AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article

Microscopic mechanism of imprint in hafnium oxide-based ferroelectrics

Peng Yuan1,2Ge-Qi Mao3Yan Cheng4Kan-Hao Xue3( )Yunzhe Zheng4Yang Yang1Pengfei Jiang1,2Yannan Xu1,2Yuan Wang1,2Yuhao Wang1,2Yaxin Ding1,2Yuting Chen1,2Zhiwei Dang1,2Lu Tai1Tiancheng Gong1Qing Luo1,5( )Xiangshui Miao3Qi Liu1
Key Laboratory of Microelectronic Devices and Integrated Technology, Institute of Microelectronics, Chinese Academy of Sciences, No.3, Beitucheng West Road, Beijing 100029, China
University of Chinese Academy of Sciences, 19 Yuquan Road, Beijing 100049, China
School of Integrated Circuits, School of Optical and Electronic Information, Huazhong University of Science and Technology, 1037 Luoyu Road, Wuhan 430074, China
Key Laboratory of Polar Materials and Devices (MOE), Department of Electronics, East China Normal University, 100 Guilin Road, Shanghai 430079, China
Department of Mathematics and Theories, Peng Cheng Laboratory, No.2, Xingke 1st Street, Shenzhen 518055, China
Show Author Information

Graphical Abstract

We investigated the mechanism of ferroelectric imprint in Hf0.5Zr0.5O2 (HZO) thin films using standard TiN electrodes. Based on this model, an effective imprint recovery method has been proposed for improving the device reliability of hafniabased ferroelectric memories (FeRAMs).

Abstract

Hafnia-based ferroelectrics have greatly revived the field of ferroelectric memory (FeRAM), but certain reliability issues must be satisfactorily resolved before they can be widely applied in commercial memories. In particular, the imprint phenomenon severely jeopardizes the read-out reliability in hafnia-based ferroelectric capacitors, but its origin remains unclear, which hinders the development of its recovery schemes. In this work, we have systematically investigated the imprint mechanism in TiN/Hf0.5Zr0.5O2 (HZO)/TiN ferroelectric capacitors using experiments and first-principles calculations. It is shown that carrier injection-induced charged oxygen vacancies are at the heart of imprint in HZO, where other mechanisms such as domain pinning and dead layer are less important. An imprint model based on electron de-trapping from oxygen vacancy sites has been proposed that can satisfactorily explain several experimental facts such as the strong asymmetric imprint, leakage current variation, and so forth. Based on this model, an effective imprint recovery method has been proposed, which utilizes unipolar rather than bipolar voltage inputs. The remarkable recovery performances demonstrate the prospect of improved device reliability in hafnia-based FeRAM devices.

Electronic Supplementary Material

Download File(s)
12274_2021_4047_MOESM1_ESM.pdf (1.1 MB)

References

1

Florent, K.; Lavizzari, S.; Di Piazza, L.; Popovici, M.; Duan, J. Y.; Groeseneken, G.; van Houdt, J. Reliability study of ferroelectric Al: HfO2 thin films for dram and NAND applications. IEEE Trans. Electron Devices 2017, 64, 4091–4098.

2

Fengler, F. P. G.; Pešić, M.; Starschich, S.; Schneller, T.; Künneth, C.; Böttger, U.; Mulaosmanovic, H.; Schenk, T.; Park, M. H.; Nigon, R. et al. Domain pinning: Comparison of hafnia and PZT based ferroelectrics. Adv. Electron. Mater. 2017, 3, 1600505.

3

Zhou, Y.; Chan, H. K.; Lam, C. H.; Shin, F. G. Mechanisms of imprint effect on ferroelectric thin films. J. Appl. Phys. 2005, 98, 024111.

4

He, L. X.; Vanderbilt, D. First-principles study of oxygen-vacancy pinning of domain walls in PbTiO3. Phys. Rev. B 2003, 68, 134103.

5

Tagantsev, A. K.; Stolichnov, I.; Setter, N.; Cross, J. S. Nature of nonlinear imprint in ferroelectric films and long-term prediction of polarization loss in ferroelectric memories. J. Appl. Phys. 2004, 96, 6616–6623.

6

Kang, B. S.; Kim, D. J.; Jo, J. Y.; Noh, T. W.; Yoon, J. G.; Song, T. K.; Lee, Y. K.; Shin, S.; Park, Y. S. Polarization retention in Pb(Zr0.4Ti0.6)O3 capacitors with IrO2 top electrodes. Appl. Phys. Lett. 2004, 84, 3127–3129.

7

Al-Shareef, H. N.; Dimos, D.; Warren, W. L.; Tuttle, B. A. Voltage offsets and imprint mechanism in SrBi2Ta2O9 thin films. J. Appl. Phys. 1996, 80, 4573–4577.

8

Arlt, G.; Neumann H. Internal bias in ferroelectric ceramics: Origin and time dependence. Ferroelectrics 1988, 87, 109120.

9

Kang, B. S.; Yoon, J. G.; Kim, D. J.; Noh, T. W.; Song, T. K.; Lee, Y. K.; Lee, J. K.; Park, Y. S. Mechanisms for retention loss in ferroelectric Pt/Pb(Zr0.4Ti0.6)O3/Pt capacitors. Appl. Phys. Lett. 2003, 82, 2124–2126.

10

Grossmann, M.; Lohse, O.; Bolten, D.; Boettger, U.; Waser, R. The interface screening model as origin of imprint in PbZrxTi1−xO3 thin films. II. Numerical simulation and verification. J. Appl. Phys. 2002, 92, 2688–2696.

11

Böscke, T. S.; Müller, J.; Bräuhaus, D.; Schröder, U.; Böttger, U. Ferroelectricity in hafnium oxide thin films. Appl. Phys. Lett. 2011, 99, 102903.

12

Park, M. H.; Lee, Y. H.; Kim, H. J.; Kim, Y. J.; Moon, T.; Kim, K. D.; Müller, J.; Kersch, A.; Schroeder, U.; Mikolajick, T. et al. Ferroelectricity and antiferroelectricity of doped thin HfO2-based films. Adv. Mater. 2015, 27, 1811–1831.

13

Luo, Q.; Cheng, Y.; Yang, Y. G.; Cao, R. R.; Ma, H. L.; Yang, Y.; Huang, R.; Wei, W.; Zheng, Y. H.; Gong, T. C. et al. A highly CMOS compatible hafnia-based ferroelectric diode. Nat. Commun. 2020, 11, 1391.

14
Müller, J.; Boscke, T. S.; Müller, S.; Yurchuk, E.; Polakowski, P.; Paul, J.; Martin, D.; Schenk, T.; Khullar, K.; Kersch, A. et al. Ferroelectric hafnium oxide: A CMOS-compatible and highly scalable approach to future ferroelectric memories. In Proceedings of 2013 IEEE International Electron Devices Meeting, Washington, USA, 2013, pp 10.8.1–10.8.4.
15

Catalan, G.; Jiménez, D.; Gruverman, A. Negative capacitance detected. Nat. Mater. 2015, 14, 137–139.

16

Yu, T. Q.; He, F. C.; Zhao, J. H.; Zhou, Z. Y.; Chang, J. J.; Chen, J. S.; Yan, X. B. Hf0.5Zr0.5O2-based ferroelectric memristor with multilevel storage potential and artificial synaptic plasticity. Sci. China Mater. 2020, 64, 727–738.

17

Gong, N. B.; Ma, T. P. Why is FE-HfO2 more suitable than PZT or SBT for scaled nonvolatile 1-T memory cell? A retention perspective. IEEE Electron Device Lett. 2016, 37, 1123–1126.

18

Song, J.; Kim, T. L.; Lee, J.; Cho, S. Y.; Cha, J.; Jeong, S. Y.; An, H.; Kim, W. S.; Jung, Y. S.; Park, J. et al. Domain-engineered BiFeO3 thin-film photoanodes for highly enhanced ferroelectric solar water splitting. Nano Res. 2018, 11, 642–655.

19

Hoffmann, M.; Fengler, F. P. G.; Herzig, M.; Mittmann, T.; Max, B.; Schroeder, U.; Negrea, R.; Lucian, P.; Slesazeck, S.; Mikolajick, T. Unveiling the double-well energy landscape in a ferroelectric layer. Nature 2019, 565, 464–467.

20

Yoong, H Y.; Wu, H. J.; Zhao, J. H.; Wang, H.; Guo, R.; Xiao, J. X.; Zhang, B. M.; Yang, P.; Pennycook, S. J.; Deng, N. et al. Epitaxial ferroelectric Hf0.5Zr0.5O2 thin films and their implementations in memristors for brain-inspired computing. Adv. Funct. Mater. 2018, 28, 1806037.

21

Tong, L.; Peng, Z.; Lin, R. F.; Li, Z.; Wang, Y. L.; Huang, X. Y.; Xue, K.-H.; Xu, H. Y.; Liu, F.; Xia, H. et al. 2D materials-based homogeneous transistor-memory architecture for neuromorphic hardware. Science 2021, 373, 1353–1358.

22
Wang, Z.; Crafton, B.; Gomez, J.; Xu, R. J.; Luo, A.; Krivokapic, Z.; Martin, L.; Datta, S.; Raychowdhury, A.; Khan, A. I. Experimental demonstration of ferroelectric spiking neurons for unsupervised clustering. In Proceedings of 2018 IEEE International Electron Devices Meeting (IEDM), San Francisco, USA, 2018, pp 13.3.1–13.3.4.
23

Bouaziz, J.; Rojo Romeo, P.; Baboux, N.; Vilquin, B. Imprint issue during retention tests for HfO2-based FRAM: An industrial challenge? Appl. Phys. Lett. 2021, 118, 082901.

24

Fengler, F. P. G.; Hoffmann, M.; Slesazeck, S.; Mikolajick, T.; Schroeder, U. On the relationship between field cycling and imprint in ferroelectric Hf0.5Zr0.5O2. J. Appl. Phys. 2018, 123, 204101.

25

Buragohain, P.; Erickson, A.; Kariuki, P.; Mittmann, T.; Richter, C.; Lomenzo, P. D.; Lu, H. D.; Schenk, T.; Mikolajick, T.; Schroeder, U. et al. Fluid imprint and inertial switching in ferroelectric La: HfO2 capacitors. ACS Appl. Mater. Interfaces 2019, 11, 35115–35121.

26

Zacharaki, C.; Tsipas, P.; Chaitoglou, S.; Bégon-Lours, L.; Halter, M.; Dimoulas, A. Reliability aspects of ferroelectric TiN/Hf0.5Zr0.5O2/Ge capacitors grown by plasma assisted atomic oxygen deposition. Appl. Phys. Lett. 2020, 117, 212905.

27

Takada, K.; Takarae, S.; Shimamoto, K.; Fujimura, N.; Yoshimura, T. Time-dependent imprint in Hf0.5Zr0.5O2 ferroelectric thin films. Adv. Electron. Mater. 2021, 7, 2100151.

28

Chernikova, A. G.; Markeev A. M. Dynamic imprint recovery as an origin of the pulse width dependence of retention in Hf0.5Zr0.5O2-based capacitors. Appl. Phys. Lett. 2021, 119, 032904.

29

Cao, R. R.; Song, B.; Shang, D. S.; Yang, Y.; Luo, Q.; Wu, S. Y.; Li, Y.; Wang, Y.; Lv, H. B.; Liu, Q. et al. Improvement of endurance in HZO-based ferroelectric capacitor using Ru electrode. IEEE Electron Device Lett. 2019, 40, 1744–1747.

30
Higashi, Y.; Ronchi, N.; Kaczer, B.; Banerjee, K.; McMitchell, S. R. C.; O’Sullivan, B. J.; Clima, S.; Minj, A.; Celano, U.; Di Piazza, L. et al. Impact of charge trapping on imprint and its recovery in HfO2 based FeFET. In Proceedings of 2019 IEEE International Electron Devices Meeting (IEDM), San Francisco, USA, 2019, pp 15.6.1–15.6.4.
31

Higashi, Y.; Kaczer, B.; Verhulst, A. S.; O’Sullivan, B. J.; Ronchi, N.; McMitchell, S. R. C.; Banerjee, K.; Di Piazza, L.; Suzuki, M.; Linten, D. et al. Investigation of imprint in FE-HfO2 and its recovery. IEEE Trans. Electron Devices. 2020, 67, 4911–4917.

32

Lee, H. J.; Lee, M.; Lee, K.; Jo, J.; Yang, H.; Kim, Y.; Chae, S. C.; Waghmare, U.; Lee, J. H. Scale-free ferroelectricity induced by flat phonon bands in HfO2. Science 2020, 369, 1343–1347.

33

Schenk, T.; Hoffmann, M.; Ocker, J.; Pešić, M.; Mikolajick, T.; Schroeder, U. Complex internal bias fields in ferroelectric hafnium oxide. ACS Appl. Mater. Interfaces 2015, 7, 20224–20233.

34
Li, J. K.; Qu, Y. M.; Si, M. W.; Lyu, X.; Ye, P. D. Multi-probe characterization of ferroelectric/dielectric interface by CV, PV and conductance methods. In Proceedings of 2020 IEEE Symposium on VLSI Technology, Honolulu, USA, 2020, pp 1–2.
35

Gong, T. C.; Li, J. K.; Yu, H. R.; Xu, Y. N.; Jiang, P. F.; Wang, Y. H.; Yuan, P.; Wang, Y.; Chen, Y. T.; Ding, Y. X. et al. Observation and characterization of recoverable fatigue process under low-electric field (< 1.8 MV/cm) in HfZrO ferroelectric film.IEEE Electron Device Lett. 2021, 42, 1288–1290.

36

Chen, H. Y.; Tang, L.; Liu, L. Y.; Chen, Y. H.; Luo, H.; Yuan, X.; Zhang, D. Temperature dependent polarization-switching behavior in Hf0.5Zr0.5O2 ferroelectric film. Materialia 2020, 14, 100919.

37

Weinreich, W.; Reiche, R.; Lemberger, M.; Jegert, G.; Müller, J.; Wilde, L.; Teichert, S.; Heitmann, J.; Erben, E.; Oberbeck, L. et al. Impact of interface variations on J –V and CV polarity asymmetry of MIM capacitors with amorphous and crystalline Zr(1−x)AlxO2 films. Microelectron. Eng. 2009, 86, 1826–1829.

38

Ferreira, L. G.; Marques, M.; Teles, L. K. Approximation to density functional theory for the calculation of band gaps of semiconductors. Phys. Rev. B 2008, 78, 125116.

39

Xue, K. H.; Yuan, J. H.; Fonseca, L. R. C.; Miao, X. S. Improved LDA-1/2 method for band structure calculations in covalent semiconductors. Comput. Mater. Sci. 2018, 153, 493–505.

40

Yuan, J. H.; Chen, Q.; Fonseca, L. R. C.; Xu, M.; Xue, K. H.; Miao, X. S. GGA-1/2 self-energy correction for accurate band structure calculations: The case of resistive switching oxides. J. Phys. Commun. 2018, 2, 105005.

41

Mueller, S.; Muller, J.; Schroeder, U.; Mikolajick, T. Reliability characteristics of ferroelectric Si: HfO2 thin films for memory applications. IEEE Trans. Device Mater. Reliab. 2013, 13, 93–97.

42
Francois, T.; Grenouillet, T.; Coignus, T.; Blaise, P.; Carabasse, C.; Vaxelaire, N.; Magis, T.; Aussenac, F.; Loup, V.; Pellissier, C. et al. Demonstration of BEOL-compatible ferroelectric Hf0.5Zr0.5O2 scaled FeRAM co-integrated with 130 nm CMOS for embedded NVM applications. In Proceedings of 2019 IEEE International Electron Devices Meeting (IEDM), San Francisco, USA, 2019, pp 15.7.1–15.7.4.
Nano Research
Pages 3667-3674
Cite this article:
Yuan P, Mao G-Q, Cheng Y, et al. Microscopic mechanism of imprint in hafnium oxide-based ferroelectrics. Nano Research, 2022, 15(4): 3667-3674. https://doi.org/10.1007/s12274-021-4047-y
Topics:

943

Views

30

Crossref

29

Web of Science

29

Scopus

2

CSCD

Altmetrics

Received: 27 August 2021
Revised: 05 December 2021
Accepted: 05 December 2021
Published: 18 January 2022
© Tsinghua University Press and Springer-Verlag GmbH Germany, part of Springer Nature 2021
Return