AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article

Ultradurable, freeze-resistant, and healable MXene-based ionic gels for multi-functional electronic skin

Yao Lu1Xinyu Qu1Siying Wang1Ye Zhao1Yanfang Ren2Wenli Zhao1Qian Wang1( )Chencheng Sun3( )Wenjun Wang2Xiaochen Dong1( )
Key Laboratory of Flexible Electronics (KLOFE) & Institute of Advanced Materials (IAM), School of Physical and Mathematical Sciences, Nanjing Tech University (NanjingTech), 30 South Puzhu Road, Nanjing 211816, China
School of Physical Science and Information Technology, Liaocheng University, Liaocheng 252059, China
School of Electronic and Information Engineering, Changshu Institute of Technology, Changshu 215500, China
Show Author Information

Graphical Abstract

An ionic liquid incorporated and MXene-composited E-skin with highly durable and sensitive perception to multiple stimuli in harsh environments.

Abstract

Hydrogel is a potential matrix material of electronic-skins (E-skins) because of its excellent ductility, tunability, and biocompatibility. However, hydrogel-based E-Skins will inevitably lose their sensing performance in practical applications for water loss, physical damage, and ambient interferences. It remains a challenge to manufacture highly durable gel-based E-skins. Herein, an E-Skin is fabricated by introducing ionic liquids (ILs) into MXene-composited binary polymer network. The obtained ionic gel shows excellent mechanical properties, strong adhesion, and superior tolerance to harsh environments. The E-skin exhibits high sensitivity to both strain and pressure in a wide range of deformations, which enables a monitoring function for various human motions and physiological activities. Importantly, the E-skin shows consistent electrical response after being stored in the open air for 30 days and can be quickly healed by irradiation with 808 nm near-infrared light, originating from the photo-thermal effect induced self-healing acceleration. It is noteworthy that the E-skin also reveals a highly sensitive perception of temperature and near-infrared light, displaying the promising potential applications in the multifunctional flexible sensor.

Electronic Supplementary Material

Download File(s)
12274_2021_4032_MOESM1_ESM.pdf (1.9 MB)

References

1

Kim, D. H.; Song, J. Z.; Choi, W. M.; Kim, H. S.; Kim, R. H.; Liu, Z. J.; Huang, Y. Y.; Hwang, K. C.; Zhang, Y. W.; Rogers, J. A. Materials and noncoplanar mesh designs for integrated circuits with linear elastic responses to extreme mechanical deformations. Proc. Natl. Acad. Sci. USA 2008, 105, 18675–18680.

2

Huang, S.; Huang, Y. L.; Li, Q. Photodeformable liquid crystalline polymers containing functional additives: Toward photomanipulatable intelligent soft systems. Small Struct. 2021, 2, 2100038.

3

Kang, K.; Park, J.; Kim, K.; Yu, K. J. Recent developments of emerging inorganic, metal and carbon-based nanomaterials for pressure sensors and their healthcare monitoring applications. Nano Res. 2021, 14, 3096–3111.

4

Fu, X. Y.; Wang, L. L.; Zhao, L. J.; Yuan, Z. Y.; Zhang, Y. P.; Wang, D. Y.; Wang, D. P.; Li, J. Z.; Li, D. D.; Shulga, V. et al. Controlled assembly of MXene nanosheets as an electrode and active layer for high-performance electronic skin. Adv. Funct. Mater. 2021, 31, 2010533.

5

Cai, Y. C.; Shen, J.; Dai, Z. Y.; Zang, X. X.; Dong, Q. C.; Guan, G. F.; Li, L. J.; Huang, W.; Dong, X. C. Extraordinarily stretchable all-carbon collaborative nanoarchitectures for epidermal sensors. Adv. Mater. 2017, 29, 1606411.

6

Zhao, L. J.; Wang, L. L.; Zheng, Y. Q.; Zhao, S. F.; Wei, W.; Zhang, D. W.; Fu, X. Y.; Jiang, K.; Shen, G. Z.; Han, W. Highly-stable polymer-crosslinked 2D MXene-based flexible biocompatible electronic skins for in vivo biomonitoring. Nano Energy 2021, 84, 105921.

7

Zhang, W.; Feng, P.; Chen, J.; Sun, Z. M.; Zhao, B. X. Electrically conductive hydrogels for flexible energy storage systems. Prog. Polym. Sci. 2019, 88, 220–240.

8

Qu, X. Y.; Wang, S. Y.; Zhao, Y.; Huang, H.; Wang, Q.; Shao, J. J.; Wang, W. J.; Dong, X. C. Skin-inspired highly stretchable, tough and adhesive hydrogels for tissue-attached sensor. Chem. Eng. J. 2021, 425, 131523.

9

Kamoun, E. A.; Kenawy, E. R. S.; Chen, X. A review on polymeric hydrogel membranes for wound dressing applications: PVA-based hydrogel dressings. J. Adv. Res. 2017, 8, 217–233.

10

Hu, Y. G.; Zhao, T.; Zhu, P. L.; Zhang, Y.; Liang, X. W.; Sun, R.; Wong, C. P. A low-cost, printable, and stretchable strain sensor based on highly conductive elastic composites with tunable sensitivity for human motion monitoring. Nano Res. 2018, 11, 1938–1955.

11

Huang, J. R.; Peng, S. J.; Gu, J. F.; Chen, G. Q.; Gao, J. H.; Zhang, J.; Hou, L. X.; Yang, X. X.; Jiang, X. C.; Guan, L. H. Self-powered integrated system of a strain sensor and flexible all-solid-state supercapacitor by using a high performance ionic organohydrogel. Mater. Horiz. 2020, 7, 2085–2096.

12

Xu, J. J.; Jing, R. N.; Ren, X. Y.; Gao, G. H. Fish-inspired anti-icing hydrogel sensors with low-temperature adhesion and toughness. J. Mater. Chem. A 2020, 8, 9373–9381.

13

Ge, G.; Lu, Y.; Qu, X. Y.; Zhao, W.; Ren, Y. F.; Wang, W. J.; Wang, Q.; Huang, W.; Dong, X. C. Muscle-inspired self-healing hydrogels for strain and temperature sensor. ACS Nano 2020, 14, 218–228.

14

Zhang, X. F.; Ma, X. F.; Hou, T.; Guo, K. C.; Yin, J. Y.; Wang, Z. G.; Shu, L.; He, M.; Yao, J. F. Inorganic salts induce thermally reversible and anti-freezing cellulose hydrogels. Angew. Chem., Int. Ed. 2019, 58, 7366–7370.

15

Zhang, H. X.; Niu, W. B.; Zhang, S. F. Extremely stretchable, stable, and durable strain sensors based on double-network organogels. ACS Appl. Mater. Interfaces 2018, 10, 32640–32648.

16

Han, S. J.; Liu, C. R.; Lin, X. Y.; Zheng, J. W.; Wu, J.; Liu, C. Dual conductive network hydrogel for a highly conductive, self-healing, anti-freezing, and non-drying strain sensor. ACS Appl. Polym. Mater. 2020, 2, 996–1005.

17

Yu, Q. Y.; Qin, Z. H.; Ji, F.; Chen, S.; Luo, S. Y.; Yao, M. M.; Wu, X. J.; Liu, W. W.; Sun, X.; Zhang, H. T. et al. Low-temperature tolerant strain sensors based on triple crosslinked organohydrogels with ultrastretchability. Chem. Eng. J. 2021, 404, 126559.

18

Zhang, Y. W.; Yuan, B.; Zhang, Y. Q.; Cao, Q. P.; Yang, C.; Li, Y.; Zhou, J. H. Biomimetic lignin/poly(ionic liquids) composite hydrogel dressing with excellent mechanical strength, self-healing properties, and reusability. Chem. Eng. J. 2020, 400, 125984.

19

Zhang, Y. C.; Li, M. X.; Qin, B.; Chen, L. L.; Liu, Y. C.; Zhang, X.; Wang, C. Highly transparent, underwater self-healing, and ionic conductive elastomer based on multivalent ion-dipole interactions. Chem. Mater. 2020, 32, 6310–6317.

20

Li, T. Q.; Wang, Y. T.; Li, S. H.; Liu, X. K.; Sun, J. Q. Mechanically robust, elastic, and healable ionogels for highly sensitive ultra-durable ionic skins. Adv. Mater. 2020, 32, 2002706.

21

Zhao, G. R.; Zhang, Y. W.; Shi, N.; Liu, Z. R.; Zhang, X. D.; Wu, M. Q.; Pan, C. F.; Liu, H. L.; Li, L. L.; Wang, Z. L. Transparent and stretchable triboelectric nanogenerator for self-powered tactile sensing. Nano Energy 2019, 59, 302–310.

22

Zhao, X. L.; Zhou, K. L.; Zhong, Y. J.; Liu, P.; Li, Z. C.; Pan, J. L.; Long, Y.; Huang, M. R.; Brakat, A.; Zhu, H. W. Hydrophobic ionic liquid-in-polymer composites for ultrafast, linear response and highly sensitive humidity sensing. Nano Res. 2021, 14, 1202–1209.

23

Ghatee, M. H.; Zare, M.; Moosavi, F.; Zolghadr, A. R. Temperature-dependent density and viscosity of the ionic liquids 1-alkyl-3-methylimidazolium iodides: Experiment and molecular dynamics simulation. J. Chem. Eng. Data 2010, 55, 3084–3088.

24

Ota, H.; Chen, K.; Lin, Y. J.; Kiriya, D.; Shiraki, H.; Yu, Z. B.; Ha, T. J.; Javey, A. Highly deformable liquid-state heterojunction sensors. Nat. Commun. 2014, 5, 5032.

25

Gui, Q. Y.; He, Y. L.; Gao, N. W.; Tao, X. L.; Wang, Y. P. A skin-inspired integrated sensor for synchronous monitoring of multiparameter signals. Adv. Funct. Mater. 2017, 27, 1702050.

26

Kang, J.; Tok, J. B. H.; Bao, Z. N. Self-healing soft electronics. Nat. Electron. 2019, 2, 144–150.

27

Ge, G.; Yuan, W.; Zhao, W.; Lu, Y.; Zhang, Y. Z.; Wang, W. J.; Chen, P.; Huang, W.; Si, W. L.; Dong, X. C. Highly stretchable and autonomously healable epidermal sensor based on multi-functional hydrogel frameworks. J. Mater. Chem. A 2019, 7, 5949–5956.

28
Zhao, L.; Ren, Z. J.; Liu, X.; Ling, Q. J.; Li, Z. J.; Gu, H. B. A multifunctional, self-healing, self-adhesive, and conductive sodium alginate/poly(vinyl alcohol) composite hydrogel as a flexible strain sensor. ACS Appl. Mater. Interfaces 2021, 13, 11344–11355.https://doi.org/10.1021/acsami.1c01343
29

Chen, J. S.; Peng, Q. Y.; Thundat, T.; Zeng, H. B. Stretchable, injectable and self-healing conductive hydrogel enabled by multiple hydrogen bonding toward wearable electronics. Chem. Mater. 2019, 31, 4553–4563.

30

Zhao, W.; Qu, X. Y.; Xu, Q.; Lu, Y.; Yuan, W.; Wang, W. J.; Wang, Q.; Huang, W.; Dong, X. C. Ultrastretchable, self-healable, and wearable epidermal sensors based on ultralong Ag nanowires composited binary-networked hydrogels. Adv. Electron. Mater. 2020, 6, 2000267.

31

Pena-Francesch, A.; Jung, H.; Demirel, M. C.; Sitti, M. Biosynthetic self-healing materials for soft machines. Nat. Mater. 2020, 19, 1230–1235.

32

Wang, K.; Lou, Z.; Wang, L. L.; Zhao, L. J.; Zhao, S. F.; Wang, D. Y.; Han, W.; Jiang, K.; Shen, G. Z. Bioinspired interlocked structure-induced high deformability for two-dimensional titanium carbide (MXene)/natural microcapsule-based flexible pressure sensors. ACS Nano 2019, 13, 9139–9147.

33

Wang, D. Y.; Wang, L. L.; Lou, Z.; Zheng, Y. Q.; Wang, K.; Zhao, L. J.; Han, W.; Jiang, K.; Shen, G. Z. Biomimetic, biocompatible and robust silk Fibroin-MXene film with stable 3D cross-link structure for flexible pressure sensors. Nano Energy 2020, 78, 105252.

34

Cai, Y. C.; Shen, J.; Ge, G.; Zhang, Y. Z.; Jin, W. Q.; Huang, W.; Shao, J. J.; Yang, J.; Dong, X. C. Stretchable Ti3C2Tx MXene/carbon nanotube composite based strain sensor with ultrahigh sensitivity and tunable sensing range. ACS Nano 2018, 12, 56–62.

35

Li, R. Y.; Zhang, L. B.; Shi, L.; Wang, P. MXene Ti3C2: An effective 2D light-to-heat conversion material. ACS Nano 2017, 11, 3752–3759.

36

Xing, C. Y.; Chen, S. Y.; Liang, X.; Liu, Q.; Qu, M. M.; Zou, Q. S.; Li, J. H.; Tan, H.; Liu, L. P.; Fan, D. Y. et al. Two-dimensional MXene (Ti3C2) integrated cellulose hydrogels: Toward smart three-dimensional network nanoplatforms exhibiting light-induced swelling and bimodal photothermal/chemotherapy anticancer activity. ACS Appl. Mater. Interfaces 2018, 10, 27631–27643.

37

Xu, X. W.; Chen, Y. C.; He, P.; Wang, S.; Ling, K.; Liu, L. H.; Lei, P. F.; Huang, X. J.; Zhao, H.; Cao, J. Y. et al. Wearable CNT/Ti3C2Tx MXene/PDMS composite strain sensor with enhanced stability for real-time human healthcare monitoring. Nano Res. 2021, 14, 2875–2883.

38

Liu, G. Y.; Zou, J. H.; Tang, Q. Y.; Yang, X. Y.; Zhang, Y. W.; Zhang, Q.; Huang, W.; Chen, P.; Shao, J. J.; Dong, X. C. Surface modified Ti3C2 MXene nanosheets for tumor targeting photothermal/photodynamic/chemo synergistic therapy. ACS Appl. Mater. Interfaces 2017, 9, 40077–40086.

39

Yuan, W.; Qu, X. Y.; Lu, Y.; Zhao, W.; Ren, Y. F.; Wang, Q.; Wang, W. J.; Dong, X. C. MXene-composited highly stretchable, sensitive and durable hydrogel for flexible strain sensors. Chin. Chem. Lett. 2021, 32, 2021–2026.

40

Calver, P. Hydrogels for soft machines. Adv. Mater. 2009, 21, 743–756.

41

Simha, N. K.; Carlson, C. S.; Lewis, J. L. Evaluation of fracture toughness of cartilage by micropenetration. J. Mater. Sci. Mater. Med. 2004, 15, 631–639.

42

Shao, C. Y.; Wang, M.; Meng, L.; Chang, H. L.; Wang, B.; Xu, F.; Yang, J.; Wan, P. B. Mussel-inspired cellulose nanocomposite tough hydrogels with synergistic self-healing, adhesive, and strain-sensitive properties. Chem. Mater. 2018, 30, 3110–3121.

43

Shao, C. Y.; Meng, L.; Wang, M.; Cui, C.; Wang, B.; Han, C. R.; Xu, F.; Yang, J. Mimicking dynamic adhesiveness and strain-stiffening behavior of biological tissues in tough and self-healable cellulose nanocomposite hydrogels. ACS Appl. Mater. Interfaces 2019, 11, 5885–5895.

44

Ding, Y.; Zhang, J. J.; Chang, L.; Zhang, X. Q.; Liu, H. L.; Jiang, L. Preparation of high-performance ionogels with excellent transparency, good mechanical strength, and high conductivity. Adv. Mater. 2017, 29, 1704253.

45

Lu, Y.; Qu, X. Y.; Zhao, W.; Ren, Y. F.; Si, W. L.; Wang, W. J.; Wang, Q.; Huang, W.; Dong, X. C. Highly stretchable, elastic, and sensitive MXene-based hydrogel for flexible strain and pressure sensors. Research 2020, 2020, 2038560.

46

Tan, J. Y.; Li, S. S.; Liu, B. L.; Cheng, H. M. Structure, preparation, and applications of 2D material-based metal-semiconductor heterostructures. Small Struct. 2021, 2, 2170001.

Nano Research
Pages 4421-4430
Cite this article:
Lu Y, Qu X, Wang S, et al. Ultradurable, freeze-resistant, and healable MXene-based ionic gels for multi-functional electronic skin. Nano Research, 2022, 15(5): 4421-4430. https://doi.org/10.1007/s12274-021-4032-5
Topics:

1178

Views

45

Crossref

43

Web of Science

43

Scopus

7

CSCD

Altmetrics

Received: 07 October 2021
Revised: 10 November 2021
Accepted: 21 November 2021
Published: 28 December 2021
© Tsinghua University Press and Springer-Verlag GmbH Germany, part of Springer Nature 2021
Return