; Yang, X. F.; Miao, S.; Wang, W. T.; Wang, A. Q.; Zhang, T. Discriminating catalytically active FeNx species of atomically dispersed Fe-N-C catalyst for selective oxidation of the C–H bond. J. Am. Chem. Soc. 2017, 139, 10790–10798.
Huang, X. Y.; Groves, J. T. Oxygen activation and radical transformations in heme proteins and metalloporphyrins. Chem. Rev. 2018, 118, 2491–2553.
Wu, W. W.; Huang, L.; Wang, E. K.; Dong, S. J. Atomic engineering of single-atom nanozymes for enzyme-like catalysis. Chem. Sci. 2020, 11, 9741–9756.
Chen, Y. J.; Wang, P. X.; Hao, H. G.; Hong, J. J.; Li, H. J.; Ji, S. F.; Li, A.; Gao, R.; Dong, J. C.; Han, X. D. et al. Thermal atomization of platinum nanoparticles into single atoms: An effective strategy for engineering high-performance nanozymes. J. Am. Chem. Soc. 2021, 143, 18643–18651.
Kim, M. S.; Lee, J.; Kim, H. S.; Cho, A.; Shim, K. H.; Le, T. N.; An, S. S. A.; Han, J. W.; Kim, M. I.; Lee, J. Heme cofactor-resembling Fe-N single site embedded graphene as nanozymes to selectively detect H2O2 with high sensitivity. Adv. Funct. Mater. 2020, 30, 1905410.
Niu, X. H.; Shi, Q. R.; Zhu, W. L.; Liu, D.; Tian, H. Y.; Fu, S. F.; Cheng, N.; Li, S. Q.; Smith, J. N.; Du, D. et al. Unprecedented peroxidase-mimicking activity of single-atom nanozyme with atomically dispersed Fe-Nx moieties hosted by MOF derived porous carbon. Biosens. Bioelectron. 2019, 142, 111495.
Cheng, N.; Li, J. C.; Liu, D.; Lin, Y. H.; Du, D. Single-atom nanozyme based on nanoengineered Fe-N-C catalyst with superior peroxidase-like activity for ultrasensitive bioassays. Small 2019, 15, 1901485.
Huo, M. F.; Wang, L. Y.; Zhang, H. X.; Zhang, L. L.; Chen, Y.; Shi, J. L. Construction of single-iron-atom nanocatalysts for highly efficient catalytic antibiotics. Small 2019, 15, 1901834.
Zhao, C.; Xiong, C.; Liu, X. K.; Qiao, M.; Li, Z. J.; Yuan, T. W.; Wang, J.; Qu, Y. T.; Wang, X. Q.; Zhou, F. Y. et al. Unraveling the enzyme-like activity of heterogeneous single atom catalyst. Chem. Commun. 2019, 55, 2285–2288.
Jiao, L.; Xu, W Q.; Yan, H. Y.; Wu, Y.; Liu, C. R.; Du, D.; Lin, Y. H.; Zhu, C. Z. Fe-N-C single-atom nanozymes for the intracellular hydrogen peroxide detection. Anal. Chem. 2019, 91, 11994–11999.
Chen, C. X.; Liu, W. D.; Ni, P. J.; Jiang, Y. Y.; Zhang, C. H.; Wang, B.; Li, J. K.; Cao, B. Q.; Lu, Y. Z.; Chen, W. Engineering two-dimensional Pd nanoplates with exposed highly active {100} facets toward colorimetric acid phosphatase detection. ACS Appl. Mater. Interfaces 2019, 11, 47564–47570.
Chong, Y.; Dai, X.; Fang, G.; Wu, R. F.; Zhao, L.; Ma, X. C.; Tian, X.; Lee, S.; Zhang, C.; Chen, C. Y. et al. Palladium concave nanocrystals with high-index facets accelerate ascorbate oxidation in cancer treatment. Nat. Commun. 2018, 9, 4861.
Bull, H.; Murray, P. G.; Thomas, D.; Fraser, A. M.; Nelson, P. N. Acid phosphatases. Mol. Pathol. 2002, 55, 65–72.
Vincent, J. B.; Crowder, M. W.; Averill, B. A. Hydrolysis of phosphate monoesters: A biological problem with multiple chemical solutions. Trends Biochem. Sci. 1992, 17, 105–110.
Han, Y. X.; Quan, K. J.; Chen, J.; Qiu, H. D. Advances and prospects on acid phosphatase biosensor. Biosens. Bioelectron. 2020, 170, 112671.
Perdew, J. P.; Burke, K.; Ernzerhof, M. Generalized gradient approximation made simple. Phys. Rev. Lett. 1996, 77, 3865–3868.
Perdew, J. P.; Burke, K.; Ernzerhof, M. Generalized gradient approximation made simple [phys. Rev. Lett. 77, 3865 (1996)]. Phys. Rev. Lett. 1997, 78, 1396.
Grimme, S. Semiempirical GGA-type density functional constructed with a long-range dispersion correction. J. Comput. Chem. 2006, 27, 1787–1799.
Shin, D.; Choun, M.; Ham, H. C.; Lee, J. K.; Lee, J. A graphitic edge plane rich meso-porous carbon anode for alkaline water electrolysis. Phys. Chem. Chem. Phys. 2017, 19, 21987–21995.
Liu, H.; Guo, H.; Liu, B. H.; Liang, M. F.; Lv, Z. L.; Adair, K. R.; Sun, X. L. Few-layer MoSe2 nanosheets with expanded (002) planes confined in hollow carbon nanospheres for ultrahigh-performance Na-ion batteries. Adv. Funct. Mater. 2018, 28, 1707480.
Chen, Y. J.; Ji, S. F.; Wang, Y. G.; Dong, J. C.; Chen, W. X.; Li, Z.; Shen, R. A.; Zheng, L. R.; Zhuang, Z. B.; Wang, D. S. et al. Isolated single iron atoms anchored on N-doped porous carbon as an efficient electrocatalyst for the oxygen reduction reaction. Angew. Chem., Int. Ed. 2017, 56, 6937–6941.
Luo, X.; Han, W. L.; Du, W. C.; Huang, Z. M.; Jiang, Y.; Zhang, Y. Ordered mesoporous carbon with atomically dispersed Fe-Nx as oxygen reduction reaction electrocatalyst in air-cathode microbial fuel cells. J. Power Sources 2020, 469, 228184.
Luo, J. M.; Yang, L. M.; Li, T.; Yang, L. X.; Luo, X. B.; Crittenden, J. C. Three-dimensional electrode interface assembled from rGO nanosheets and carbon nanotubes for highly electrocatalytic oxygen reduction. Chem. Eng. J. 2019, 378, 122127.
Long, R.; Mao, K. K.; Ye, X. D.; Yan, W. S.; Huang, Y. B.; Wang, J. Y.; Fu, Y.; Wang, X. S.; Wu, X. J.; Xie, Y. et al. Surface facet of palladium nanocrystals: A key parameter to the activation of molecular oxygen for organic catalysis and cancer treatment. J. Am. Chem. Soc. 2013, 135, 3200–3207.
Shen, X. M.; Liu, W. Q.; Gao, X. J.; Lu, Z. H.; Wu, X. C.; Gao, X. F. Mechanisms of oxidase and superoxide dismutation-like activities of gold, silver, platinum, and palladium, and their alloys: A general way to the activation of molecular oxygen. J. Am. Chem. Soc. 2015, 137, 15882–15891.
Wang, J.; Schipper, H. M.; Velly, A. M.; Mohit, S.; Gornitsky, M. Salivary biomarkers of oxidative stress: A critical review. Free Radical Biol. Med. 2015, 85, 95–104.
Schmutzler, M.; Huck, C. W. Simultaneous detection of total antioxidant capacity and total soluble solids content by fourier transform near-infrared (FT-NIR) spectroscopy: A quick and sensitive method for on-site analyses of apples. Food Control 2016, 66, 27–37.
Lou, Z. P.; Zhao, S.; Wang, Q.; Wei, H. N-doped carbon as peroxidase-like nanozymes for total antioxidant capacity assay. Anal. Chem. 2019, 91, 15267–15274.
Chen, Y. F.; Jiao, L.; Yan, H. Y.; Xu, W. Q.; Wu, Y.; Wang, H. J.; Gu, W. L.; Zhu, C. Z. Hierarchically porous S/N codoped carbon nanozymes with enhanced peroxidase-like activity for total antioxidant capacity biosensing. Anal. Chem. 2020, 92, 13518–13524.
Mao, Y. Y.; Jia, F. M.; Jing, T. Y.; Li, T. T.; Jia, H. M.; He, W. W. Enhanced multiple enzymelike activity of ptpdcu trimetallic nanostructures for detection of Fe2+ and evaluation of antioxidant capability. ACS Sustainable Chem. Eng. 2021, 9, 569–579.
Chen, J.; Xu, F. H.; Zhang, Q.; Li, S. Y. N-doped MoS2-nanoflowers as peroxidase-like nanozymes for total antioxidant capacity assay. Anal. Chim. Acta 2021, 1180, 338740.
Ni, P. J.; Liu, S. Y.; Wang, B.; Chen, C. X.; Jiang, Y. Y.; Zhang, C. H.; Chen, J. B.; Lu, Y. Z. Light-responsive au nanoclusters with oxidase-like activity for fluorescent detection of total antioxidant capacity. J. Hazard. Mater. 2021, 411, 125106.
Szaciłowski, K. Digital information processing in molecular systems. Chem. Rev. 2008, 108, 3481–3548.
Molden, T. A.; Grillo, M. C.; Kolpashchikov, D. M. Manufacturing reusable NAND logic gates and their initial circuits for DNA nanoprocessors. Chem. -Eur. J. 2021, 27, 2421–2426.
Vishweshwaraiah, Y. L.; Chen, J. X.; Chirasani, V. R.; Tabdanov, E. D.; Dokholyan, N. V. Two-input protein logic gate for computation in living cells. Nat. Commun. 2021, 12, 6615.
Nozhat, N.; Alikomak, H.; Khodadadi, M. All-optical XOR and NAND logic gates based on plasmonic nanoparticles. Opt. Commun. 2017, 392, 208–213.
Lee, M.; Woo, H. M. A logic NAND gate for controlling gene expression in a circadian rhythm in cyanobacteria. ACS Synth. Biol. 2020, 9, 3210–3216.
Massey, M.; Medintz, I. L.; Ancona, M. G.; Algar, W. R. Time-gated fret and DNA-based photonic molecular logic gates: AND, OR, NAND, and NOR. ACS Sens. 2017, 2, 1205–1214.
Saghatelian, A.; Völcker, N. H.; Guckian, K. M.; Lin, V. S. Y.; Ghadiri, M. R. DNA-based photonic logic gates: AND, NAND, and INHIBIT. J. Am. Chem. Soc. 2003, 125, 346–347.