AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article

Bio-inspired synthesis of transition-metal oxide hybrid ultrathin nanosheets for enhancing the cycling stability in lithium-ion batteries

Yan-Ru Wang1,§Qing-Feng Zhuang2,§Yi Li1Ya-Lin Hu1Yang-Yi Liu1( )Qiao-Bao Zhang4Lei Shi1Chuan-Xin He3Xiao Zheng2Shu-Hong Yu1( )
Department of Chemistry, Institute of Biomimetic Materials & Chemistry, Anhui Engineering Laboratory of Biomimetic Materials, Division of Nanomaterials & Chemistry, Hefei National Laboratory for Physical Sciences at the Microscale, Institute of Energy, Hefei Comprehensive National Science Center, University of Science and Technology of China, Hefei 230026, China
Division of Theoretical and Computational Sciences, Hefei National Laboratory for Physical Sciences at the Microscale, Department of Chemical Physics, University of Science and Technology of China, Hefei 230026, China
College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, Guangdong 518060, China
Department of Materials Science and Engineering, College of Materials, Xiamen University, Xiamen, Fujian 361005, China

§ Yan-Ru Wang and Qing-Feng Zhuang contributed equally to this work.

Show Author Information

Graphical Abstract

Hybrid ultrathin CuO/Fe2O3 nanosheets can be synthesized via a bio-inspired strategy. Thecomposition of such hybrid nanosheets can be simply controlled by the CuO NSs growth modifiersdecorated with various contents of polyvinylpyrrolidone, which opens a convenient approachto optimize the performance of such hybrid nanosheets anodes in lithium-ion batteries.

Abstract

Constructing two-dimensional (2D) structures for transition-metal oxides (TMOs) can optimize their electronic structures and enable high specific surface areas, thereby offering routes to enhancing the performance of TMOs in energy storage and conversion. However, most 2D TMOs, e.g., Fe2O3, remain so far synthetically challenging due to their intrinsic non-layered structures. Herein, inspired by the mechanism of biomineralization, we report the synthesis of CuO/Fe2O3 hybrid ultrathin nanosheets by using polyvinylpyrrolidone-decorated CuO nanosheets as growth modifiers to modulate the hydrolysis process of Fe2+. The formulated “absorption-and-crystallization” two-step formation processes of such 2D hybrid structures accorded well with the biomineralization scheme in nature. Combining the in-situ transmission electron microscopy (TEM) study, theoretical calculation, and control experiments, we validated that the large density of 2D/2D interfaces enabled by this bio-inspired synthesis process can overcome the self-stacking phenomenon during lithium-ion battery cycling, leading to their high operation stability. This work emphasizes the bio-inspired synthesis of 2D TMOs as a promising pathway toward material design and performance optimization.

Electronic Supplementary Material

Video
12274_2021_4030_MOESM2_ESM.mp4
12274_2021_4030_MOESM3_ESM.mp4
12274_2021_4030_MOESM4_ESM.mp4
Download File(s)
12274_2021_4030_MOESM1_ESM.pdf (1.6 MB)

References

1

Ellis, P. R.; Enache, D. I.; James, D. W.; Jones, D. S.; Kelly, G. J. A robust and precious metal-free high performance cobalt Fischer–Tropsch catalyst. Nat. Catal. 2019, 2, 623–631.

2

Mesa, C. A.; Francàs, L.; Yang, K. R.; Garrido-Barros, P.; Pastor, E.; Ma, Y. M.; Kafizas, A.; Rosser, T. E.; Mayer, M. T.; Reisner, E. et al. Multihole water oxidation catalysis on haematite photoanodes revealed by operando spectroelectrochemistry and DFT. Nat. Chem. 2020, 12, 82–89.

3

Wu, Y. A.; McNulty, I.; Liu, C.; Lau, K. C.; Liu, Q.; Paulikas, A. P.; Sun, C. J.; Cai, Z. H.; Guest, J. R.; Ren, Y. et al. Facet-dependent active sites of a single Cu2O particle photocatalyst for CO2 reduction to methanol. Nat. Energy 2019, 4, 957–968.

4

Jin, H. Y.; Guo, C. X.; Liu, X.; Liu, J. L.; Vasileff, A.; Jiao, Y.; Zheng, Y.; Qiao, S. Z. Emerging two-dimensional nanomaterials for electrocatalysis. Chem. Rev. 2018, 118, 6337–6408.

5

Bergmann, A.; Jones, T. E.; Moreno, E. M.; Teschner, D.; Chernev, P.; Gliech, M.; Reier, T.; Dau, H.; Strasser, P. Unified structural motifs of the catalytically active state of Co(oxyhydr)oxides during the electrochemical oxygen evolution reaction. Nat. Catal. 2018, 1, 711–719.

6

Podjaski, F.; Weber, D.; Zhang, S. Y.; Diehl, L.; Eger, R.; Duppel, V.; Alarcón-Lladó, E.; Richter, G.; Haase, F.; Morral, A. F. I. et al. Rational strain engineering in delafossite oxides for highly efficient hydrogen evolution catalysis in acidic media. Nat. Catal. 2020, 3, 55–63.

7

Fleischmann, S.; Mitchell, J. B.; Wang, R. C.; Zhan, C.; Jiang, D. E.; Presser, V.; Augustyn, V. Pseudocapacitance: From fundamental understanding to high power energy storage materials. Chem. Rev. 2020, 120, 6738–6782.

8

Griffith, K. J.; Wiaderek, K. M.; Cibin, G.; Marbella, L. E.; Grey, C. P. Niobium tungsten oxides for high-rate lithium-ion energy storage. Nature 2018, 559, 556–563.

9

Radin, M. D.; Vinckeviciute, J.; Seshadri, R. Van der Ven, A. Manganese oxidation as the origin of the anomalous capacity of Mn-containing Li-excess cathode materials. Nat. Energy 2019, 4, 639–646.

10

Zhao, H. Y.; Xu, J.; Yin, D. D.; Du, Y. P. Electrolytes for batteries with earth-abundant metal anodes. Chem. -Eur. J. 2018, 24, 18220–18234.

11

Zhang, X. Y.; Du, Y. P. Gelatin assisted wet chemistry synthesis of high quality β-FeOOH nanorods anchored on graphene nanosheets with superior lithium-ion battery application. RSC Adv. 2016, 6, 17504–17509.

12

Zhang, X. Y.; Ge, J.; Lei, B.; Xue, Y. M.; Du, Y. P. High quality β-FeOOH nanostructures constructed by a biomolecule-assisted hydrothermal approach and their pH-responsive drug delivery behaviors. Crystengcomm 2015, 17, 4064–4069.

13

Wang, J. Y.; Huang, W.; Kim, Y. S.; Jeong, Y. K.; Kim, S. C.; Heo, J.; Lee, H. K.; Liu, B. F.; Nah, J.; Cui, Y. Scalable synthesis of nanoporous silicon microparticles for highly cyclable lithium-ion batteries. Nano Res. 2020, 13, 1558–1563.

14

Li, Z. L.; Zhao, H. L.; Wang, J.; Zhang, T. H.; Fu, B. Y.; Zhang, Z. J.; Tao, X. Rational structure design to realize high-performance SiOX@C anode material for lithium ion batteries. Nano Res. 2020, 13, 527–532.

15

Hu, W. H.; Zhang, Y. X.; Zan, L.; Cong, H. J. Mitigation of voltage decay in Li-rich layered oxides as cathode materials for lithium-ion batteries. Nano Res. 2020, 13, 151–159.

16
Cong, L. D.; Zhang, S. C.; Zhu, H. Y.; Chen, W. X.; Huang, X. Y.; Xing, Y. L.; Xia, J.; Yang, P. H.; Lu, X. Structure-design and theoretical-calculation for ultrasmall Co3O4 anchored into ionic liquid modified graphene as anode of flexible lithium-ion batteries. Nano Res., in press, https://doi.org/10.1007/S12274-021-3836-7.
17

Liu, Z. L.; Wang, X. X.; Wu, Z. Y.; Yang, S.; Yang, S. L.; Chen, S. P.; Wu, X. T.; Chang, X. H.; Yang, P. P.; Zheng, J. et al. Ultrafine Sn4P3 nanocrystals from chloride reduction on mechanically activated Na surface for sodium/lithium ion batteries. Nano Res. 2020, 13, 3157–3164.

18

Suryanto, B. H. R.; Wang, Y.; Hocking, R. K.; Adamson, W.; Zhao, C. Overall electrochemical splitting of water at the heterogeneous interface of nickel and iron oxide. Nat. Commun. 2019, 10, 5599.

19

Wang, Y. H.; Kattel, S.; Gao, W. G.; Li, K. Z.; Liu, P.; Chen, J. G.; Wang, H. Exploring the ternary interactions in Cu-ZnO-ZrO2 catalysts for efficient CO2 hydrogenation to methanol. Nat. Commun. 2019, 10, 1166.

20

Nie, L.; Mei, D. H.; Xiong, H. F.; Peng, B.; Ren, Z. B.; Hernandez, X. I. P.; DeLariva, A.; Wang, M.; Engelhard, M. H.; Kovarik, L. et al. Activation of surface lattice oxygen in single-atom Pt/CeO2 for low-temperature CO oxidation. Science 2017, 358, 1419–1423.

21

Zhou, B. X.; Ding, S. S.; Yang, K. X.; Zhang, J.; Huang, G. F.; Pan, A. L.; Hu, W. Y.; Li, K.; Huang, W. Q. Generalized synthetic strategy for amorphous transition metal oxides-based 2D heterojunctions with superb photocatalytic hydrogen and oxygen evolution. Adv. Funct. Mater. 2021, 31, 2009230.

22

Mei, J.; Liao, T.; Kou, L. Z.; Sun, Z. Q. Two-dimensional metal oxide nanomaterials for next-generation rechargeable batteries. Adv. Mater. 2017, 29, 1700176.

23

Shivayogimath, A.; Thomsen, J. D.; Mackenzie, D. M. A.; Geisler, M.; Stan, R. M.; Holt, A. J.; Bianchi, M.; Crovetto, A.; Whelan, P. R.; Carvalho, A. et al. A universal approach for the synthesis of two-dimensional binary compounds. Nat. Commun. 2019, 10, 2957.

24

Lee, J.; Orilall, M. C.; Warren, S. C.; Kamperman, M.; Disalvo, F. J.; Wiesner, U. Direct access to thermally stable and highly crystalline mesoporous transition-metal oxides with uniform pores. Nat. Mater. 2008, 7, 222–228.

25

Yang, J.; Zeng, Z. Y.; Kang, J.; Betzler, S.; Czarnik, C.; Zhang, X. W.; Ophus, C.; Yu, C.; Bustillo, K.; Pan, M. et al. Formation of two-dimensional transition metal oxide nanosheets with nanoparticles as intermediates. Nat. Mater. 2019, 18, 970–976.

26

Zhao, S. S.; Zhang, J. Q.; Fu, L. Liquid metals: A novel possibility of fabricating 2D metal oxides. Adv. Mater. 2021, 33, 2005544.

27

Von Euw, S.; Zhang, Q. H.; Manichev, V.; Murali, N.; Gross, J.; Feldman, L. C.; Gustafsson, T.; Flach, C.; Mendelsohn, R.; Falkowski, P. G. Biological control of aragonite formation in stony corals. Science 2017, 356, 933–938.

28

Pyles, H.; Zhang, S.; De Yoreo, J. J.; Baker, D. Controlling protein assembly on inorganic crystals through designed protein interfaces. Nature 2019, 571, 251–256.

29

De Yoreo, J. J.; Gilbert, P. U. P. A.; Sommerdijk, N. A. J. M.; Penn, R. L.; Whitelam, S.; Joester, D.; Zhang, H. Z.; Rimer, J. D.; Navrotsky, A.; Banfield, J. F. et al. Crystallization by particle attachment in synthetic, biogenic, and geologic environments. Science 2015, 349, aaa6760.

30

Reznikov, N.; Bilton, M.; Lari, L.; Stevens, M. M.; Kröger, R. Fractal-like hierarchical organization of bone begins at the nanoscale. Science 2018, 360, eaao2189.

31

Mao, L. B.; Gao, H. L.; Yao, H. B.; Liu, L.; Cölfen, H.; Liu, G.; Chen, S. M.; Li, S. K.; Yan, Y. X.; Liu, Y. Y. et al. Synthetic nacre by predesigned matrix-directed mineralization. Science 2016, 354, 107–110.

32

Sommerdijk, N. A. J. M.; Cusack, M. Crystals competing for space. Nat. Mater. 2014, 13, 1078–1079.

33

Dujardin, E.; Peet, C.; Stubbs, G.; Culver, J. N.; Mann, S. Organization of metallic nanoparticles using tobacco mosaic virus templates. Nano Lett. 2003, 3, 413–417.

34

Walsh, T. R.; Knecht, M. R. Biointerface structural effects on the properties and applications of bioinspired peptide-based nanomaterials. Chem. Rev. 2017, 117, 12641–12704.

35

Huang, J. L.; Lin, L. Q.; Sun, D. H.; Chen, H. M.; Yang, D. P.; Li, Q. B. Bio-inspired synthesis of metal nanomaterials and applications. Chem. Soc. Rev. 2015, 44, 6330–6374.

36

Jiang, Y.; Kellermeier, M.; Gebauer, D.; Lu, Z. H.; Rosenberg, R.; Moise, A.; Przybylski, M.; Cölfen, H. Growth of organic crystals via attachment and transformation of nanoscopic precursors. Nat. Commun. 2017, 8, 15933.

37

Kim, Y. Y.; Darkins, R.; Broad, A.; Kulak, A. N.; Holden, M. A.; Nahi, O.; Armes, S. P.; Tang, C. C.; Thompson, R. F.; Marin, F. et al. Hydroxyl-rich macromolecules enable the bio-inspired synthesis of single crystal nanocomposites. Nat. Commun. 2019, 10, 5682.

38

Rawlings, A. E.; Somner, L. A.; Fitzpatrick-Milton, M.; Roebuck, T. P.; Gwyn, C.; Liravi, P.; Seville, V.; Neal, T. J.; Mykhaylyk, O. O.; Baldwin, S. A. et al. Artificial coiled coil biomineralisation protein for the synthesis of magnetic nanoparticles. Nat. Commun. 2019, 10, 2873.

39

Xie, J. P.; Zheng, Y. G.; Ying, J. Y. Protein-directed synthesis of highly fluorescent gold nanoclusters. J. Am. Chem. Soc. 2009, 131, 888–889.

40

Mertig, M.; Ciacchi, L. C.; Seidel, R.; Pompe, W.; De Vita, A. DNA as a selective metallization template. Nano Lett. 2002, 2, 841–844.

41

Nudelman, F.; Sommerdijk, N. A. J. M. Biomineralization as an inspiration for materials chemistry. Angew. Chem., Int. Ed. 2012, 51, 6582–6596.

42

Sanchez, C.; Arribart, H.; Guille, M. M. G. Biomimetism and bioinspiration as tools for the design of innovative materials and systems. Nat. Mater. 2005, 4, 277–288.

43

Sanchez, C.; Arribart, H.; Guille, M. M. G. Chemical strategies to design textured materials:  from microporous and mesoporous oxides to nanonetworks and hierarchical structures. Chem. Rev. 2002, 102, 4093–4138.

44

Zhou, W. W.; Cheng, C. W.; Liu, J. P.; Tay, Y. Y.; Jiang, J.; Jia, X. T.; Zhang, J. X.; Gong, H.; Hng, H. H.; Yu, T. et al. Epitaxial growth of branched α-Fe2O3/SnO2 nano-heterostructures with improved lithium-ion battery performance. Adv. Funct. Mater. 2011, 21, 2439–2445.

45

Kresse, G.; Furthmüller, J. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B 1996, 54, 11169–11186.

46

Kresse, G.; Joubert, D. From ultrasoft pseudopotentials to the projector augmented-wave method. Phys. Rev. B 1999, 59, 1758–1775.

47

Perdew, J. P.; Burke, K.; Wang, Y. Generalized gradient approximation for the exchange-correlation hole of a many-electron system. Phys. Rev. B 1996, 54, 16533–16539.

48

Perdew, J. P.; Burke, K.; Ernzerhof, M. Generalized gradient approximation made simple. Phys. Rev. Lett. 1996, 77, 3865–3868.

49

Ristić, M.; Musić, S.; Godec, M. Properties of γ-FeOOH, α-FeOOH and α-Fe2O3 particles precipitated by hydrolysis of Fe3+ ions in perchlorate containing aqueous solutions. J. Alloys Compd. 2006, 417, 292–299.

50

Sivakumar, M.; Kanagesan, S.; Umapathy, V.; Babu, R. S.; Nithiyanantham, S. Study of CoFe2O4 particles synthesized with various concentrations of PVP polymer. J. Supercond. Novel Magn. 2013, 26, 725–731.

51

Koczkur, K. M.; Mourdikoudis, S.; Polavarapu, L.; Skrabalak, S. E. Polyvinylpyrrolidone (PVP) in nanoparticle synthesis. Dalton Trans. 2015, 44, 17883–17905.

52

Mourdikoudis, S.; Chirea, M.; Zanaga, D.; Altantzis, T.; Mitrakas, M.; Bals, S.; Liz-Marzán, L. M.; Pérez-Juste, J.; Pastoriza-Santos, I. Governing the morphology of Pt-Au heteronanocrystals with improved electrocatalytic performance. Nanoscale 2015, 7, 8739–8747.

53

Tsuji, M.; Matsuo, R.; Jiang, P.; Miyamae, N.; Ueyama, D.; Nishio, M.; Hikino, S.; Kumagae, H.; Kamarudin, K. S. N.; Tang, X. L. Shape-dependent evolution of Au@Ag core–shell nanocrystals by PVP-assisted N, N-dimethylformamide reduction. Cryst. Growth Des. 2008, 8, 2528–2536.

54

Wang, Y. J.; Zhao, N. N.; Fang, B. Z.; Li, H.; Bi, X. T.; Wang, H. J. Carbon-supported Pt-based alloy electrocatalysts for the oxygen reduction reaction in polymer electrolyte membrane fuel cells: Particle size, shape, and composition manipulation and their impact to activity. Chem. Rev. 2015, 115, 3433–3467.

55

Peng, L. L.; Zhu, Y.; Chen, D. H.; Ruoff, R. S.; Yu, G. H. Two-dimensional materials for beyond-lithium-ion batteries. Adv. Energy Mater. 2016, 6, 1600025.

56

Peng, L. L.; Xiong, P.; Ma, L.; Yuan, Y. F.; Zhu, Y.; Chen, D. H.; Luo, X. Y.; Lu, J.; Amine, K.; Yu, G. H. Holey two-dimensional transition metal oxide nanosheets for efficient energy storage. Nat. Commun. 2017, 8, 15139.

57

Liu, J. H.; Chen, J. S.; Wei, X. F.; Lou, X. W.; Liu, X. W. Sandwich-like, stacked ultrathin titanate nanosheets for ultrafast lithium storage. Adv. Mater. 2011, 23, 998–1002.

58

Chaudhari, S.; Srinivasan, M. 1D hollow α-Fe2O3 electrospun nanofibers as high performance anode material for lithium ion batteries. J. Mater. Chem. 2012, 22, 23049–23056.

59

Lv, C. X.; Yang, X. F.; Umar, A.; Xia, Y. Z.; Jia, Y.; Shang, L.; Zhang, T. R.; Yang, D. J. Architecture-controlled synthesis of MxOy (M = Ni, Fe, Cu) microfibres from seaweed biomass for high-performance lithium ion battery anodes. J. Mater. Chem. A 2015, 3, 22708–22715.

Nano Research
Pages 5064-5071
Cite this article:
Wang Y-R, Zhuang Q-F, Li Y, et al. Bio-inspired synthesis of transition-metal oxide hybrid ultrathin nanosheets for enhancing the cycling stability in lithium-ion batteries. Nano Research, 2022, 15(6): 5064-5071. https://doi.org/10.1007/s12274-021-4030-7
Topics:

998

Views

10

Crossref

10

Web of Science

11

Scopus

2

CSCD

Altmetrics

Received: 17 September 2021
Revised: 16 November 2021
Accepted: 29 November 2021
Published: 08 April 2022
© Tsinghua University Press and Springer-Verlag GmbH Germany, part of Springer Nature 2021
Return