AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Review Article

Emerging systemic delivery strategies of oncolytic viruses: A key step toward cancer immunotherapy

Weiyue Ban1,§Jianhuan Guan1,§Hanwei Huang2Zhonggui He1Mengchi Sun1( )Funan Liu2( )Jin Sun1( )
Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang 110016, China
Department of Surgical Oncology and General Surgery, The First Hospital of China Medical University; Key Laboratory of Precision Diagnosis and Treatment of Gastrointestinal Tumors, China Medical University, Ministry of Education, Shenyang 110016, China

§ Weiyue Ban and Jianhuan Guan contributed equally to this work.

Show Author Information

Graphical Abstract

This abstract graphic takes concerted action with abstract section and illustrates the development status of oncolytic viruses (OVs) systemic delivery modalities. Concretely, six representative systemic delivery models have been exhibited and the physiological disposition and influence for tumor immune microenvironment of OVs have been shown in this graphic.

Abstract

Oncolytic virotherapy (OVT) is a novel type of immunotherapy that induces anti-tumor responses through selective self-replication within cancer cells and oncolytic virus (OV)-mediated immunostimulation. Notably, talimogene laherparepvec (T-Vec) developed by the Amgen company in 2015, is the first FDA-approved OV product to be administered via intratumoral injection and has been the most successful OVT treatment. However, the systemic administration of OVs still faces huge challenges, including in vivo pre-existing neutralizing antibodies and poor targeting delivery efficacy. Recently, state-of-the-art progress has been made in the development of systemic delivery of OVs, which demonstrates a promising step toward broadening the scope of cancer immunotherapy and improving the clinical efficacy of OV delivery. Herein, this review describes the general characteristics of OVs, focusing on the action mechanisms of OVs as well as the advantages and disadvantages of OVT. The emerging multiple systemic administration approaches of OVs are summarized in the past five years. In addition, the combination treatments between OVT and traditional therapies (chemotherapy, thermotherapy, immunotherapy, and radiotherapy, etc.) are highlighted. Last but not least, the future prospects and challenges of OVT are also discussed, with the aim of facilitating medical researchers to extensively apply the OVT in the cancer therapy.

References

1

Advani, S. J.; Chung, S. M.; Yan, S. Y.; Gillespie, G. Y.; Markert, J. M.; Whitley, R. J.; Roizman, B.; Weichselbaum, R. R. Replication-competent, nonneuroinvasive genetically engineered herpes virus is highly effective in the treatment of therapy-resistant experimental human tumors. Cancer Res. 1999, 59, 2055–2058.

2

Skoetz, N.; Will, A.; Monsef, I.; Brillant, C.; Engert, A.; von Tresckow, B. Comparison of first-line chemotherapy including escalated BEACOPP versus chemotherapy including ABVD for people with early unfavourable or advanced stage Hodgkin lymphoma. Cochrane Database Syst. Rev. 2017, 5, Cd007941.

3

Watanabe, D.; Goshima, F. Oncolytic virotherapy by HSV. Adv. Exp. Med. Biol. 2018, 1045, 63–84.

4

Masoud, S. J.; Hu, J. B.; Beasley, G. M.; Stewart IV, J. H.; Mosca, P. J. Efficacy of talimogene laherparepvec (T-VEC) therapy in patients with in-transit melanoma metastasis decreases with increasing lesion size. Ann. Surg. Oncol. 2019, 26, 4633–4641.

5

Bai, Y.; Hui, P.; Du, X. Y.; Su, X. Updates to the antitumor mechanism of oncolytic virus. Thorac. Cancer 2019, 10, 1031–1035.

6

Lee, P.; Gujar, S. Potentiating prostate cancer immunotherapy with oncolytic viruses. Nat. Rev. Urol. 2018, 15, 235–250.

7

Lv, P.; Liu, X.; Chen, X. M.; Liu, C.; Zhang, Y.; Chu, C. C.; Wang, J. Q.; Wang, X. Y.; Chen, X. Y.; Liu, G. Genetically engineered cell membrane nanovesicles for oncolytic adenovirus delivery: A versatile platform for cancer virotherapy. Nano Lett. 2019, 19, 2993–3001.

8

Bommareddy, P. K.; Shettigar, M.; Kaufman, H. L. Integrating oncolytic viruses in combination cancer immunotherapy. Nat. Rev. Immunol. 2018, 18, 498–513.

9

Smith, J. S.; Xu, Z. L.; Tian, J.; Palmer, D. J.; Ng, P.; Byrnes, A. P. The role of endosomal escape and mitogen-activated protein kinases in adenoviral activation of the innate immune response. PLoS One 2011, 6, e26755.

10

Waddington, S. N.; McVey, J. H.; Bhella, D.; Parker, A. L.; Barker, K.; Atoda, H.; Pink, R.; Buckley, S. M. K.; Greig, J. A.; Denby, L. et al. Adenovirus serotype 5 hexon mediates liver gene transfer. Cell 2008, 132, 397–409.

11

Atasheva, S.; Yao, J.; Shayakhmetov, D. M. Innate immunity to adenovirus: Lessons from mice. FEBS Lett. 2019, 593, 3461–3483.

12

Taipale, K.; Liikanen, I.; Juhila, J.; Turkki, R.; Tähtinen, S.; Kankainen, M.; Vassilev, L.; Ristimäki, A.; Koski, A.; Kanerva, A. et al. Chronic activation of innate immunity correlates with poor prognosis in cancer patients treated with oncolytic adenovirus. Mol. Ther. 2016, 24, 175–183.

13

Brown, M. C.; Holl, E. K.; Boczkowski, D.; Dobrikova, E.; Mosaheb, M.; Chandramohan, V.; Bigner, D. D.; Gromeier, M.; Nair, S. K. Cancer immunotherapy with recombinant poliovirus induces IFN-dominant activation of dendritic cells and tumor antigen-specific CTLs. Sci. Transl. Med. 2017, 9, eaan4220.

14

Guo, G.; Gong, K.; Wohlfeld, B.; Hatanpaa, K. J.; Zhao, D. W.; Habib, A. A. Ligand-independent EGFR signaling. Cancer Res. 2015, 75, 3436–3441.

15

Ilkow, C. S.; Marguerie, M.; Batenchuk, C.; Mayer, J.; Ben Neriah, D.; Cousineau, S.; Falls, T.; Jennings, V. A.; Boileau, M.; Bellamy, D. et al. Reciprocal cellular cross-talk within the tumor microenvironment promotes oncolytic virus activity. Nat. Med. 2015, 21, 530–536.

16

Arulanandam, R.; Batenchuk, C.; Angarita, F. A.; Ottolino-Perry, K.; Cousineau, S.; Mottashed, A.; Burgess, E.; Falls, T. J.; De Silva, N.; Tsang, J. et al. VEGF-mediated induction of PRD1-BF1/blimp1 expression sensitizes tumor vasculature to oncolytic virus infection. Cancer Cell 2015, 28, 210–224.

17

Shmulevitz, M.; Marcato, P.; Lee, P. W. K. Unshackling the links between reovirus oncolysis, Ras signaling, translational control, and cancer. Oncogene 2005, 24, 7720–7728.

18

Martin, N. T.; Bell, J. C. Oncolytic virus combination therapy: Killing one bird with two stones. Mol. Ther. 2018, 26, 1414–1422.

19

Chiappinelli, K. B.; Strissel, P. L.; Desrichard, A.; Li, H. L.; Henke, C.; Akman, B.; Hein, A.; Rote, N. S.; Cope, L. M.; Snyder, A. et al. Inhibiting DNA methylation causes an interferon response in cancer via dsRNA including endogenous retroviruses. Cell 2015, 162, 974–986.

20

Kaufman, H. L.; Kohlhapp, F. J.; Zloza, A. Oncolytic viruses: A new class of immunotherapy drugs. Nat. Rev. Drug Discov. 2015, 14, 642–662.

21

Gujar, S.; Pol, J. G.; Kim, Y.; Lee, P. W.; Kroemer, G. Antitumor benefits of antiviral immunity: An underappreciated aspect of oncolytic virotherapies. Trends Immunol. 2018, 39, 209–221.

22

Gujar, S. A.; Pan, D.; Marcato, P.; Garant, K. A.; Lee, P. W. K. Oncolytic virus-initiated protective immunity against prostate cancer. Mol. Ther. 2011, 19, 797–804.

23

Lucas, T.; Abraham, D.; Untergasser, G.; Zins, K.; Hofer, E.; Gunsilius, E.; Aharinejad, S. Adenoviral-mediated endothelial precursor cell delivery of soluble cd115 suppresses human prostate cancer xenograft growth in mice. Stem Cells 2009, 27, 2342–2352.

24

Mogensen, T. H. Pathogen recognition and inflammatory signaling in innate immune defenses. Clin. Microbiol. Rev. 2009, 22, 240–273.

25

Kepp, O.; Senovilla, L.; Vitale, I.; Vacchelli, E.; Adjemian, S.; Agostinis, P.; Apetoh, L.; Aranda, F.; Barnaba, V.; Bloy, N. et al. Consensus guidelines for the detection of immunogenic cell death. Oncoimmunology 2014, 3, e955691.

26

Getts, D. R.; Chastain, E. M. L.; Terry, R. L.; Miller, S. D. Virus infection, antiviral immunity, and autoimmunity. Immunol. Rev. 2013, 255, 197–209.

27

Dörner, T.; Radbruch, A. Antibodies and B cell memory in viral immunity. Immunity 2007, 27, 384–392.

28

Bhattacharya, P.; Budnick, I.; Singh, M.; Thiruppathi, M.; Alharshawi, K.; Elshabrawy, H.; Holterman, M. J.; Prabhakar, B. S. Dual role of GM-CSF as a pro-inflammatory and a regulatory cytokine: Implications for immune therapy. J. Interferon Cytokine Res. 2015, 35, 585–599.

29

Tähtinen, S.; Blattner, C.; Vähä-Koskela, M.; Saha, D.; Siurala, M.; Parviainen, S.; Utikal, J.; Kanerva, A.; Umansky, V.; Hemminki, A. T-cell therapy enabling adenoviruses coding for IL2 and TNFα induce systemic immunomodulation in mice with spontaneous melanoma. J. Immunother. 2016, 39, 343–354.

30

Passer, B. J.; Cheema, T.; Wu, S.; Wu, C. L.; Rabkin, S. D.; Martuza, R. L. Combination of vinblastine and oncolytic herpes simplex virus vector expressing IL-12 therapy increases antitumor and antiangiogenic effects in prostate cancer models. Cancer Gene Ther. 2013, 20, 17–24.

31

Zamarin, D.; Wolchok, J. D. Potentiation of immunomodulatory antibody therapy with oncolytic viruses for treatment of cancer. Mol. Ther. Oncolytics 2014, 1, 14004.

32

Choi, J. W.; Lee, Y. S.; Yun, C. O.; Kim, S. W. Polymeric oncolytic adenovirus for cancer gene therapy. J. Control. Release 2015, 219, 181–191.

33

Andtbacka, R. H. I.; Amatruda, T.; Nemunaitis, J.; Zager, J. S.; Walker, J.; Chesney, J. A.; Liu, K. T.; Hsu, C. P.; Pickett, C. A.; Mehnert, J. M. Biodistribution, shedding, and transmissibility of the oncolytic virus talimogene laherparepvec in patients with melanoma. EBioMedicine 2019, 47, 89–97.

34

Hirooka, Y.; Kasuya, H.; Ishikawa, T.; Kawashima, H.; Ohno, E.; Villalobos, I. B.; Naoe, Y.; Ichinose, T.; Koyama, N.; Tanaka, M. et al. A phase I clinical trial of EUS-guided intratumoral injection of the oncolytic virus, HF10 for unresectable locally advanced pancreatic cancer. BMC Cancer 2018, 18, 596.

35

Mahalingam, D.; Wilkinson, G. A.; Eng, K. H.; Fields, P.; Raber, P.; Moseley, J. L.; Cheetham, K.; Coffey, M.; Nuovo, G.; Kalinski, P. et al. Pembrolizumab in combination with the oncolytic virus pelareorep and chemotherapy in patients with advanced pancreatic adenocarcinoma: A phase Ib study. Clin. Cancer Res. 2020, 26, 71–81.

36

Packiriswamy, N.; Upreti, D.; Zhou, Y. M.; Khan, R.; Miller, A.; Diaz, R. M.; Rooney, C. M.; Dispenzieri, A.; Peng, K. W.; Russell, S. J. Oncolytic measles virus therapy enhances tumor antigen-specific T-cell responses in patients with multiple myeloma. Leukemia 2020, 34, 3310–3322.

37

García, M.; Moreno, R.; Gil-Martin, M.; Cascallò, M.; de Olza, M. O.; Cuadra, C.; Piulats, J. M.; Navarro, V.; Domenech, M.; Alemany, R. et al. A phase 1 trial of oncolytic adenovirus ICOVIR-5 administered intravenously to cutaneous and uveal melanoma patients. Hum. Gene Ther. 2019, 30, 352–364.

38

Müller, L. M. E.; Holmes, M.; Michael, J. L.; Scott, G. B.; West, E. J.; Scott, K. J.; Parrish, C.; Hall, K.; Stäble, S.; Jennings, V. A. et al. Plasmacytoid dendritic cells orchestrate innate and adaptive anti-tumor immunity induced by oncolytic coxsackievirus A21. J. Immunother. Cancer 2019, 7, 164.

39

Annels, N. E.; Mansfield, D.; Arif, M.; Ballesteros-Merino, C.; Simpson, G. R.; Denyer, M.; Sandhu, S. S.; Melcher, A. A.; Harrington, K. J.; Davies, B. et al. Phase I trial of an ICAM-1-targeted immunotherapeutic-coxsackievirus A21 (CVA21) as an oncolytic agent against non muscle-invasive bladder cancer. Clin. Cancer Res. 2019, 25, 5818–5831.

40

Kurokawa, C.; Iankov, I. D.; Anderson, S. K.; Aderca, I.; Leontovich, A. A.; Maurer, M. J.; Oberg, A. L.; Schroeder, M. A.; Giannini, C.; Greiner, S. M. et al. Constitutive interferon pathway activation in tumors as an efficacy determinant following oncolytic virotherapy. J. Natl. Cancer Inst. 2018, 110, 1123–1132.

41

Lauer, U. M.; Schell, M.; Beil, J.; Berchtold, S.; Koppenhöfer, U.; Glatzle, J.; Königsrainer, A.; Möhle, R.; Nann, D.; Fend, F. et al. Phase I study of oncolytic vaccinia virus GL-ONC1 in patients with peritoneal carcinomatosis. Clin. Cancer Res. 2018, 24, 4388–4398.

42

Pascual-Pasto, G.; Bazan-Peregrino, M.; Olaciregui, N. G.; Restrepo-Perdomo, C. A.; Mato-Berciano, A.; Ottaviani, D.; Weber, K.; Correa, G.; Paco, S.; Vila-Ubach, M. et al. Therapeutic targeting of the RB1 pathway in retinoblastoma with the oncolytic adenovirus VCN-01. Sci. Transl. Med. 2019, 11, eaat9321.

43

Lang, F. F.; Conrad, C.; Gomez-Manzano, C.; Yung, W. K. A.; Sawaya, R.; Weinberg, J. S.; Prabhu, S. S.; Rao, G.; Fuller, G. N.; Aldape, K. D. et al. Phase I study of DNX-2401 (Delta-24-RGD) oncolytic adenovirus: Replication and immunotherapeutic effects in recurrent malignant glioma. J. Clin. Oncol. 2018, 36, 1419–1427.

44

Streby, K. A.; Currier, M. A.; Triplet, M.; Ott, K.; Dishman, D. J.; Vaughan, M. R.; Ranalli, M. A.; Setty, B.; Skeens, M. A.; Whiteside, S. et al. First-in-human intravenous seprehvir in young cancer patients: A phase 1 clinical trial. Mol. Ther. 2019, 27, 1930–1938.

45

Jonker, D. J.; Tang, P. A.; Kennecke, H.; Welch, S. A.; Cripps, M. C.; Asmis, T.; Chalchal, H.; Tomiak, A.; Lim, H.; Ko, Y. J. et al. A randomized phase II study of FOLFOX6/bevacizumab with or without pelareorep in patients with metastatic colorectal cancer: IND. 210, a Canadian cancer trials group trial. Clin. Colorectal Cancer 2018, 17, 231–239.e7.

46

Machiels, J. P.; Salazar, R.; Rottey, S.; Duran, I.; Dirix, L.; Geboes, K.; Wilkinson-Blanc, C.; Pover, G.; Alvis, S.; Champion, B. et al. A phase 1 dose escalation study of the oncolytic adenovirus enadenotucirev, administered intravenously to patients with epithelial solid tumors (EVOLVE). J. Immunother. Cancer 2019, 7, 20.

47

Packiam, V. T.; Lamm, D. L.; Barocas, D. A.; Trainer, A.; Fand, B.; Davis III, R. L.; Clark, W.; Kroeger, M.; Dumbadze, I.; Chamie, K. et al. An open label, single-arm, phase II multicenter study of the safety and efficacy of CG0070 oncolytic vector regimen in patients with BCG-unresponsive non-muscle-invasive bladder cancer: Interim results. Urol. Oncol.:Semin. Orig. Investig. 2018, 36, 440–447.

48

Parakrama, R.; Fogel, E.; Chandy, C.; Augustine, T.; Coffey, M.; Tesfa, L.; Goel, S.; Maitra, R. Immune characterization of metastatic colorectal cancer patients post reovirus administration. BMC Cancer 2020, 20, 569.

49

Bradbury, P. A.; Morris, D. G.; Nicholas, G.; Tu, D. S.; Tehfe, M.; Goffin, J. R.; Shepherd, F. A.; Gregg, R. W.; Rothenstein, J.; Lee, C. et al. Canadian cancer trials group (CCTG) IND211: A randomized trial of pelareorep (Reolysin) in patients with previously treated advanced or metastatic non-small cell lung cancer receiving standard salvage therapy. Lung Cancer 2018, 120, 142–148.

50

Reid, E. G.; Looney, D.; Maldarelli, F.; Noy, A.; Henry, D.; Aboulafia, D.; Ramos, J. C.; Sparano, J.; Ambinder, R. F.; Lee, J. et al. Safety and efficacy of an oncolytic viral strategy using bortezomib with ICE/R in relapsed/refractory HIV-positive lymphomas. Blood Adv. 2018, 2, 3618–3626.

51

Schenk, E. L.; Mandrekar, S. J.; Dy, G. K.; Aubry, M. C.; Tan, A. D.; Dakhil, S. R.; Sachs, B. A.; Nieva, J. J.; Bertino, E.; Hann, C. L. et al. A randomized double-blind phase II study of the Seneca valley virus (NTX-010) versus placebo for patients with extensive-stage SCLC (ES SCLC) who were stable or responding after at least four cycles of platinum-based chemotherapy: North central cancer treatment group (Alliance) N0923 study. J. Thorac. Oncol. 2020, 15, 110–119.

52

Kiyohara, E.; Tanemura, A.; Nishioka, M.; Yamada, M.; Tanaka, A.; Yokomi, A.; Saito, A.; Sakura, K.; Nakajima, T.; Myoui, A. et al. Intratumoral injection of hemagglutinating virus of Japan-envelope vector yielded an antitumor effect for advanced melanoma: A phase I/IIa clinical study. Cancer Immunol., Immunother. 2020, 69, 1131–1140.

53

Fujita, K.; Kato, T.; Hatano, K.; Kawashima, A.; Ujike, T.; Uemura, M.; Imamura, R.; Okihara, K.; Ukimura, O.; Miki, T. et al. Intratumoral and s. c. injection of inactivated hemagglutinating virus of Japan envelope (GEN0101) in metastatic castration-resistant prostate cancer. Cancer Sci. 2020, 111, 1692–1698.

54

Bernstein, V.; Ellard, S. L.; Dent, S. F.; Tu, D.; Mates, M.; Dhesy-Thind, S. K.; Panasci, L.; Gelmon, K. A.; Salim, M.; Song, X. et al. A randomized phase II study of weekly paclitaxel with or without pelareorep in patients with metastatic breast cancer: Final analysis of Canadian cancer trials group IND. 213. Breast Cancer Res. Treat. 2018, 167, 485–493.

55

Chesney, J.; Puzanov, I.; Collichio, F.; Singh, P.; Milhem, M. M.; Glaspy, J.; Hamid, O.; Ross, M.; Friedlander, P.; Garbe, C. et al. Randomized, open-label phase II study evaluating the efficacy and safety of talimogene laherparepvec in combination with ipilimumab versus ipilimumab alone in patients with advanced, unresectable melanoma. J. Clin. Oncol. 2018, 36, 1658–1667.

56

Tejada, S.; Alonso, M.; Patiño, A.; Fueyo, J.; Gomez-Manzano, C.; Diez-Valle, R. Phase I trial of DNX-2401 for diffuse intrinsic pontine glioma newly diagnosed in pediatric patients. Neurosurgery 2018, 83, 1050–1056.

57

Chesney, J.; Awasthi, S.; Curti, B.; Hutchins, L.; Linette, G.; Triozzi, P.; Tan, M. C. B.; Brown, R. E.; Nemunaitis, J.; Whitman, E. et al. Phase IIIb safety results from an expanded-access protocol of talimogene laherparepvec for patients with unresected, stage IIIB-IVM1c melanoma. Melanoma Res. 2018, 28, 44–51.

58

Macedo, N.; Miller, D. M.; Haq, R.; Kaufman, H. L. Clinical landscape of oncolytic virus research in 2020. J. Immunother. Cancer 2020, 8, e001486.

59

Zheng, M. J.; Huang, J. H.; Tong, A. P.; Yang, H. Oncolytic viruses for cancer therapy: Barriers and recent advances. Mol. Ther. Oncolytics 2019, 15, 234–247.

60

Smith, E.; Breznik, J.; Lichty, B. D. Strategies to enhance viral penetration of solid tumors. Hum. Gene Ther. 2011, 22, 1053–1060.

61

Roy, D. G.; Bell, J. C. Cell carriers for oncolytic viruses: Current challenges and future directions. Oncolytic Virother 2013, 2, 47–56.

62

Bridle, B. W.; Stephenson, K. B.; Boudreau, J. E.; Koshy, S.; Kazdhan, N.; Pullenayegum, E.; Brunellière, J.; Bramson, J. L.; Lichty, B. D.; Wan, Y. H. Potentiating cancer immunotherapy using an oncolytic virus. Mol. Ther. 2010, 18, 1430–1439.

63

Hill, C.; Carlisle, R. Achieving systemic delivery of oncolytic viruses. Expert Opin. Drug Deliv. 2019, 16, 607–620.

64

Guimarães-Camboa, N.; Cattaneo, P.; Sun, Y. F.; Moore-Morris, T.; Gu, Y. S.; Dalton, N. D.; Rockenstein, E.; Masliah, E.; Peterson, K. L.; Stallcup, W. B. et al. Pericytes of multiple organs do not behave as mesenchymal stem cells in vivo. Cell Stem Cell 2017, 20, 345–359.e5.

65

Hadryś, A.; Sochanik, A.; McFadden, G.; Jazowiecka-Rakus, J. Mesenchymal stem cells as carriers for systemic delivery of oncolytic viruses. Eur. J. Pharmacol. 2020, 874, 172991.

66

Abdallah, B. M.; Kassem, M. The use of mesenchymal (skeletal) stem cells for treatment of degenerative diseases: Current status and future perspectives. J. Cell. Physiol. 2009, 218, 9–12.

67

Cheng, X. F.; Zhang, G. Y.; Zhang, L.; Hu, Y.; Zhang, K.; Sun, X. J.; Zhao, C. Q.; Li, H.; Li, Y. M.; Zhao, J. Mesenchymal stem cells deliver exogenous mir-21 via exosomes to inhibit nucleus pulposus cell apoptosis and reduce intervertebral disc degeneration. J. Cell. Mol. Med. 2018, 22, 261–276.

68

Wang, B.; Yao, K.; Huuskes, B. M.; Shen, H. H.; Zhuang, J. L.; Godson, C.; Brennan, E. P.; Wilkinson-Berka, J. L.; Wise, A. F.; Ricardo, S. D. Mesenchymal stem cells deliver exogenous MicroRNA-let7c via exosomes to attenuate renal fibrosis. Mol. Ther. 2016, 24, 1290–1301.

69

Na, Y. J.; Nam, J. P.; Hong, J.; Oh, E.; Shin, H. C.; Kim, H. S.; Kim, S. W.; Yun, C. O. Systemic administration of human mesenchymal stromal cells infected with polymer-coated oncolytic adenovirus induces efficient pancreatic tumor homing and infiltration. J. Control. Release 2019, 305, 75–88.

70

Dapkute, D.; Steponkiene, S.; Bulotiene, D.; Saulite, L.; Riekstina, U.; Rotomskis, R. Skin-derived mesenchymal stem cells as quantum dot vehicles to tumors. Int. J. Nanomedicine 2017, 12, 8129–8142.

71

Liu, Y.; Ye, T.; Maynard, J.; Akbulut, H.; Deisseroth, A. Engineering conditionally replication-competent adenoviral vectors carrying the cytosine deaminase gene increases the infectivity and therapeutic effect for breast cancer gene therapy. Cancer Gene Ther. 2006, 13, 346–356.

72

Long, G. V.; Trefzer, U.; Davies, M. A.; Kefford, R. F.; Ascierto, P. A.; Chapman, P. B.; Puzanov, I.; Hauschild, A.; Robert, C.; Algazi, A. et al. Dabrafenib in patients with Val600Glu or Val600Lys BRAF-mutant melanoma metastatic to the brain (BREAK-MB): A multicentre, open-label, phase 2 trial. Lancet Oncol. 2012, 13, 1087–1095.

73

Harrington, K. J.; Puzanov, I.; Hecht, J. R.; Hodi, F. S.; Szabo, Z.; Murugappan, S.; Kaufman, H. L. Clinical development of talimogene laherparepvec (T-VEC): A modified herpes simplex virus type-1-derived oncolytic immunotherapy. Expert Rev. Anticancer Ther. 2015, 15, 1389–1403.

74

Du, W.; Seah, I.; Bougazzoul, O.; Choi, G.; Meeth, K.; Bosenberg, M. W.; Wakimoto, H.; Fisher, D.; Shah, K. Stem cell-released oncolytic herpes simplex virus has therapeutic efficacy in brain metastatic melanomas. P. Natl. Acad. Sci. USA 2017, 114, E6157–E6165.

75

Yang, F. J.; Wu, L. N.; Xu, W. X.; Liu, Y.; Zhen, L. M.; Ning, G.; Song, J.; Jiao, Q.; Zheng, Y. Y.; Chen, T. T. et al. Diverse effects of the NTCP p. Ser267Phe variant on disease progression during chronic HBV infection and on HBV pres1 variability. Front. Cell. Infect. Microbiol. 2019, 9, 18.

76

Cui, S. X.; Zhang, H. L.; Xu, W. F.; Qu, X. J. 13F-1, a novel 5-fluorouracil prodrug containing an Asn-Gly-Arg (NO2) COOCH3 tripeptide, inhibits human colonic carcinoma growth by targeting Aminopeptidase N (APN/CD13). Eur. J. Pharmacol. 2014, 734, 50–59.

77

Fusciello, M.; Fontana, F.; Tähtinen, S.; Capasso, C.; Feola, S.; Martins, B.; Chiaro, J.; Peltonen, K.; Ylösmäki, L.; Ylösmäki, E. et al. Artificially cloaked viral nanovaccine for cancer immunotherapy. Nat. Commun. 2019, 10, 5747.

78

Rojas, L. A.; Condezo, G. N.; Moreno, R.; Fajardo, C. A.; Arias-Badia, M.; San Martín, C.; Alemany, R. Albumin-binding adenoviruses circumvent pre-existing neutralizing antibodies upon systemic delivery. J. Control. Release 2016, 237, 78–88.

79

Mato-Berciano, A.; Morgado, S.; Maliandi, M. V.; Farrera-Sal, M.; Gimenez-Alejandre, M.; Ginestà, M. M.; Moreno, R.; Torres-Manjon, S.; Moreno, P.; Arias-Badia, M. et al. Oncolytic adenovirus with hyaluronidase activity that evades neutralizing antibodies: VCN-11. J. Control. Release 2021, 332, 517–528.

80

Guedan, S.; Rojas, J. J.; Gros, A.; Mercade, E.; Cascallo, M.; Alemany, R. Hyaluronidase expression by an oncolytic adenovirus enhances its intratumoral spread and suppresses tumor growth. Mol. Ther. 2010, 18, 1275–1283.

81

Schmid, M.; Ernst, P.; Honegger, A.; Suomalainen, M.; Zimmermann, M.; Braun, L.; Stauffer, S.; Thom, C.; Dreier, B.; Eibauer, M. et al. Adenoviral vector with shield and adapter increases tumor specificity and escapes liver and immune control. Nat. Commun. 2018, 9, 450.

82

Rangaswamy, U. S.; Cotter, C. R.; Cheng, X.; Jin, H.; Chen, Z. CD55 is a key complement regulatory protein that counteracts complement-mediated inactivation of Newcastle Disease Virus. J. Gen. Virol. 2016, 97, 1765–1770.–.

83

Brunetti-Pierri, N.; Palmer, D. J.; Beaudet, A. L.; Carey, K. D.; Finegold, M.; Ng, P. Acute toxicity after high-dose systemic injection of helper-dependent adenoviral vectors into nonhuman primates. Hum. Gene Ther. 2004, 15, 35–46.

84

Beebe, D. P.; Cooper, N. R. Neutralization of vesicular stomatitis virus (VSV) by human complement requires a natural IgM antibody present in human serum. J. Immunol. 1981, 126, 1562–1568.

85

Tesfay, M. Z.; Ammayappan, A.; Federspiel, M. J.; Barber, G. N.; Stojdl, D.; Peng, K. W.; Russell, S. J. Vesiculovirus neutralization by natural IgM and complement. J. Virol. 2014, 88, 6148–6157.

86

Atasheva, S.; Emerson, C. C.; Yao, J.; Young, C.; Stewart, P. L.; Shayakhmetov, D. M. Systemic cancer therapy with engineered adenovirus that evades innate immunity. Sci. Transl. Med. 2020, 12, eabc6659.

87

Bradley, R. R.; Lynch, D. M.; Iampietro, M. J.; Borducchi, E. N.; Barouch, D. H. Adenovirus serotype 5 neutralizing antibodies target both hexon and fiber following vaccination and natural infection. J. Virol. 2012, 86, 625–629.

88

Bradley, R. R.; Maxfield, L. F.; Lynch, D. M.; Iampietro, M. J.; Borducchi, E. N.; Barouch, D. H. Adenovirus serotype 5-specific neutralizing antibodies target multiple hexon hypervariable regions. J. Virol. 2012, 86, 1267–1272.

89

Pipperger, L.; Koske, I.; Wild, N.; Müllauer, B.; Krenn, D.; Stoiber, H.; Wollmann, G.; Kimpel, J.; von Laer, D.; Bánki, Z. Xenoantigen-dependent complement-mediated neutralization of lymphocytic choriomeningitis virus glycoprotein-pseudotyped vesicular stomatitis virus in human serum. J. Virol. 2019, 93, e00567–19.

90

Howard, F.; Muthana, M. Designer nanocarriers for navigating the systemic delivery of oncolytic viruses. Nanomedicine 2020, 15, 93–110.

91

Huang, L. L.; Li, X.; Zhang, J. F.; Zhao, Q. R.; Zhang, M. J.; Liu, A. A.; Pang, D. W.; Xie, H. Y. MnCaCs-biomineralized oncolytic virus for bimodal imaging-guided and synergistically enhanced anticancer therapy. Nano Lett. 2019, 19, 8002–8009.

92

Almstätter, I.; Mykhaylyk, O.; Settles, M.; Altomonte, J.; Aichler, M.; Walch, A.; Rummeny, E. J.; Ebert, O.; Plank, C.; Braren, R. Characterization of magnetic viral complexes for targeted delivery in oncology. Theranostics 2015, 5, 667–685.

93

Garofalo, M.; Bellato, F.; Magliocca, S.; Malfanti, A.; Kuryk, L.; Rinner, B.; Negro, S.; Salmaso, S.; Caliceti, P.; Mastrotto, F. Polymer coated oncolytic adenovirus to selectively target hepatocellular carcinoma cells. Pharmaceutics 2021, 13, 949.

94

Hill, C.; Grundy, M.; Bau, L.; Wallington, S.; Balkaran, J.; Ramos, V.; Fisher, K.; Seymour, L.; Coussios, C.; Carlisle, R. Polymer stealthing and mucin-1 retargeting for enhanced pharmacokinetics of an oncolytic vaccinia virus. Mol. Ther. Oncolytics 2021, 21, 47–61.

95

Lou, X. Y.; Chen, Z. C.; He, Z. G.; Sun, M. C.; Sun, J. Bacteria-mediated synergistic cancer therapy: Small microbiome has a big hope. Nano-Micro Lett. 2021, 13, 37.

96

Harrington, K. J.; Kong, A.; Mach, N.; Chesney, J. A.; Fernandez, B. C.; Rischin, D.; Cohen, E. E. W.; Radcliffe, H. S.; Gumuscu, B.; Cheng, J. et al. Talimogene laherparepvec and pembrolizumab in recurrent or metastatic squamous cell carcinoma of the head and neck (MASTERKEY-232): A multicenter, phase 1b study. Clin. Cancer Res. 2020, 26, 5153–5161.

97

Kelly, C. M.; Antonescu, C. R.; Bowler, T.; Munhoz, R.; Chi, P.; Dickson, M. A.; Gounder, M. M.; Keohan, M. L.; Movva, S.; Dholakia, R. et al. Objective response rate among patients with locally advanced or metastatic sarcoma treated with talimogene laherparepvec in combination with pembrolizumab: A phase 2 clinical trial. JAMA Oncol. 2020, 6, 402–408.

98

Sun, L. L.; Funchain, P.; Song, J. M.; Rayman, P.; Tannenbaum, C.; Ko, J.; Mcnamara, M.; Diaz-Montero, C. M.; Gastman, B. Talimogene laherparepvec combined with anti-PD-1 based immunotherapy for unresectable stage III-IV melanoma: A case series. J. Immunother. Cancer 2018, 6, 36.

99

Ribas, A.; Dummer, R.; Puzanov, I.; VanderWalde, A.; Andtbacka, R. H. I.; Michielin, O.; Olszanski, A. J.; Malvehy, J.; Cebon, J.; Fernandez, E. et al. Oncolytic virotherapy promotes intratumoral T cell infiltration and improves Anti-PD-1 immunotherapy. Cell 2017, 170, 1109–1119.e10.

100

Soliman, H.; Hogue, D.; Han, H.; Mooney, B.; Costa, R.; Lee, M. C.; Niell, B.; Williams, A.; Chau, A.; Falcon, S. et al. A phase I trial of talimogene laherparepvec in combination with neoadjuvant chemotherapy for the treatment of nonmetastatic triple-negative breast cancer. Clin. Cancer Res. 2021, 27, 1012.

101

Wang, L.; Ning, J. F.; Wakimoto, H.; Wu, S. L.; Wu, C. L.; Humphrey, M. R.; Rabkin, S. D.; Martuza, R. L. Oncolytic herpes simplex virus, and PI3K inhibitor BKM120 synergize to promote killing of prostate cancer stem-like cells. Mol. Ther. Oncolytics 2019, 13, 58–66.

102

Khuri, F. R.; Nemunaitis, J.; Ganly, I.; Arseneau, J.; Tannock, I. F.; Romel, L.; Gore, M.; Ironside, J.; MacDougall, R. H.; Heise, C. et al. A controlled trial of intratumoral ONYX-015, a selectively-replicating adenovirus, in combination with cisplatin and 5-fluorouracil in patients with recurrent head and neck cancer. Nat. Med. 2000, 6, 879–885.

103

Jovanović, B.; Mayer, I. A.; Mayer, E. L.; Abramson, V. G.; Bardia, A.; Sanders, M. E.; Kuba, M. G.; Estrada, M. V.; Beeler, J. S.; Shaver, T. M. et al. A randomized phase II neoadjuvant study of cisplatin, paclitaxel with or without everolimus in patients with stage II/III triple-negative breast cancer (TNBC): Responses and long-term outcome correlated with increased frequency of DNA damage response gene mutations, TNBC subtype, AR status, and Ki67. Clin. Cancer Res. 2017, 23, 4035–4045.

104

Matuszewska, K.; Santry, L. A.; van Vloten, J. P.; AuYeung, A. W. K.; Major, P. P.; Lawler, J.; Wootton, S. K.; Bridle, B. W.; Petrik, J. Combining vascular normalization with an oncolytic virus enhances immunotherapy in a preclinical model of advanced-stage ovarian cancer. Clin. Cancer Res. 2019, 25, 1624–1638.

105

Saha, D.; Wakimoto, H.; Peters, C. W.; Antoszczyk, S. J.; Rabkin, S. D.; Martuza, R. L. Combinatorial effects of VEGFR kinase inhibitor axitinib and oncolytic virotherapy in mouse and human glioblastoma stem-like cell models. Clin. Cancer Res. 2018, 24, 3409–3422.

106

Park, A. K.; Fong, Y.; Kim, S. I.; Yang, J.; Murad, J. P.; Lu, J. M.; Jeang, B.; Chang, W. C.; Chen, N. G.; Thomas, S. H. et al. Effective combination immunotherapy using oncolytic viruses to deliver CAR targets to solid tumors. Sci. Transl. Med. 2020, 12, eaaz1863.

107

Aalipour, A.; Le Boeuf, F.; Tang, M.; Murty, S.; Simonetta, F.; Lozano, A. X.; Shaffer, T. M.; Bell, J. C.; Gambhir, S. S. Viral delivery of CAR targets to solid tumors enables effective cell therapy. Mol. Ther. Oncolytics 2020, 17, 232–240.

108

Nishio, N.; Diaconu, I.; Liu, H.; Cerullo, V.; Caruana, I.; Hoyos, V.; Bouchier-Hayes, L.; Savoldo, B.; Dotti, G. Armed oncolytic virus enhances immune functions of chimeric antigen receptor-modified T cells in solid tumors. Cancer Res. 2014, 74, 5195–5205.

109

Blake, Z.; Marks, D. K.; Gartrell, R. D.; Hart, T.; Horton, P.; Cheng, S. K.; Taback, B.; Horst, B. A.; Saenger, Y. M. Complete intracranial response to talimogene laherparepvec (T-Vec), pembrolizumab and whole brain radiotherapy in a patient with melanoma brain metastases refractory to dual checkpoint-inhibition. J. Immunother. Cancer 2018, 6, 25.

110

Kieran, M. W.; Goumnerova, L.; Manley, P.; Chi, S. N.; Marcus, K. J.; Manzanera, A. G.; Polanco, M. L. S.; Guzik, B. W.; Aguilar-Cordova, E.; Diaz-Montero, C. M. et al. Phase I study of gene-mediated cytotoxic immunotherapy with Adv-tk as adjuvant to surgery and radiation for pediatric malignant glioma and recurrent ependymoma. Neuro Oncol. 2019, 21, 537–546.

111

Mao, L. J.; Kan, Y.; Li, B. H.; Ma, S.; Liu, Y. R.; Yang, D. L.; Yang, C. H. Combination therapy of prostate cancer by oncolytic adenovirus harboring interleukin 24 and ionizing radiation. Front. Oncol. 2020, 10, 421.

112

Roulstone, V.; Pedersen, M.; Kyula, J.; Mansfield, D.; Khan, A. A.; McEntee, G.; Wilkinson, M.; Karapanagiotou, E.; Coffey, M.; Marais, R. et al. BRAF- and MEK-targeted small molecule inhibitors exert enhanced antimelanoma effects in combination with oncolytic reovirus through ER stress. Mol. Ther. 2015, 23, 931–942.

113

Kuryk, L.; Møller, A. S. W.; Garofalo, M.; Cerullo, V.; Pesonen, S.; Alemany, R.; Jaderberg, M. Antitumor-specific T-cell responses induced by oncolytic adenovirus ONCOS-102 (Adv5/3-D24-GM-CSF) in peritoneal mesothelioma mouse model. J. Med. Virol. 2018, 90, 1669–1673.

114

Zhang, F.; Le, T.; Wu, X.; Wang, H.; Zhang, T.; Meng, Y. F.; Wei, B. J.; Soriano, S. S.; Willis, P.; Kolokythas, O. et al. Intrabiliary RF heat-enhanced local chemotherapy of a cholangiocarcinoma cell line: Monitoring with dual-modality imaging-preclinical study. Radiology 2014, 270, 400–408.

115

Bourgeois-Daigneault, M. C.; Roy, D. G.; Aitken, A. S.; El Sayes, N.; Martin, N. T.; Varette, O.; Falls, T.; St-Germain, L. E.; Pelin, A.; Lichty, B. D. et al. Neoadjuvant oncolytic virotherapy before surgery sensitizes triple-negative breast cancer to immune checkpoint therapy. Sci. Transl. Med. 2018, 10, eaao1641.

116

Song, J. J.; Zhang, F.; Ji, J. S.; Chen, M. J.; Li, Q.; Weng, Q. Y.; Gu, S. N.; Kogut, M. J.; Yang, X. M. Orthotopic hepatocellular carcinoma: Molecular imaging-monitored intratumoral hyperthermia-enhanced direct oncolytic virotherapy. Int. J. Hyperthermia 2019, 36, 343–349.

117

Ngwa, V. M.; Edwards, D. N.; Philip, M.; Chen, J. Microenvironmental metabolism regulates antitumor immunity. Cancer Res. 2019, 79, 4003–4008.

118

Liu, Z. Q.; Ravindranathan, R.; Kalinski, P.; Guo, Z. S.; Bartlett, D. L. Rational combination of oncolytic vaccinia virus and PD-L1 blockade works synergistically to enhance therapeutic efficacy. Nat. Commun. 2017, 8, 14754.

119

Topalian, S. L.; Drake, C. G.; Pardoll, D. M. Immune checkpoint blockade: A common denominator approach to cancer therapy. Cancer Cell 2015, 27, 450–461.

120

Chen, D. S.; Mellman, I. Elements of cancer immunity and the cancer-immune set point. Nature 2017, 541, 321–330.

121

Lichty, B. D.; Breitbach, C. J.; Stojdl, D. F.; Bell, J. C. Going viral with cancer immunotherapy. Nat. Rev. Cancer 2014, 14, 559–567.

122

June, C. H.; Sadelain, M. Chimeric antigen receptor therapy. N. Engl. J. Med. 2018, 379, 64–73.

123

O'Cathail, S. M.; Pokrovska, T. D.; Maughan, T. S.; Fisher, K. D.; Seymour, L. W.; Hawkins, M. A. Combining oncolytic adenovirus with radiation—A paradigm for the future of radiosensitization. Front. Oncol. 2017, 7, 153.

124

Golden, E. B.; Frances, D.; Pellicciotta, I.; Demaria, S.; Barcellos-Hoff, M. H.; Formenti, S. C. Radiation fosters dose-dependent and chemotherapy-induced immunogenic cell death. Oncoimmunology 2014, 3, e28518.

125

Ottolino-Perry, K.; Diallo, J. S.; Lichty, B. D.; Bell, J. C.; McCart, J. A. Intelligent design: Combination therapy with oncolytic viruses. Mol. Ther. 2010, 18, 251–263.

126

Udayakumar, T. S.; Betancourt, D. M.; Ahmad, A.; Tao, W. S.; Totiger, T. M.; Patel, M.; Marples, B.; Barber, G.; Pollack, A. Radiation attenuates prostate tumor antiviral responses to vesicular stomatitis virus containing IFNβ, resulting in pronounced antitumor systemic immune responses. Mol. Cancer Res. 2020, 18, 1232–1243.

127

Vijayakumar, G.; Palese, P.; Goff, P. H. Oncolytic Newcastle disease virus expressing a checkpoint inhibitor as a radioenhancing agent for murine melanoma. EBioMedicine 2019, 49, 96–105.

128

Zhang, H. J.; Wang, F.; Mao, C. J.; Zhang, Z. C.; Fu, S. J.; Lu, J. Z.; Zhai, Z. X.; Li, R. J.; Li, S. W.; Rodriguez, R. et al. Effect of combined treatment of radiation and tissue-specific recombinant oncolytic adenovirus on bladder cancer cells. Int. J. Radiat. Biol. 2017, 93, 174–183.

Nano Research
Pages 4137-4153
Cite this article:
Ban W, Guan J, Huang H, et al. Emerging systemic delivery strategies of oncolytic viruses: A key step toward cancer immunotherapy. Nano Research, 2022, 15(5): 4137-4153. https://doi.org/10.1007/s12274-021-4031-6
Topics:

1051

Views

44

Crossref

41

Web of Science

41

Scopus

2

CSCD

Altmetrics

Received: 28 September 2021
Revised: 24 November 2021
Accepted: 28 November 2021
Published: 14 February 2022
© Tsinghua University Press and Springer-Verlag GmbH Germany, part of Springer Nature 2021
Return