Discover the SciOpen Platform and Achieve Your Research Goals with Ease.
Search articles, authors, keywords, DOl and etc.
Hafnia-based ferroelectrics have greatly revived the field of ferroelectric memory (FeRAM), but certain reliability issues must be satisfactorily resolved before they can be widely applied in commercial memories. In particular, the imprint phenomenon severely jeopardizes the read-out reliability in hafnia-based ferroelectric capacitors, but its origin remains unclear, which hinders the development of its recovery schemes. In this work, we have systematically investigated the imprint mechanism in TiN/Hf0.5Zr0.5O2 (HZO)/TiN ferroelectric capacitors using experiments and first-principles calculations. It is shown that carrier injection-induced charged oxygen vacancies are at the heart of imprint in HZO, where other mechanisms such as domain pinning and dead layer are less important. An imprint model based on electron de-trapping from oxygen vacancy sites has been proposed that can satisfactorily explain several experimental facts such as the strong asymmetric imprint, leakage current variation, and so forth. Based on this model, an effective imprint recovery method has been proposed, which utilizes unipolar rather than bipolar voltage inputs. The remarkable recovery performances demonstrate the prospect of improved device reliability in hafnia-based FeRAM devices.
Florent, K.; Lavizzari, S.; Di Piazza, L.; Popovici, M.; Duan, J. Y.; Groeseneken, G.; van Houdt, J. Reliability study of ferroelectric Al: HfO2 thin films for dram and NAND applications. IEEE Trans. Electron Devices 2017, 64, 4091–4098.
Fengler, F. P. G.; Pešić, M.; Starschich, S.; Schneller, T.; Künneth, C.; Böttger, U.; Mulaosmanovic, H.; Schenk, T.; Park, M. H.; Nigon, R. et al. Domain pinning: Comparison of hafnia and PZT based ferroelectrics. Adv. Electron. Mater. 2017, 3, 1600505.
Zhou, Y.; Chan, H. K.; Lam, C. H.; Shin, F. G. Mechanisms of imprint effect on ferroelectric thin films. J. Appl. Phys. 2005, 98, 024111.
He, L. X.; Vanderbilt, D. First-principles study of oxygen-vacancy pinning of domain walls in PbTiO3. Phys. Rev. B 2003, 68, 134103.
Tagantsev, A. K.; Stolichnov, I.; Setter, N.; Cross, J. S. Nature of nonlinear imprint in ferroelectric films and long-term prediction of polarization loss in ferroelectric memories. J. Appl. Phys. 2004, 96, 6616–6623.
Kang, B. S.; Kim, D. J.; Jo, J. Y.; Noh, T. W.; Yoon, J. G.; Song, T. K.; Lee, Y. K.; Shin, S.; Park, Y. S. Polarization retention in Pb(Zr0.4Ti0.6)O3 capacitors with IrO2 top electrodes. Appl. Phys. Lett. 2004, 84, 3127–3129.
Al-Shareef, H. N.; Dimos, D.; Warren, W. L.; Tuttle, B. A. Voltage offsets and imprint mechanism in SrBi2Ta2O9 thin films. J. Appl. Phys. 1996, 80, 4573–4577.
Arlt, G.; Neumann H. Internal bias in ferroelectric ceramics: Origin and time dependence. Ferroelectrics 1988, 87, 109120.
Kang, B. S.; Yoon, J. G.; Kim, D. J.; Noh, T. W.; Song, T. K.; Lee, Y. K.; Lee, J. K.; Park, Y. S. Mechanisms for retention loss in ferroelectric Pt/Pb(Zr0.4Ti0.6)O3/Pt capacitors. Appl. Phys. Lett. 2003, 82, 2124–2126.
Grossmann, M.; Lohse, O.; Bolten, D.; Boettger, U.; Waser, R. The interface screening model as origin of imprint in PbZrxTi1−xO3 thin films. II. Numerical simulation and verification. J. Appl. Phys. 2002, 92, 2688–2696.
Böscke, T. S.; Müller, J.; Bräuhaus, D.; Schröder, U.; Böttger, U. Ferroelectricity in hafnium oxide thin films. Appl. Phys. Lett. 2011, 99, 102903.
Park, M. H.; Lee, Y. H.; Kim, H. J.; Kim, Y. J.; Moon, T.; Kim, K. D.; Müller, J.; Kersch, A.; Schroeder, U.; Mikolajick, T. et al. Ferroelectricity and antiferroelectricity of doped thin HfO2-based films. Adv. Mater. 2015, 27, 1811–1831.
Luo, Q.; Cheng, Y.; Yang, Y. G.; Cao, R. R.; Ma, H. L.; Yang, Y.; Huang, R.; Wei, W.; Zheng, Y. H.; Gong, T. C. et al. A highly CMOS compatible hafnia-based ferroelectric diode. Nat. Commun. 2020, 11, 1391.
Catalan, G.; Jiménez, D.; Gruverman, A. Negative capacitance detected. Nat. Mater. 2015, 14, 137–139.
Yu, T. Q.; He, F. C.; Zhao, J. H.; Zhou, Z. Y.; Chang, J. J.; Chen, J. S.; Yan, X. B. Hf0.5Zr0.5O2-based ferroelectric memristor with multilevel storage potential and artificial synaptic plasticity. Sci. China Mater. 2020, 64, 727–738.
Gong, N. B.; Ma, T. P. Why is FE-HfO2 more suitable than PZT or SBT for scaled nonvolatile 1-T memory cell? A retention perspective. IEEE Electron Device Lett. 2016, 37, 1123–1126.
Song, J.; Kim, T. L.; Lee, J.; Cho, S. Y.; Cha, J.; Jeong, S. Y.; An, H.; Kim, W. S.; Jung, Y. S.; Park, J. et al. Domain-engineered BiFeO3 thin-film photoanodes for highly enhanced ferroelectric solar water splitting. Nano Res. 2018, 11, 642–655.
Hoffmann, M.; Fengler, F. P. G.; Herzig, M.; Mittmann, T.; Max, B.; Schroeder, U.; Negrea, R.; Lucian, P.; Slesazeck, S.; Mikolajick, T. Unveiling the double-well energy landscape in a ferroelectric layer. Nature 2019, 565, 464–467.
Yoong, H Y.; Wu, H. J.; Zhao, J. H.; Wang, H.; Guo, R.; Xiao, J. X.; Zhang, B. M.; Yang, P.; Pennycook, S. J.; Deng, N. et al. Epitaxial ferroelectric Hf0.5Zr0.5O2 thin films and their implementations in memristors for brain-inspired computing. Adv. Funct. Mater. 2018, 28, 1806037.
Tong, L.; Peng, Z.; Lin, R. F.; Li, Z.; Wang, Y. L.; Huang, X. Y.; Xue, K.-H.; Xu, H. Y.; Liu, F.; Xia, H. et al. 2D materials-based homogeneous transistor-memory architecture for neuromorphic hardware. Science 2021, 373, 1353–1358.
Bouaziz, J.; Rojo Romeo, P.; Baboux, N.; Vilquin, B. Imprint issue during retention tests for HfO2-based FRAM: An industrial challenge? Appl. Phys. Lett. 2021, 118, 082901.
Fengler, F. P. G.; Hoffmann, M.; Slesazeck, S.; Mikolajick, T.; Schroeder, U. On the relationship between field cycling and imprint in ferroelectric Hf0.5Zr0.5O2. J. Appl. Phys. 2018, 123, 204101.
Buragohain, P.; Erickson, A.; Kariuki, P.; Mittmann, T.; Richter, C.; Lomenzo, P. D.; Lu, H. D.; Schenk, T.; Mikolajick, T.; Schroeder, U. et al. Fluid imprint and inertial switching in ferroelectric La: HfO2 capacitors. ACS Appl. Mater. Interfaces 2019, 11, 35115–35121.
Zacharaki, C.; Tsipas, P.; Chaitoglou, S.; Bégon-Lours, L.; Halter, M.; Dimoulas, A. Reliability aspects of ferroelectric TiN/Hf0.5Zr0.5O2/Ge capacitors grown by plasma assisted atomic oxygen deposition. Appl. Phys. Lett. 2020, 117, 212905.
Takada, K.; Takarae, S.; Shimamoto, K.; Fujimura, N.; Yoshimura, T. Time-dependent imprint in Hf0.5Zr0.5O2 ferroelectric thin films. Adv. Electron. Mater. 2021, 7, 2100151.
Chernikova, A. G.; Markeev A. M. Dynamic imprint recovery as an origin of the pulse width dependence of retention in Hf0.5Zr0.5O2-based capacitors. Appl. Phys. Lett. 2021, 119, 032904.
Cao, R. R.; Song, B.; Shang, D. S.; Yang, Y.; Luo, Q.; Wu, S. Y.; Li, Y.; Wang, Y.; Lv, H. B.; Liu, Q. et al. Improvement of endurance in HZO-based ferroelectric capacitor using Ru electrode. IEEE Electron Device Lett. 2019, 40, 1744–1747.
Higashi, Y.; Kaczer, B.; Verhulst, A. S.; O’Sullivan, B. J.; Ronchi, N.; McMitchell, S. R. C.; Banerjee, K.; Di Piazza, L.; Suzuki, M.; Linten, D. et al. Investigation of imprint in FE-HfO2 and its recovery. IEEE Trans. Electron Devices. 2020, 67, 4911–4917.
Lee, H. J.; Lee, M.; Lee, K.; Jo, J.; Yang, H.; Kim, Y.; Chae, S. C.; Waghmare, U.; Lee, J. H. Scale-free ferroelectricity induced by flat phonon bands in HfO2. Science 2020, 369, 1343–1347.
Schenk, T.; Hoffmann, M.; Ocker, J.; Pešić, M.; Mikolajick, T.; Schroeder, U. Complex internal bias fields in ferroelectric hafnium oxide. ACS Appl. Mater. Interfaces 2015, 7, 20224–20233.
Gong, T. C.; Li, J. K.; Yu, H. R.; Xu, Y. N.; Jiang, P. F.; Wang, Y. H.; Yuan, P.; Wang, Y.; Chen, Y. T.; Ding, Y. X. et al. Observation and characterization of recoverable fatigue process under low-electric field (< 1.8 MV/cm) in HfZrO ferroelectric film.IEEE Electron Device Lett. 2021, 42, 1288–1290.
Chen, H. Y.; Tang, L.; Liu, L. Y.; Chen, Y. H.; Luo, H.; Yuan, X.; Zhang, D. Temperature dependent polarization-switching behavior in Hf0.5Zr0.5O2 ferroelectric film. Materialia 2020, 14, 100919.
Weinreich, W.; Reiche, R.; Lemberger, M.; Jegert, G.; Müller, J.; Wilde, L.; Teichert, S.; Heitmann, J.; Erben, E.; Oberbeck, L. et al. Impact of interface variations on J –V and C–V polarity asymmetry of MIM capacitors with amorphous and crystalline Zr(1−x)AlxO2 films. Microelectron. Eng. 2009, 86, 1826–1829.
Ferreira, L. G.; Marques, M.; Teles, L. K. Approximation to density functional theory for the calculation of band gaps of semiconductors. Phys. Rev. B 2008, 78, 125116.
Xue, K. H.; Yuan, J. H.; Fonseca, L. R. C.; Miao, X. S. Improved LDA-1/2 method for band structure calculations in covalent semiconductors. Comput. Mater. Sci. 2018, 153, 493–505.
Yuan, J. H.; Chen, Q.; Fonseca, L. R. C.; Xu, M.; Xue, K. H.; Miao, X. S. GGA-1/2 self-energy correction for accurate band structure calculations: The case of resistive switching oxides. J. Phys. Commun. 2018, 2, 105005.
Mueller, S.; Muller, J.; Schroeder, U.; Mikolajick, T. Reliability characteristics of ferroelectric Si: HfO2 thin films for memory applications. IEEE Trans. Device Mater. Reliab. 2013, 13, 93–97.