AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article

Stabilizing effects of atomic Ti doping on high-voltage high-nickel layered oxide cathode for lithium-ion rechargeable batteries

Yong Cheng1,2,§Yan Sun3,§Changting Chu1Limin Chang1( )Zhaomin Wang3Dongyu Zhang2Wanqiang Liu3( )Zechao Zhuang4( )Limin Wang1,2
Key Laboratory of Preparation and Applications of Environmental Friendly Materials (Ministry of Education), Jilin Normal University, Changchun 130103, China
State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China
School of materials science and engineering, Changchun University of Science and Technology, Changchun 130022, China
Department of Chemistry, Tsinghua University, Beijing 100084, China

§ Yong Cheng and Yan Sun contributed equally to this work.

Show Author Information

Graphical Abstract

The homogeneous Ti-doped high-voltage high-nickel lithium layered oxide cathode LiNi0.6Co0.2Mn0.18Ti0.02O2 (NCM-Ti) is successfully prepared through a liquid phase physical mixing and high-temperature annealing method. Ti doping inhibits the undesired H2-H3 phase transition, minimizing the mechanical degradation due to the strong Ti–O bond and no unpaired electrons for Ti4+, and Ti-doped NCM shows superior cycle stability and an energy density of up to 240 Wh·Kg−1.

Abstract

High-voltage high-nickel lithium layered oxide cathodes show great application prospects to meet the ever-increasing demand for further improvement of the energy density of rechargeable lithium-ion batteries (LIBs) mainly due to their high output capacity. However, severe bulk structural degradation and undesired electrode–electrolyte interface reactions seriously endanger the cycle life and safety of the battery. Here, 2 mol% Ti atom is used as modified material doping into LiNi0.6Co0.2Mn0.2O2 (NCM) to reform LiNi0.6Co0.2Mn0.18Ti0.02O2 (NCM-Ti) and address the long-standing inherent problem. At a high cut-off voltage of 4.5 V, NCM-Ti delivers a higher capacity retention ratio (91.8% vs. 82.9%) after 150 cycles and a superior rate capacity (118 vs. 105 mAh·g−1) at the high current density of 10 C than the pristine NCM. The designed high-voltage full battery with graphite as anode and NCM-Ti as cathode also exhibits high energy density (240 Wh·kg−1) and excellent electrochemical performance. The superior electrochemical behavior can be attributed to the improved stability of the bulk structure and the electrode–electrolyte interface owing to the strong Ti–O bond and no unpaired electrons. The in-situ X-ray diffraction analysis demonstrates that Ti-doping inhibits the undesired H2-H3 phase transition, minimizing the mechanical degradation. The ex-situ TEM and X-ray photoelectron spectroscopy reveal that Ti-doping suppresses the release of interfacial oxygen, reducing undesired interfacial reactions. This work provides a valuable strategic guideline for the application of high-voltage high-nickel cathodes in LIBs.

Electronic Supplementary Material

Download File(s)
12274_2021_4035_MOESM1_ESM.pdf (2.6 MB)

References

1

Ma, L. B.; Lv, Y. H.; Wu, J. X.; Xia, C.; Kang, Q.; Zhang, Y. Z.; Liang, H. F.; Jin, Z. Recent advances in anode materials for potassium-ion batteries: A review. Nano Res. 2021, 14, 4442–4470.

2

Chen, Y.; Kang, Q.; Jiang, P. K.; Huang, X. Y. Rapid, high-efficient and scalable exfoliation of high-quality boron nitride nanosheets and their application in lithium-sulfur batteries. Nano Res. 2021, 14, 2424–2431.

3

Zhao, J.; Zhang, Y. Z.; Chen, J. Y.; Zhang, W. L.; Yuan, D.; Chua, R.; Alshareef, H. N.; Ma, Y. W. Codoped holey graphene aerogel by selective etching for high-performance sodium-ion storage. Adv. Energy Mater. 2020, 10, 2000099.

4
Liang, J.; Zhu, G. Y.; Zhang, Y. Z.; Liang, H. F.; Huang, W. Conversion of hydroxide into carbon-coated phosphide using plasma for sodium ion batteries. Nano Res., in press, https://doi.org/10.1007/s12274-021-3738-8.
5

Dunn, B.; Kamath, H.; Tarascon, J. M. Electrical energy storage for the grid: A battery of choices. Science 2011, 334, 928–935.

6

Armand, M.; Tarascon, J. M. Building better batteries. Nature 2008, 451, 652–657.

7

Manthiram, A. A reflection on lithium-ion battery cathode chemistry. Nat. Commun. 2020, 11, 1550.

8

Jiang, K. Z.; Guo, S. H.; Pang, W. K.; Zhang, X. P.; Fang, T. C.; Wang, S. F.; Wang, F. W.; Zhang, X. Y.; He. P.; Zhou, H. S. Oxygen vacancy promising highly reversible phase transition in layered cathodes for sodium-ion batteries. Nano Res. 2021, 14, 4100–4106.

9

Wu, K.; Li, Q.; Dang, R. B.; Deng, X.; Chen, M. M.; Lee, Y. L.; Xiao, X. L.; Hu, Z. B. A novel synthesis strategy to improve cycle stability of LiNi0.8Mn0.1Co0.1O2 at high cut-off voltages through core-shell structuring. Nano Res. 2019, 12, 2460–2467.

10

Lai, Y. J.; Li, Z. J.; Zhao, W. X.; Cheng, X. N.; Xu, S.; Yu, X.; Liu, Y. An ultrasound-triggered cation chelation and reassembly route to one-dimensional Ni-rich cathode material enabling fast charging and stable cycling of Li-ion batteries. Nano Res. 2020, 13, 3347–3357.

11

Li, W. D.; Erickson, E. M.; Manthiram, A. High-nickel layered oxide cathodes for lithium-based automotive batteries. Nat. Energy 2020, 5, 26–34.

12

Xu, G. L.; Liu, X.; Daali, A.; Amine, R.; Chen, Z. H.; Amine, K. Challenges and strategies to advance high-energy nickel-rich layered lithium transition metal oxide cathodes for harsh operation. Adv. Funct. Mater. 2020, 30, 2004748.

13

Li, W. D.; Song, B. H.; Manthiram, A. High-voltage positive electrode materials for lithium-ion batteries. Chem. Soc. Rev. 2017, 46, 3006–3059.

14

Zhang, S.; Ma, J.; Hu, Z. L.; Cui, G. L.; Chen, L. Q. Identifying and addressing critical challenges of high-voltage layered ternary oxide cathode materials. Chem. Mater. 2019, 31, 6033–6065.

15

Yang, L. Y.; Yang, K.; Zheng, J. X.; Xu, K.; Amine, K.; Pan, F. Harnessing the surface structure to enable high-performance cathode materials for lithium-ion batteries. Chem. Soc. Rev. 2020, 49, 4667–4680.

16

Tian, C. X.; Lin, F.; Doeff, M. M. Electrochemical characteristics of layered transition metal oxide cathode materials for lithium ion batteries: Surface, bulk behavior, and thermal properties. Acc. Chem. Res. 2018, 51, 89–96.

17

Romano Brandt, L.; Marie, J. J.; Moxham, T.; Förstermann, D. P.; Salvati, E.; Besnard, C.; Papadaki, C.; Wang, Z. F.; Bruce, P. G.; Korsunsky, A. M. Synchrotron X-ray quantitative evaluation of transient deformation and damage phenomena in a single nickel-rich cathode particle. Energy Environ. Sci. 2020, 13, 3556–3566.

18

Cheng, X. P.; Li, Y. H.; Cao, T. C.; Wu, R.; Wang, M. M.; Liu, H.; Liu, X. Q.; Lu, J. X.; Zhang, Y. F. Real-time observation of chemomechanical breakdown in a layered nickel-rich oxide cathode realized by in situ scanning electron microscopy. ACS Energy Lett. 2021, 6, 1703–1710.

19

Hwang, S.; Chang, W.; Kim, S. M.; Su, D.; Kim, D. H.; Lee, J. Y.; Chung, K. Y.; Stach, E. A. Investigation of changes in the surface structure of LixNi0.8Co0.15Al0.05O2 cathode materials induced by the initial charge. Chem. Mater. 2014, 26, 1084–1092.

20

Zheng, J. M.; Gu, M.; Xiao, J.; Zuo, P. J.; Wang, C. M.; Zhang, J. G. Corrosion/fragmentation of layered composite cathode and related capacity/voltage fading during cycling process. Nano Lett. 2013, 13, 3824–3830.

21

Li, Q.; Li, G. S.; Fu, C. C.; Luo, D.; Fan, J. M.; Li, L. P. K+-doped Li1.2Mn0.54Co0.13Ni0.13O2: A novel cathode material with an enhanced cycling stability for lithium-ion batteries. ACS Appl. Mater. Interfaces 2014, 6, 10330–10341.

22

Wang, D. W.; Xin, C.; Zhang, M. J.; Bai, J. M.; Zheng, J. X.; Kou, R. H.; Peter Ko, J. Y.; Huq, A.; Zhong, G. M.; Sun, C. J. et al. Intrinsic role of cationic substitution in tuning Li/Ni mixing in high-Ni layered oxides. Chem. Mater. 2019, 31, 2731–2740.

23

Chen, J.; Deng, W. T.; Gao, X.; Yin, S. Y.; Yang, L.; Liu, H. Q.; Zou, G. Q.; Hou, H. S.; Ji, X. B. Demystifying the lattice oxygen redox in layered oxide cathode materials of lithium-ion batteries. ACS Nano 2021, 15, 6061–6104.

24

House, R. A.; Marie, J. J.; Pérez-Osorio, M. A.; Rees, G. J.; Boivin, E.; Bruce, P. G. The role of O2 in O-redox cathodes for Li-ion batteries. Nat. Energy 2021, 6, 781–789.

25

Hou, X. Y.; Ohta, K.; Kimura, Y.; Tamenori, Y.; Tsuruta, K.; Amezawa, K.; Nakamura, T. Lattice oxygen instability in oxide-based intercalation cathodes: A case study of layered LiNi1/3Co1/3Mn1/3O2. Adv. Energy Mater. 2021, 11, 2101005.

26

Zhang, S. S. Problems and their origins of Ni-rich layered oxide cathode materials. Energy Storage Mater. 2020, 24, 247–254.

27

Assat, G.; Tarascon, J. M. Fundamental understanding and practical challenges of anionic redox activity in Li-ion batteries. Nat. Energy 2018, 3, 373–386.

28

Zhuang, Z. C.; Li, Y.; Li, Y. H.; Huang, J. Z.; Wei, B.; Sun, R.; Ren, Y. J.; Ding, J.; Zhu, J. X.; Lang, Z. Q. et al. Atomically dispersed nonmagnetic electron traps improve oxygen reduction activity of perovskite oxides. Energy Environ. Sci. 2021, 14, 1016–1028.

29

Jung, R.; Metzger, M.; Maglia, F.; Stinner, C.; Gasteiger, H. A. Chemical versus electrochemical electrolyte oxidation on NMC111, NMC622, NMC811, LNMO, and conductive carbon. J. Phys. Chem. Lett. 2017, 8, 4820–4825.

30

Li, W. D.; Dolocan, A.; Oh, P.; Celio, H.; Park, S.; Cho, J.; Manthiram, A. Dynamic behaviour of interphases and its implication on high-energy-density cathode materials in lithium-ion batteries. Nat. Commun. 2017, 8, 14589.

31

Sun, Y. K.; Chen, Z. H.; Noh, H. J.; Lee, D. J.; Jung, H. G.; Ren, Y.; Wang, S.; Yoon, C. S.; Myung, S. T.; Amine, K. Nanostructured high-energy cathode materials for advanced lithium batteries. Nat. Mater. 2012, 11, 942–947.

32

Kim, J. M.; Zhang, X. H.; Zhang, J. G.; Manthiram, A.; Meng, Y. S.; Xu, W. A review on the stability and surface modification of layered transition-metal oxide cathodes. Mater. Today 2021, 46, 155–182.

33

Weigel, T.; Schipper, F.; Erickson, E. M.; Susai, F. A.; Markovsky, B.; Aurbach, D. Structural and electrochemical aspects of LiNi0.8Co0.1Mn0.1O2 cathode materials doped by various cations. ACS Energy Lett. 2019, 4, 508–516.

34

Alvarado, J.; Schroeder, M. A.; Zhang, M. H.; Borodin, O.; Gobrogge, E.; Olguin, M.; Ding, M. S.; Gobet, M.; Greenbaum, S.; Meng, Y. S. et al. A carbonate-free, sulfone-based electrolyte for high-voltage Li-ion batteries. Mater. Today 2018, 21, 341–353.

35

Wang, Y.; Wang, D. S.; Li, Y. D. Rational design of single-atom site electrocatalysts: From theoretical understandings to practical applications. Adv. Mater. 2021, 33, 2008151.

36

Meng, G.; Zhang, J.; Li, X. Y.; Wang, D. S.; Li, Y. D. Electronic structure regulations of single-atom site catalysts and their effects on the electrocatalytic performances. Appl. Phys. Rev. 2021, 8, 021321.

37

Chen, S. H.; Wang, B. Q.; Zhu, J. X.; Wang, L. Q.; Ou, H. H.; Zhang, Z. D.; Liang, X.; Zheng, L. R.; Zhou, L.; Su, Y. Q. et al. Lewis acid site-promoted single-atomic Cu catalyzes electrochemical CO2 methanation. Nano Lett. 2021, 21, 7325–7331.

38
Jing, H. Y.; Zhu, P.; Zheng, X. B.; Zhang, Z. D.; Wang, D. S.; Li, Y. D. Theory-oriented screening and discovery of advanced energy transformation materials in electrocatalysis. Adv. Powder Mater., in press, https://doi.org/10.1016/j.apmate.2021.10.004.
39

Xie, H. B.; Du, K.; Hu, G. R.; Peng, Z. D.; Cao, Y. B. The role of sodium in LiNi0.8Co0.15Al0.05O2 cathode material and its electrochemical behaviors. J. Phys. Chem. C 2016, 120, 3235–3241.

40

Xie, Q.; Li, W. D.; Manthiram, A. A Mg-doped high-nickel layered oxide cathode enabling safer, high-energy-density Li-ion batteries. Chem. Mater. 2019, 31, 938–946.

41

Jeong, M.; Kim, H.; Lee, W.; Ahn, S. J.; Lee, E.; Yoon, W. S. Stabilizing effects of Al-doping on Ni-rich LiNi0.80Co0.15Mn0.05O2 cathode for Li rechargeable batteries. J. Power Sources 2020, 474, 228592.

42

Mo, Y.; Guo, L. J.; Cao, B. K.; Wang, Y. G.; Zhang, L.; Jia, X. B.; Chen, Y. Correlating structural changes of the improved cyclability upon Nd-substitution in LiNi0.5Co0.2Mn0.3O2 cathode materials. Energy Storage Mater. 2019, 18, 260–268.

43

Cui, Z. H.; Xie, Q.; Manthiram, A. Zinc-doped high-nickel, low-cobalt layered oxide cathodes for high-energy-density lithium-ion batteries. ACS Appl. Mater. Interfaces 2021, 13, 15324–15332.

44

Ryu, H. H.; Park, G. T.; Yoon, C. S.; Sun, Y. K. Suppressing detrimental phase transitions via tungsten doping of LiNiO2 cathode for next-generation lithium-ion batteries. J. Mater. Chem. A 2019, 7, 18580–18588.

45

Huang, Y.; Liu, X.; Yu, R. Z.; Cao, S.; Pei, Y.; Luo, Z. G.; Zhao, Q. L.; Chang, B. B.; Wang, Y.; Wang, X. Y. Tellurium surface doping to enhance the structural stability and electrochemical performance of layered Ni-rich cathodes. ACS Appl. Mater. Interfaces 2019, 11, 40022–40033.

46

Jamil, S.; Bin Yousaf, A.; Hee Yoon, S.; Suk Han, D.; Yang, L.; Kasak, P.; Wang, X. Y. Dual cationic modified high Ni-low co layered oxide cathode with a heteroepitaxial interface for high energy-density lithium-ion batteries. Chem. Eng. J. 2021, 416, 129118.

47

Breuer, O.; Chakraborty, A.; Liu, J.; Kravchuk, T.; Burstein, L.; Grinblat, J.; Kauffman, Y.; Gladkih, A.; Nayak, P.; Tsubery, M. et al. Understanding the role of minor molybdenum doping in LiNi0.5Co0.2Mn0.3O2 electrodes: From structural and surface analyses and theoretical modeling to practical electrochemical cells. ACS Appl. Mater. Interfaces 2018, 10, 29608–29621.

48

Shen, Y. B.; Wu, Y. Q.; Xue, H. J.; Wang, S. H.; Yin, D. M.; Wang, L. M.; Cheng, Y. Insight into the coprecipitation-controlled crystallization reaction for preparing lithium-layered oxide cathodes. ACS Appl. Mater. Interfaces 2021, 13, 717–726.

49

Yang, H. P.; Wu, H. H.; Ge, M. Y.; Li, L. J.; Yuan, Y. F.; Yao, Q.; Chen, J.; Xia, L. F.; Zheng, J. M.; Chen, Z. Y. et al. Simultaneously dual modification of Ni-rich layered oxide cathode for high-energy lithium-ion batteries. Adv. Funct. Mater. 2019, 29, 1808825.

50

Jia, G. F.; Li, F. Q.; Wang, J.; Liu, S. Q.; Yang, Y. L. Dual substitution strategy in Co-free layered cathode materials for superior lithium ion batteries. ACS Appl. Mater. Interfaces 2021, 13, 18733–18742.

51

Sun, H. B.; Cao, Z. L.; Wang, T. R.; Lin, R.; Li, Y. Y.; Liu, X.; Zhang, L. L.; Lin, F.; Huang, Y. H.; Luo, W. Enabling high rate performance of Ni-rich layered oxide cathode by uniform titanium doping. Mater. Today Energy 2019, 13, 145–151.

52

Shen, Y. B.; Xue, H. J.; Wang, S. H.; Wang, Z. M.; Zhang, D. Y.; Yin, D. M.; Wang, L. M.; Cheng, Y. A highly promising high-nickel low-cobalt lithium layered oxide cathode material for high-performance lithium-ion batteries. J. Colloid Interface Sci. 2021, 597, 334–344.

53

Han, B.; Xu, S.; Zhao, S.; Lin, G. X.; Feng, Y. Z.; Chen, L. B.; Ivey, D. G.; Wang, P.; Wei, W. F. Enhancing the structural stability of Ni-rich layered oxide cathodes with a preformed Zr-concentrated defective nanolayer. ACS Appl. Mater. Interfaces 2018, 10, 39599–39607.

54

Shen, Y. B.; Xue, H. J.; Wang, S. H.; Zhang, D. Y.; Yin, D. M.; Wang, L. M.; Cheng, Y. Ammonia-low coprecipitation synthesis of lithium layered oxide cathode material for high-performance battery. Chem. Eng. J. 2021, 411, 128487.

55

Hong, C. Y.; Leng, Q. Y.; Zhu, J. P.; Zheng, S. Y.; He, H. J.; Li, Y. X.; Liu, R.; Wan, J. J.; Yang, Y. Revealing the correlation between structural evolution and Li+ diffusion kinetics of nickel-rich cathode materials in Li-ion batteries. J. Mater. Chem. A 2020, 8, 8540–8547.

56

Lee, W.; Muhammad, S.; Kim, T.; Kim, H.; Lee, E.; Jeong, M.; Son, S. H.; Ryou, J. H.; Yoon, W. S. New insight into Ni-rich layered structure for next-generation Li rechargeable batteries. Adv. Energy Mater. 2018, 8, 1701788.

57

Li, J. Y.; Manthiram, A. A comprehensive analysis of the interphasial and structural evolution over long-term cycling of ultrahigh-nickel cathodes in lithium-ion batteries. Adv. Energy Mater. 2019, 9, 1902731.

58

Wu, F.; Liu, N.; Chen, L.; Su, Y. F.; Tan, G. Q.; Bao, L. Y.; Zhang, Q. Y.; Lu, Y.; Wang, J.; Chen, S. et al. Improving the reversibility of the H2-H3 phase transitions for layered Ni-rich oxide cathode towards retarded structural transition and enhanced cycle stability. Nano Energy 2019, 59, 50–57.

59

Xiao, Y. G.; Liu, T. C.; Liu, J. J.; He, L. H.; Chen, J.; Zhang, J. R.; Luo, P.; Lu, H. L.; Wang, R.; Zhu, W. M. et al. Insight into the origin of lithium/nickel ions exchange in layered Li(NixMnyCoz)O2 cathode materials. Nano Energy 2018, 49, 77–85.

60

Zheng, J. X.; Ye, Y. K.; Liu, T. C.; Xiao, Y. G.; Wang, C. M.; Wang, F.; Pan, F. Ni/Li disordering in layered transition metal oxide: Electrochemical impact, origin, and control. Acc. Chem. Res. 2019, 52, 2201–2209.

61

Wu, F. L.; Kim, G. T.; Kuenzel, M.; Zhang, H.; Asenbauer, J.; Geiger, D.; Kaiser, U.; Passerini, S. Elucidating the effect of iron doping on the electrochemical performance of cobalt-free lithium-rich layered cathode materials. Adv. Energy Mater. 2019, 9, 1902445.

62

Mu, L. Q.; Lin, R. Q.; Xu, R.; Han, L. L.; Xia, S. H.; Sokaras, D.; Steiner, J. D.; Weng, T. C.; Nordlund, D.; Doeff, M. M. et al. Oxygen release induced chemomechanical breakdown of layered cathode materials. Nano Lett. 2018, 18, 3241–3249.

Nano Research
Pages 4091-4099
Cite this article:
Cheng Y, Sun Y, Chu C, et al. Stabilizing effects of atomic Ti doping on high-voltage high-nickel layered oxide cathode for lithium-ion rechargeable batteries. Nano Research, 2022, 15(5): 4091-4099. https://doi.org/10.1007/s12274-021-4035-2
Topics:

1370

Views

119

Crossref

122

Web of Science

116

Scopus

13

CSCD

Altmetrics

Received: 03 November 2021
Revised: 29 November 2021
Accepted: 30 November 2021
Published: 18 January 2022
© Tsinghua University Press and Springer-Verlag GmbH Germany, part of Springer Nature 2021
Return