AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article

Modulation of electronic state in copper-intercalated 1T-TaS2

Wenhao Zhang1,§Degong Ding2,§Jingjing Gao3,§Kunliang Bu1Zongxiu Wu1Li Wang4Fangsen Li4Wei Wang3Xuan Luo3Wenjian Lu3Chuanhong Jin2( )Yuping Sun3,5,6( )Yi Yin1,6( )
Zhejiang Province Key Laboratory of Quantum Technology and Device, Department of Physics, Zhejiang University, Hangzhou 310027, China
State Key Laboratory of Silicon Materials, School of Materials Science and Engineering, Zhejiang University, Hangzhou 310027, China
Key Laboratory of Materials Physics, Institute of Solid State Physics, HFIPS, Chinese Academy of Sciences, Hefei 230031, China
Vacuum Interconnected Nanotech Workstation (Nano-X), Suzhou Institute of Nano-Tech and Nano-Bionics (SINANO), Chinese Academy of Sciences (CAS), Suzhou 215123, China
High Magnetic Field Laboratory, HFIPS, Chinese Academy of Sciences, Hefei 230031, China
Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing 210093, China

§ Wenhao Zhang, Degong Ding, and Jingjing Gao contributed equally to this work.

Show Author Information

Graphical Abstract

We characterized the structural and electronic modification of 1T-TaS2 after Cu intercalation. Novel spatial electronic distributions have been identified in different domains, demonstrating the enhancement of interaction between the star of Davids (SDs) due to the interlayer Cu atoms.

Abstract

Intercalation is an effective method to modify physical properties and induce novel electronic states of transition metal dichalcogenide (TMD) materials. However, it is difficult to reveal the microscopic electronic state evolution in the intercalated TMDs. Here we successfully synthesize the copper-intercalated 1T-TaS2 and characterize the structural and electronic modification combining resistivity measurements, atomic-resolution scanning transmission electron microscopy (ADF-STEM), and scanning tunneling microscopy (STM). The intercalated Cu atom is determined to be directly below the Ta atom and suppresses the commensurate charge density wave (CCDW) phase. Two specific electronic modulations are discovered in the near-commensurate (NC) CDW phase: the electron doping state near the defective star of Davids (SDs) in metallic domains and the spatial evolution of the Mott gap in insulating domains. Both modulations reveal that intercalated Cu atoms act as a medium to enhance the interaction between intralayer SDs, in addition to the general charge transfer effect. It also solidifies the Mott foundation of the insulating gap in pristine samples. The intriguing electronic evolution in Cu-intercalated 1T-TaS2 will motivate further exploration of novel electronic states in the intercalated TMD materials.

References

1

Wilson, J. A.; Di Salvo, F. J.; Mahajan, S. Charge-density waves and superlattices in the metallic layered transition metal dichalcogenides. Adv. Phys. 1975, 24, 117–201.

2

Fazekas, P.; Tosatti, E. Electrical, structural and magnetic properties of pure and doped 1T-TaS2. Philos. Mag. B 1979, 39, 229–244.

3

Kim, J. J.; Yamaguchi, W.; Hasegawa, T.; Kitazawa, K. Observation of Mott localization gap using low temperature scanning tunneling spectroscopy in commensurate 1T-TaS2. Phys. Rev. Lett. 1994, 73, 2103–2106.

4

Law, K. T.; Lee, P. A. 1T-TaS2 as a quantum spin liquid. Proc. Natl. Acad. Sci. USA. 2017, 114, 6996–7000.

5

Sipos, B.; Kusmartseva, A. F.; Akrap, A.; Berger, H.; Forró, L.; Tutiš, E. From Mott state to superconductivity in 1T-TaS2. Nat. Mater. 2008, 7, 960–965.

6

Ang, R.; Tanaka, Y.; Ieki, E.; Nakayama, K.; Sato, T.; Li, L. J.; Lu, W. J.; Sun, Y. P.; Takahashi, T. Real-space coexistence of the melted Mott state and superconductivity in Fe-substituted 1T-TaS2. Phys. Rev. Lett. 2012, 109, 176403.

7

Liu, Y.; Ang, R.; Lu, W. J.; Song, W. H.; Li, L. J.; Sun, Y. P. Superconductivity induced by Se-doping in layered charge-density-wave system 1T-TaS2−xSex. Appl. Phys. Lett. 2013, 102, 192602.

8

Qiao, S.; Li, X. T.; Wang, N. Z.; Ruan, W.; Ye, C.; Cai, P.; Hao, Z. Q.; Yao, H.; Chen, X. H.; Wu, J. et al. Mottness collapse in 1T-TaS2−xSex transition-metal dichalcogenide: An interplay between localized and itinerant orbitals. Phys. Rev. X 2017, 7, 041054.

9

Yu, Y. J.; Yang, F. Y.; Lu, X. F.; Yan, Y. J.; Cho, Y. H.; Ma, L. G.; Niu, X. H.; Kim, S.; Son, Y. W.; Feng, D. L. et al. Gate-tunable phase transitions in thin flakes of 1T-TaS2. Nat. Nanotechnol. 2015, 10, 270–276.

10

Ritschel, T.; Trinckauf, J.; Koepernik, K.; Büchner, B.; Zimmermann, M. V.; Berger, H.; Joe, Y. I.; Abbamonte, P.; Geck, J. Orbital textures and charge density waves in transition metal dichalcogenides. Nat. Phys. 2015, 11, 328–331.

11

Lee, S. H.; Goh, J. S.; Cho, D. Origin of the insulating phase and first-order metal-insulator transition in 1T-TaS2. Phys. Rev. Lett. 2019, 122, 106404.

12

Shin, D.; Tancogne-Dejean, N.; Zhang, J.; Okyay, M. S.; Rubio, A.; Park, N. Identification of the Mott insulating charge density wave state in 1T-TaS2. Phys. Rev. Lett. 2021, 126, 196406.

13

Butler, C. J.; Yoshida, M.; Hanaguri, T.; Iwasa, Y. Mottness versus unit-cell doubling as the driver of the insulating state in 1T-TaS2. Nat. Commun. 2020, 11, 2477.

14

Wang, Y. D.; Yao, W. L.; Xin, Z. M.; Han, T. T.; Wang, Z. G.; Chen, L.; Cai, C.; Li, Y.; Zhang, Y. Band insulator to Mott insulator transition in 1T-TaS2. Nat. Commun. 2020, 11, 4215.

15

Stahl, Q.; Kusch, M.; Heinsch, F.; Garbarino, G.; Kretzschmar, N.; Hanff, K.; Rossnagel, K.; Geck, J.; Ritschel, T. Collapse of layer dimerization in the photo-induced hidden state of 1T-TaS2. Nat. Commun. 2020, 11, 1247.

16

Wan, J. Y.; Lacey, S. D.; Dai, J. Q.; Bao, W. Z.; Fuhrer, M. S.; Hu, L. B. Tuning two-dimensional nanomaterials by intercalation: Materials, properties, and applications. Chem. Soc. Rev. 2016, 45, 6742–6765.

17

Wang, Z. Y.; Li, R. L.; Su, C. L.; Loh, K. P. Intercalated phases of transition metal dichalcogenides. SmartMat 2020, 1, e1013.

18

Liu, X. C.; Zhao, S. Y.; Sun, X. P.; Deng, L. Z.; Zou, X. L.; Hu, Y. C.; Wang, Y. X.; Chu, C. W.; Li, J.; Wu, J. J. et al. Spontaneous self-intercalation of copper atoms into transition metal dichalcogenides. Sci. Adv. 2020, 6, eaay4092.

19

Zhang, J. S.; Sun, J.; Li, Y. B.; Shi, F. F.; Cui, Y. Electrochemical control of copper intercalation into nanoscale Bi2Se3. Nano Lett. 2017, 17, 1741–1747.

20

Wang, P. D.; Khan, R.; Liu, Z. F.; Zhang, B.; Li, Y. L.; Wang, S.; Wu, Y. B.; Zhu, H. E.; Liu, Y.; Zhang, G. B. et al. A Non-rigid shift of band dispersions induced by Cu intercalation in 2H-TaSe2. Nano Res. 2020, 13, 353–357.

21

Novello, A. M.; Spera, M.; Scarfato, A.; Ubaldini, A.; Giannini, E.; Bowler, D. R.; Renner, C. Stripe and short range order in the charge density wave of 1T-CuxTaSe2. Phys. Rev. Lett. 2017, 118, 017002.

22

Yan, S. C.; Iaia, D.; Morosan, E.; Fradkin, E.; Abbamonte, P.; Madhavan, V. Influence of domain walls in the incommensurate charge density wave state of Cu intercalated 1T-TaSe2. Phys. Rev. Lett. 2017, 118, 106405.

23

Qian, D.; Hsieh, D.; Wray, L.; Morosan, E.; Wang, N. L.; Xia, Y.; Cava, R. J.; Hasan, M. Z. Emergence of Fermi pockets in a new excitonic charge-density-wave melted superconductor. Phys. Rev. Lett. 2007, 98, 117007.

24

Zhang, K. W.; Yang, C. L.; Lei, B.; Lu, P. C.; Li, X. B.; Jia, Z. Y.; Song, Y. H.; Sun, J.; Chen, X. H.; Li, J. X. et al. Unveiling the charge density wave inhomogeneity and pseudogap state in 1T-TaSe2. Sci. Bull. 2018, 63, 426–432.

25

Wu, Z. X.; Bu, K. L.; Zhang, W. H.; Fei, Y.; Zheng, Y.; Gao, J. J.; Luo, X.; Liu, Z.; Sun, Y. P.; Yin, Y. Effect of stacking order on the electronic state of 1T-TaS2. Phys. Rev. B. 2022, 105, 035109.

26

Bu, K. L.; Zhang, W. H.; Fei, Y.; Wu, Z. X.; Zheng, Y.; Gao, J. J.; Luo, X.; Sun, Y. P.; Yin, Y. Possible strain induced Mott gap collapse in 1T-TaS2. Commun. Phys. 2019, 2, 146.

27

Lahoud, E.; Meetei, O. N.; Chaska, K. B.; Kanigel, A.; Trivedi, N. Emergence of a novel pseudogap metallic state in a disordered 2D Mott insulator. Phys. Rev. Lett. 2014, 112, 206402.

28

Lee, P. A.; Ramakrishnan, T. V. Disordered electronic systems. Rev. Mod. Phys. 1985, 57, 287–337.

29

Szabo, J. C.; Lee, K.; Madhavan, V.; Trivedi, N. Local spectroscopies reveal percolative metal in disordered Mott insulators. Phys. Rev. Lett. 2020, 124, 137402.

30

Regan, E. C.; Wang, D. Q.; Jin, C. H.; Utama, M. I. B.; Gao, B. N.; Wei, X.; Zhao, S. H.; Zhao, W. Y.; Zhang, Z. C.; Yumigeta, K. et al. Mott and generalized Wigner crystal states in WSe2/WS2 Moiré superlattices. Nature 2020, 579, 359–363.

31

Zhang, Y.; Gao, F.; Gao, S. W.; He, L. Tunable magnetism of a single-carbon vacancy in graphene. Sci. Bull. 2020, 65, 194–200.

32

Cho, D.; Gye, G.; Lee, J.; Lee, S. H.; Wang, L. H.; Cheong, S. W.; Yeom, H. W. Correlated electronic states at domain walls of a Mott-charge-density-wave insulator 1T-TaS2. Nat. Commun. 2017, 8, 392.

33

Skolimowski, J.; Gerasimenko, Y.; Žitko, R. Mottness collapse without metallization in the domain wall of the triangular-lattice Mott insulator 1T-TaS2. Phys. Rev. Lett. 2019, 122, 036802.

34

Park, J. W.; Lee, J.; Yeom, H. W. Zoology of domain walls in quasi-2D correlated charge density wave of 1T-TaS2. npj Quantum Mater. 2021, 6, 32.

35

Ye, C.; Cai, P.; Yu, R. Z.; Zhou, X. D.; Ruan, W.; Liu, Q. Q.; Jin, C. Q.; Wang, Y. Y. Visualizing the atomic-scale electronic structure of the Ca2CuO2Cl2 Mott insulator. Nat. Commun. 2013, 4, 1365.

36

Eskes, H.; Meinders, M. B. J.; Sawatzky, G. A. Anomalous transfer of spectral weight in doped strongly correlated systems. Phys. Rev. Lett. 1991, 67, 1035–1038.

37

Klanjšek, M.; Zorko, A.; Žitko, R.; Mravlje, J.; Jagličić, Z.; Biswas, P. K.; Prelovšek, P.; Mihailovic, D.; Arčon, D. A high-temperature quantum spin liquid with polaron spins. Nat. Phys. 2017, 13, 1130–1134.

Nano Research
Pages 4327-4333
Cite this article:
Zhang W, Ding D, Gao J, et al. Modulation of electronic state in copper-intercalated 1T-TaS2. Nano Research, 2022, 15(5): 4327-4333. https://doi.org/10.1007/s12274-021-4034-3
Topics:

1026

Views

4

Crossref

6

Web of Science

4

Scopus

0

CSCD

Altmetrics

Received: 09 October 2021
Revised: 15 November 2021
Accepted: 30 November 2021
Published: 15 January 2022
© Tsinghua University Press and Springer-Verlag GmbH Germany, part of Springer Nature 2021
Return