AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article

Immunomodulatory hybrid bio-nanovesicle for self-promoted photodynamic therapy

Houli Liu1Yao Lei1Weidong Nie2Helin Zhao1Yuzhu Wu1Liping Zuo1Guanghao Wu2Ruili Yang3( )Hai-Yan Xie1( )
School of Life Science, Beijing Institute of Technology, Beijing 100081, China
School of Materials Science and Engineering, Beijing Institute of Technology, Beijing 100081, China
School of Stomatology, Perking University, Beijing 100081, China
Show Author Information

Graphical Abstract

Hybrid bio-nanovesicles (Tk@M1) of thylakoid membranes and M1-macrophage derived extracellular vesicles actively target tumors, and then regulate the inactive tumor immune microenvironment by means of the native features of M1 EV and Tk. The activated tumors promote the photodynamic therapy effect of Tk@M1 attributed to the increased O2 from catalase catalyzed decomposition of augmented H2O2.

Abstract

Thylakoid (Tk) membranes are of unique superiority in photodynamic therapy (PDT) because they not only carry abundant chlorophylls containing photosensitizer porphyrin but also can produce O2. However, the current therapeutic performance of Tk is dramatically limited because of their poor tumor targeting and inefficient O2 production. Here, we report an immunomodulatory bio-nanovesicle of Tk membranes fused with M1 macrophage-derived extracellular vesicles (M1 EV) for efficient PDT of tumors. The hybrid nanovesicle Tk@M1 was prepared by squeezing the Tk membranes of spinach with M1 EV. The systemic study confirmed that Tk@M1 can not only actively accumulate in tumors but also effectively regulate the inactive immune microenvironment of tumors. Such activated “hot” tumors significantly enhance the PDT efficacy of Tk@M1 attributed to the increased O2 from catalase catalyzed decomposition of augmented H2O2, providing a novel idea about constructing natural systems for effective tumor treatment.

Electronic Supplementary Material

Download File(s)
12274_2021_4050_MOESM1_ESM.pdf (1.1 MB)

References

1

Karges, J.; Kuang, S.; Maschietto, F.; Blacque, O.; Ciofini, I.; Chao, H.; Gasser, G. Rationally designed ruthenium complexes for 1- and 2-photon photodynamic therapy. Nat. Commun. 2020, 11, 3262.

2

Van Straten, D.; Mashayekhi, V.; De Bruijn, H. S.; Oliveira, S.; Robinson, D. J. Oncologic photodynamic therapy: Basic principles, current clinical status, and future directions. Cancers 2017, 9, 19.

3

Yang, Y. M.; Hu, Y.; Wang, H. J. Targeting antitumor immune response for enhancing the efficacy of photodynamic therapy of cancer: Recent advances and future perspectives. Oxid. Med. Cell. Longev. 2016, 2016, 5274084.

4

Li, X. S.; Lovell, J. F.; Yoon, J.; Chen, X. Y. Clinical development and potential of photothermal and photodynamic therapies for cancer. Nat. Rev. Clin. Oncol. 2020, 17, 657–674.

5

Liu, B. Q.; Jiao, J.; Xu, W.; Zhang, M. Y.; Cui, P.; Guo, Z. Q.; Deng, Y. B.; Chen, H. B.; Sun, W. F. Highly efficient far-red/NIR-absorbing neutral Ir(III) complex micelles for potent photodynamic/photothermal therapy. Adv. Mater. 2021, 33, 2100795.

6

Zhou, Z. J.; Song, J. B.; Nie, L. M.; Chen, X. Y. Reactive oxygen species generating systems meeting challenges of photodynamic cancer therapy. Chem. Soc. Rev. 2016, 45, 6597–6626.

7

O'Connor, A. E.; Gallagher, W. M.; Byrne, A. T. Porphyrin and nonporphyrin photosensitizers in oncology: Preclinical and clinical advances in photodynamic therapy. Photochem. Photobiol. 2009, 85, 1053–1074.

8

Dai, X. X.; Du, T.; Han, K. Engineering nanoparticles for optimized photodynamic therapy. ACS Biomater. Sci. Eng. 2019, 5, 6342–6354.

9

Chen, J. M.; Fan, T. J.; Xie, Z. J.; Zeng, Q. Q.; Xue, P.; Zheng, T. T.; Chen, Y.; Luo, X. L.; Zhang, H. Advances in nanomaterials for photodynamic therapy applications: Status and challenges. Biomaterials 2020, 237, 119827.

10

Liu, Z. Y.; Cao, T. Y.; Xue, Y. D.; Li, M. T.; Wu, M. S.; Engle, J. W.; He, Q. J.; Cai, W. B.; Lan, M. B.; Zhang, W. A. Self-amplified photodynamic therapy through the 1O2-mediated internalization of photosensitizers from a ppa-bearing block copolymer. Angew. Chem., Int. Ed. 2020, 59, 3711–3717.

11

Li, X. S.; Lee, D.; Huang, J. D.; Yoon, J. Phthalocyanine-assembled nanodots as photosensitizers for highly efficient type I photoreactions in photodynamic therapy. Angew. Chem., Int. Ed. 2018, 57, 9885–9890.

12

Xu, X. L.; Deng, G. J.; Sun, Z. H.; Luo, Y.; Liu, J. K.; Yu, X. H.; Zhao, Y.; Gong, P.; Liu, G. Z.; Zhang, P. F. et al. A biomimetic aggregation-induced emission photosensitizer with antigen-presenting and hitchhiking function for lipid droplet targeted photodynamic immunotherapy. Adv. Mater. 2021, 33, 2102322.

13

Lucky, S. S.; Soo, K. C.; Zhang, Y. Nanoparticles in photodynamic therapy. Chem. Rev. 2015, 115, 1990–2042.

14

Wang, K. K.; Zhang, Y. F.; Wang, J.; Yuan, A. H.; Sun, M. J.; Wu, J. H.; Hu, Y. Q. Self-assembled IR780-loaded transferrin nanoparticles as an imaging, targeting and PDT/PTT agent for cancer therapy. Sci. Rep. 2016, 6, 27421.

15

Tang, Y. Y.; Xue, L.; Yu, Q.; Chen, D. P.; Cheng, Z. J.; Wang, W. J.; Shao, J. J.; Dong, X. C. Smart Aza-BODIPY photosensitizer for tumor microenvironment-enhanced cancer phototherapy. ACS Appl. Bio Mater. 2019, 2, 5888–5897.

16

Wang, J. P.; Zhang, B. L.; Sun, J. Y.; Wang, Y. H.; Wang, H. J. Nanomedicine-enabled modulation of tumor hypoxic microenvironment for enhanced cancer therapy. Adv. Ther. 2020, 3, 1900083.

17

Zhang, Z.; Yang, J. R.; Min, Q. Q.; Ling, C. J.; Maiti, D.; Xu, J. Y.; Qin, L. Q.; Yang, K. Holo-lactoferrin modified liposome for relieving tumor hypoxia and enhancing radiochemotherapy of cancer. Small 2019, 15, 1803703.

18

Chen, X. B.; Jin, R. R.; Jiang, Q.; Bi, Q. J.; He, T.; Song, X.; Barz, M.; Ai, H.; Shuai, X. T.; Nie, Y. Delivery of siHIF-1α to reconstruct tumor normoxic microenvironment for effective chemotherapeutic and photodynamic anticancer treatments. Small 2021, 17, 2100609.

19

Chen, Y. X.; Xiang, H. J.; Zhuang, S. W.; Shen, Y. J.; Chen, Y.; Zhang, J. Oxygen-independent photocleavage of radical nanogenerator for near-IR-gated and H2O-mediated free-radical nanotherapy. Adv. Mater. 2021, 33, 2100129.

20

Fan, W. P.; Bu, W. B.; Shen, B.; He, Q. J.; Cui, Z. W.; Liu, Y. Y.; Zheng, X. P.; Zhao, K. L.; Shi, J. L. Intelligent MnO2 nanosheets anchored with upconversion nanoprobes for concurrent pH-/H2O2-responsive UCL imaging and oxygen-elevated synergetic therapy. Adv. Mater. 2015, 27, 4155–4161.

21

Lu, Y.; Song, G.; He, B.; Zhang, H.; Wang, X. Q.; Zhou, D. M.; Dai, W. B.; Zhang, Q. Strengthened tumor photodynamic therapy based on a visible nanoscale covalent organic polymer engineered by microwave assisted synthesis. Adv. Funct. Mater. 2020, 30, 2004834.

22

Cheng, Y. H.; Cheng, H.; Jiang, C. X.; Qiu, X. F.; Wang, K. K.; Huan, W.; Yuan, A. H.; Wu, J. H.; Hu, Y. Q. Perfluorocarbon nanoparticles enhance reactive oxygen levels and tumour growth inhibition in photodynamic therapy. Nat. Commun. 2015, 6, 8785.

23

Liu, C. H.; Cao, Y.; Cheng, Y. R.; Wang, D. D.; Xu, T. L.; Su, L.; Zhang, X. J.; Dong, H. F. An open source and reduce expenditure ROS generation strategy for chemodynamic/photodynamic synergistic therapy. Nat. Commun. 2020, 11, 1735.

24

Ouyang, J.; Wang, L. Q.; Chen, W. S.; Zeng, K.; Han, Y. J.; Xu, Y.; Xu, Q. F.; Deng, L.; Liu, Y. N. Biomimetic nanothylakoids for efficient imaging-guided photodynamic therapy for cancer. Chem. Commun. 2018, 54, 3468–3471.

25

Barber, J. A mechanism for water splitting and oxygen production in photosynthesis. Nat. Plants 2017, 3, 17041.

26

Li, Z.; Wang, W. Y.; Ding, C. M.; Wang, Z. L.; Liao, S. C.; Li, C. Biomimetic electron transport via multiredox shuttles from photosystem II to a photoelectrochemical cell for solar water splitting. Energy Environ. Sci. 2017, 10, 765–771.

27

Zheng, D. W.; Li, B.; Xu, L.; Zhang, Q. L.; Fan, J. X.; Li, C. X.; Zhang, X. Z. Normalizing tumor microenvironment based on photosynthetic abiotic/biotic nanoparticles. ACS Nano 2018, 12, 6218–6227.

28

Shen, S. K.; Wang, Y. Y.; Dong, J. X.; Zhang, R.; Parikh, A.; Chen, J. G.; Hu, D. D. Mimicking thylakoid membrane with chlorophyll/TiO2/lipid Co-assembly for light-harvesting and oxygen releasing. ACS Appl. Mater. Interfaces 2021, 13, 11461–11469.

29

Cheng, Y.; Zheng, R. X.; Wu, X. Q.; Xu, K. Q.; Song, P. P.; Wang, Y. J.; Yan, J.; Chen, R.; Li, X. et al. Thylakoid membranes with unique photosystems used to simultaneously produce self-supplying oxygen and singlet oxygen for hypoxic tumor therapy. Adv. Healthc. Mater. 2021, 10, 2001666.

30

Zhang, M.; Wang, W. T.; Wu, F.; Zheng, T.; Ashley, J.; Mohammadniaei, M.; Zhang, Q. C.; Wang, M. Q.; Li, L.; Shen, J. et al. Biodegradable Poly(γ-glutamic acid)@glucose oxidase@carbon dot nanoparticles for simultaneous multimodal imaging and synergetic cancer therapy. Biomaterials 2020, 252, 120106.

31

Wu, M.; Wu, L. J.; Li, J.; Zhang, D.; Lan, S. Y.; Zhang, X. L.; Lin, X. Y.; Liu, G.; Liu, X. L.; Liu, J. F. Self-luminescing theranostic nanoreactors with intraparticle relayed energy transfer for tumor microenvironment activated imaging and photodynamic therapy. Theranostics 2019, 9, 20–33.

32

Théry, C.; Witwer, K. W.; Aikawa, E.; Alcaraz, M. J.; Anderson, J. D.; Andriantsitohaina, R.; Antoniou, A.; Arab, T.; Archer, F.; Atkin-Smith, G. K. et al. Minimal information for studies of extracellular vesicles 2018 (MISEV2018): A position statement of the International Society for Extracellular Vesicles and update of the MISEV2014 guidelines. J Extracell Vesicles 2018, 7, 1535750.

33

Loudya, N.; Mishra, P.; Takahagi, K.; Uehara-Yamaguchi, Y.; Inoue, K.; Bogre, L.; Mochida, K.; López-Juez, E. Cellular and transcriptomic analyses reveal two-staged chloroplast biogenesis underpinning photosynthesis build-up in the wheat leaf. Genome Biol. 2021, 22, 151.

34

Lu, Y. D.; Gan, Q. H.; Iwai, M.; Alboresi, A.; Burlacot, A.; Dautermann, O.; Takahashi, H.; Crisanto, T.; Peltier, G.; Morosinotto, T. et al. Role of an ancient light-harvesting protein of PSI in light absorption and photoprotection. Nat. Commun. 2021, 12, 679.

35

Liu, H. L.; Huang, L. L.; Mao, M. C.; Ding, J. J.; Wu, G. H.; Fan, W. L.; Yang, T. R.; Zhang, M. J.; Huang, Y. Y.; Xie, H. Y. Viral protein-pseudotyped and siRNA-electroporated extracellular vesicles for cancer immunotherapy. Adv. Funct. Mater. 2020, 30, 2006515.

36

Ding, J. J.; Lu, G. H.; Nie, W. D.; Huang, L. L.; Zhang, Y. H.; Fan, W. L.; Wu, G. H.; Liu, H. L.; Xie, H. Y. Self-activatable photo-extracellular vesicle for synergistic trimodal anticancer therapy. Adv. Mater. 2021, 33, 2005562.

37

Carvalho, A. M. S.; Heimfarth, L.; Pereira, E. W. M.; Oliveira, F. S.; Menezes, I. R. A.; Coutinho, H. D. M.; Picot, L.; Antoniolli, A. R.; Quintans, J. S. S.; Quintans-Júnior, L. J. Phytol, a chlorophyll component, produces antihyperalgesic, anti-inflammatory, and antiarthritic effects: Possible NFκB pathway involvement and reduced levels of the proinflammatory cytokines TNF-α and IL-6. J. Nat. Prod. 2020, 83, 1107–1117.

38

Kuramoto, M.; Kawashima, N.; Tazawa, K.; Nara, K.; Fujii, M.; Noda, S.; Hashimoto, K.; Nozaki, K.; Okiji, T. Mineral trioxide aggregate suppresses pro-inflammatory cytokine expression via the calcineurin/nuclear factor of activated T cells/early growth response 2 pathway in lipopolysaccharide-stimulated macrophages. Int. Endod. J. 2020, 53, 1653–1665.

39

Nie, W. D.; Wu, G. H.; Zhang, J. F.; Huang, L. L.; Ding, J. J.; Jiang, A. Q.; Zhang, Y. H.; Liu, Y. H.; Li, J. C.; Pu, K. Y. et al. Responsive exosome nano-bioconjugates for synergistic cancer therapy. Angew. Chem., Int. Ed. 2020, 59, 2018–2022.

40

Xu, X. X.; Gong, X.; Wang, Y. Q.; Li, J.; Wang, H.; Wang, J. Y.; Sha, X. Y.; Li, Y. P.; Zhang, Z. W. Reprogramming tumor associated macrophages toward M1 phenotypes with nanomedicine for anticancer immunotherapy. Adv. Ther. 2020, 3, 1900181.

41

Aminin, D.; Wang, Y. M. Macrophages as a “weapon” in anticancer cellular immunotherapy. Kaohsiung J. Med. Sci. 2021, 37, 749–758.

42

Wang, H. R.; Guo, Y. F.; Wang, C.; Jiang, X.; Liu, H. H.; Yuan, A. H.; Yan, J.; Hu, Y. Q.; Wu, J. H. Light-controlled oxygen production and collection for sustainable photodynamic therapy in tumor hypoxia. Biomaterials 2021, 269, 120621.

43

Semeraro, P.; Chimienti, G.; Altamura, E.; Fini, P.; Rizzi, V.; Cosma, P. Chlorophyll a in cyclodextrin supramolecular complexes as a natural photosensitizer for photodynamic therapy (PDT) applications. Mater. Sci. Eng. :C 2018, 85, 47–56.

44

Yao, C.; Wang, W. X.; Wang, P. Y.; Zhao, M. Y.; Li, X. M.; Zhang, F. Near-infrared upconversion mesoporous cerium oxide hollow biophotocatalyst for concurrent pH-/H2O2-responsive O2-evolving synergetic cancer therapy. Adv. Mater. 2018, 30, 1704833.

45

Liu, J. A.; Liu, Y.; Bu, W. B.; Bu, J. W.; Sun, Y.; Du, J. L.; Shi, J. L. Ultrasensitive nanosensors based on upconversion nanoparticles for selective hypoxia imaging in vivo upon near-infrared excitation. J. Am. Chem. Soc. 2014, 136, 9701–9709.

46

Zhao, M.; Leggett, E.; Bourke, S.; Poursanidou, S.; Carter-Searjeant, S.; Po, S.; Do Carmo, M. P.; Dailey, L. A.; Manning, P.; Ryan, S. G. et al. Theranostic near-infrared-active conjugated polymer nanoparticles. ACS Nano 2021, 15, 8790–8802.

47

Chen, H. C.; Tian, J. W.; He, W. J.; Guo, Z. J. H2O2-activatable and O2-evolving nanoparticles for highly efficient and selective photodynamic therapy against hypoxic tumor cells. J. Am. Chem. Soc. 2015, 137, 1539–1547.

48

Movahedi, K.; Laoui, D.; Gysemans, C.; Baeten, M.; Stangé, G.; Van Den Bossche, J.; Mack, M.; Pipeleers, D.; Veld, P. I.; De Baetselier, P. et al. Different tumor microenvironments contain functionally distinct subsets of macrophages derived from Ly6C(high) monocytes. Cancer Res. 2010, 70, 5728–5739.

49

Frank, A. C.; Ebersberger, S.; Fink, A. F.; Lampe, S.; Weigert, A.; Schmid, T.; Ebersberger, I.; Syed, S. N.; Brüne, B. Apoptotic tumor cell-derived microRNA-375 uses CD36 to alter the tumor-associated macrophage phenotype. Nat. Commun. 2019, 10, 1135.

Nano Research
Pages 4233-4242
Cite this article:
Liu H, Lei Y, Nie W, et al. Immunomodulatory hybrid bio-nanovesicle for self-promoted photodynamic therapy. Nano Research, 2022, 15(5): 4233-4242. https://doi.org/10.1007/s12274-021-4050-3
Topics:

959

Views

10

Crossref

10

Web of Science

9

Scopus

0

CSCD

Altmetrics

Received: 15 October 2021
Revised: 04 December 2021
Accepted: 05 December 2021
Published: 02 February 2022
© Tsinghua University Press and Springer-Verlag GmbH Germany, part of Springer Nature 2021
Return