AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article

Quantitatively investigating the self-attraction of nanowires

Junfeng Cui1,2Zhenyu Zhang1 ( )Le Lv2Kazuhito Nishimura3Guoxin Chen2( )Nan Jiang2( )
Key Laboratory for Precision and Non-Traditional Machining Technology of Ministry of Education, Dalian University of Technology, Dalian 116024, China
Key Laboratory of Marine Materials and Related Technologies, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, China
Advanced Nano-Processing Engineering Lab, Mechanical Engineering, Kogakuin University, Tokyo 192–0015, Japan
Show Author Information

Graphical Abstract

A versatile method of in situ investigating the self-attraction of nanowires (NWs) was developed. The attractive force between two NWs and their distance were determined quantitatively during self-attraction, and the controversy about the driving force for the self-attraction of NWs was clarified.

Abstract

The self-attraction of nanowires (NWs) would lead to NWs bunching up together when fabricated in high density and the short circuit of NW-based devices during service. However, the underlying mechanism of the self-attraction of NWs remains debatable due to the lack of in situ characterization of the attraction. In this study, a versatile method of in situ investigating the self-attraction of NWs was developed. The attractive force between two NWs and their distance can be determined quantitatively in the process of attraction under an optical microscope, eliminating the influence of electron beam in electron microscopes. With this approach, the self-attraction of SiC NWs was investigated and a two-stage mechanism for the self-attraction was proposed. The electrostatic force between two individual SiC NWs increased as their distance decreased, and acted as the initial driving force for the attraction of NWs. SiC NWs remained in contact under van der Waals force until they separated when external force exceeded van der Waals force. The charge density and the Hamaker constant of SiC NWs were determined to be 1.9 × 10−4 C·m−2 and 1.56 × 10−19 J, which played an important role in the attraction of NWs. The results shed light on the mechanism of self-attraction among NWs and provide new insights into fabricating high-quality NWs and developing high-performance NW-based devices.

Electronic Supplementary Material

Video
12274_4051_ESM1.avi
12274_4051_ESM2.avi

References

1

Lan, C. Y.; Yip, S. P.; Kang, X. L.; Meng, Y.; Bu, X. M.; Ho, J. C. Gate bias stress instability and hysteresis characteristics of InAs nanowire field-effect transistors. ACS Appl. Mater. Interfaces 2020, 12, 56330–56337.

2

Xiang, J.; Lu, W.; Hu, Y. J.; Wu, Y.; Yan, H.; Lieber, C. M. Ge/Si Nanowire heterostructures as high-performance field-effect transistors. Nature 2006, 441, 489–493.

3

Yamada, T.; Hayamizu, Y.; Yamamoto, Y.; Yomogida, Y.; Izadi-Najafabadi, A.; Futaba, D. N.; Hata, K. A stretchable carbon nanotube strain sensor for human-motion detection. Nat. Nanotechnol. 2011, 6, 296–301.

4

Liu, G. S.; Yang, F.; Xu, J. Z.; Kong, Y. F.; Zheng, H. J.; Chen, L.; Chen, Y. F.; Wu, M. X.; Yang, B. R.; Luo, Y. H. et al. Ultrasonically patterning silver nanowire-acrylate composite for highly sensitive and transparent strain sensors based on parallel cracks. ACS Appl. Mater. Interfaces 2020, 12, 47729–47738.

5

Yong, C. K.; Joyce, H. J.; Lloyd-Hughes, J.; Gao, Q.; Tan, H. H.; Jagadish, C.; Johnston, M. B.; Herz, L. M. Ultrafast dynamics of exciton formation in semiconductor nanowires. Small 2012, 8, 1725–1731.

6

Wang, X. D.; Summers, C. J.; Wang, Z. L. Self-attraction among aligned Au/ZnO nanorods under electron beam. Appl. Phys. Lett. 2005, 86, 013111.

7

Dai, X.; Dayeh, S. A.; Veeramuthu, V.; Larrue, A.; Wang, J.; Su, H. B.; Soci, C. Tailoring the vapor-liquid-solid growth toward the self-assembly of GaAs nanowire junctions. Nano Lett. 2011, 11, 4947–4952.

8

Liu, J. Z.; Lee, S.; Lee, K.; Ahn, Y. H.; Park, J. Y.; Koh, K. H. Bending and bundling of metal-free vertically aligned ZnO nanowires due to electrostatic interaction. Nanotechnology 2008, 19, 185607.

9

Tang, Y.; Zhao, D. X.; Chen, J.; Wanderka, N.; Shen, D. Z.; Fang, F.; Guo, Z.; Zhang, J. Y.; Wang, X. H. Capillary-driven assembly of ZnO nanowire arrays into micropatterns. Mater. Chem. Phys. 2010, 121, 541–548.

10

Khorasaninejad, M.; Abedzadeh, N.; Jawanda, A. S.; Nixon, O.; Anantram, M. P.; Saini, S. S. Bunching characteristics of silicon nanowire arrays. J. Appl. Phys. 2012, 111, 044328.

11

Kaganer, V. M.; Fernández-Garrido, S.; Dogan, P.; Sabelfeld, K. K.; Brandt, O. Nucleation, growth, and bundling of GaN nanowires in molecular beam epitaxy: Disentangling the origin of nanowire coalescence. Nano Lett. 2016, 16, 3717–3725.

12

Togonal, A. S.; He, L. N.; Cabarrocas, P. R. I.; Rusli. Effect of wettability on the agglomeration of silicon nanowire arrays fabricated by metal-assisted chemical etching. Langmuir 2014, 30, 10290–10298.

13

Chang, J. Y.; Min, B. K.; Kim, J.; Lee, S. J.; Lin, L. W. Electrostatically actuated carbon nanowire nanotweezers. Smart Mater. Struct. 2009, 18, 065017.

14

Feng, X. L.; Matheny, M. H.; Zorman, C. A.; Mehregany, M.; Roukes, M. L. Low voltage nanoelectromechanical switches based on silicon carbide nanowires. Nano Lett. 2010, 10, 2891–2896.

15

Andzane, J.; Prikulis, J.; Meija, R.; Kosmaca, J.; Biswas, S.; Holmes, J. D.; Erts, D. Application of Ge nanowire for two-input bistable nanoelectromechanical switch. Mater. Sci. 2013, 19, 254–257.

16

Bitzer, L. A.; Speich, C.; Schäfer, D.; Erni, D.; Prost, W.; Tegude, F. J.; Benson, N.; Schmechel, R. Modelling of electron beam induced nanowire attraction. J. Appl. Phys. 2016, 119, 145101.

17

Chen, B.; Gao, Q.; Chang, L.; Wang, Y. B.; Chen, Z. B.; Liao, X. Z.; Tan, H. H.; Zou, J.; Ringer, S. P.; Jagadish, C. Attraction of semiconductor nanowires: An in situ observation. Acta Mater. 2013, 61, 7166–7172.

18

Russo, C. J.; Henderson, R. Charge accumulation in electron cryomicroscopy. Ultramicroscopy 2018, 187, 43–49.

19

Ma, J. W.; Lee, W. J.; Bae, J. M.; Jeong, K. S.; Oh, S. H.; Kim, J. H.; Kim, S. H.; Seo, J. H.; Ahn, J. P.; Kim, H. et al. Carrier mobility enhancement of tensile strained Si and SiGe nanowires via surface defect engineering. Nano Lett. 2015, 15, 7204–7210.

20

Chisholm, C.; Bei, H.; Lowry, M. B.; Oh, J.; Syed Asif, S. A.; Warren, O. L.; Shan, Z. W.; George, E. P.; Minor, A. M. Dislocation starvation and exhaustion hardening in Mo Alloy Nanofibers. Acta Mater. 2012, 60, 2258–2264.

21

Lan, Y. W.; Chang, W. H.; Chang, Y. C.; Chang, C. S.; Chen, C. D. Effect of focused ion beam deposition induced contamination on the transport properties of nano devices. Nanotechnology 2015, 26, 055705.

22

Wang, Y. C.; Zhang, W.; Wang, L. Y.; Zhuang, Z.; Ma, E.; Li, J.; Shan, Z. W. In situ TEM study of deformation-induced crystalline-to-amorphous transition in silicon. NPG Asia Mater. 2016, 8, e291.

23

Tham, D.; Nam, C. Y.; Fischer, J. E. Microstructure and composition of focused-ion-beam-deposited Pt contacts to GaN nanowires. Adv. Mater. 2006, 18, 290–294.

24

Cheng, G. M.; Chang, T. H.; Qin, Q. Q.; Huang, H. C.; Zhu, Y. Mechanical properties of silicon carbide nanowires: Effect of size-dependent defect density. Nano Lett. 2014, 14, 754–758.

25

Cui, J. F.; Zhang, Z. Y.; Jiang, H. Y.; Liu, D. D.; Zou, L.; Guo, X. G.; Lu, Y.; Parkin, I. P.; Guo, D. M. Ultrahigh recovery of fracture strength on mismatched fractured amorphous surfaces of silicon carbide. ACS Nano 2019, 13, 7483–7492.

26

Cui, J. F.; Zhang, Z. Y.; Liu, D. D.; Zhang, D. L.; Hu, W.; Zou, L.; Lu, Y.; Zhang, C.; Lu, H. H.; Tang, C. et al. Unprecedented piezoresistance coefficient in strained silicon carbide. Nano Lett. 2019, 19, 6569–6576.

27

Hoffmann, S.; Utke, I.; Moser, B.; Michler, J.; Christiansen, S. H.; Schmidt, V.; Senz, S. Werner, P; Gösele, U; Ballif, C. Measurement of the bending strength of vapor-liquid-solid grown silicon nanowires. Nano Lett. 2006, 6, 622–625.

28

Wang, Y. B.; Wang, L. F.; Joyce, H. J.; Gao, Q.; Liao, X. Z.; Mai, Y. W.; Tan, H. H.; Zou, J.; Ringer, S. P.; Gao, H. J. et al. Super deformability and Young's modulus of GaAs nanowires. Adv. Mater. 2011, 23, 1356–1360.

29

Bechelany, M.; Brioude, A.; Cornu, D.; Ferro, G.; Miele, P. A Raman spectroscopy study of individual SiC nanowires. Adv. Funct Mater. 2007, 17, 939–943.

30

Xu, F.; Qin, Q. Q.; Mishra, A.; Gu, Y.; Zhu, Y. Mechanical properties of ZnO nanowires under different loading modes. Nano Res. 2010, 3, 271–280.

31

Wang, Y. C.; Ding, J.; Fan, Z.; Tian, L.; Li, M.; Lu, H. H.; Zhang, Y. Q.; Ma, E.; Li, J.; Shan, Z. W. Tension-compression asymmetry in amorphous silicon. Nat. Mater. 2021, 20, 1371–1377.

32

Kim, J. Y.; Jang, D. C.; Greer, J. R. Crystallographic orientation and size dependence of tension-compression asymmetry in molybdenum nano-pillars. Int. J. Plast. 2012, 28, 46–52.

33

Wong, E. W.; Sheehan, P. E.; Lieber, C. M. Nanobeam mechanics: Elasticity, strength, and toughness of nanorods and nanotubes. Science 1997, 277, 1971–1975.

34

Jackson, K. M.; Dunning, J.; Zorman, C. A.; Mehregany, M.; Sharpe, W. N. Mechanical properties of epitaxial 3C silicon carbide thin films. J. Microelectromechan. Syst. 2005, 14, 664–672.

35

Moronuki, N.; Kojima, M.; Kakuta, A. Single-crystal SiC thin-film produced by epitaxial growth and its application to micro-mechanical devices. Thin Solid Films 2008, 516, 5344–5348.

36

Agrawal, R.; Peng, B.; Gdoutos, E. E.; Espinosa, H. D. Elasticity size effects in ZnO nanowires-a combined experimental-computational approach. Nano Lett. 2008, 8, 3668–3674.

37

Ni, H.; Li, X. D. Young’s modulus of ZnO nanobelts measured using atomic force microscopy and nanoindentation techniques. Nanotechnology 2006, 17, 3591–3597.

38

Song, J. H.; Wang, X. D.; Riedo, E.; Wang, Z. L. Elastic property of vertically aligned nanowires. Nano Lett. 2005, 5, 1954–1958.

39

Hoffmann, S.; Östlund, F.; Michler, J.; Fan, H. J.; Zacharias, M.; Christiansen, S. H.; Ballif, C. Fracture strength and Young’s modulus of ZnO nanowires. Nanotechnology 2007, 18, 205503.

40

Hu, Y. W.; Li, J.; Tian, J. F.; Xuan, Y.; Deng, B. W.; McNear, K. L.; Lim, D. G.; Chen, Y.; Yang, C.; Cheng, G. J. Parallel nanoshaping of brittle semiconductor nanowires for strained electronics. Nano Lett. 2016, 16, 7536–7544.

41

Wang, J.; Lu, C. S.; Wang, Q.; Xiao, P.; Ke, F. J.; Bai, Y. L.; Shen, Y. G.; Liao, X. Z.; Gao, H. J. Influence of microstructures on mechanical behaviours of SiC nanowires: A molecular dynamics study. Nanotechnology 2012, 23, 025703.

42

Dai, S.; Zhao, J.; He, M. R.; Wang, X. G.; Wan, J. C.; Shan, Z. W.; Zhu, J. Elastic properties of GaN nanowires: Revealing the influence of planar defects on Young's modulus at nanoscale. Nano Lett. 2015, 15, 8–15.

43

Loudet, J. C.; Alsayed, A. M.; Zhang, J.; Yodh, A. G. Capillary interactions between anisotropic colloidal particles. Phys. Rev. Lett. 2005, 94, 018301.

44

Wang, H. B.; Chen, W.; Chen, B.; Jiao, Y.; Wang, Y.; Wang, X. P.; Du, X. C.; Hu, Y.; Lv, X. X.; Zeng, Y. S. et al. Interfacial capillary-force-driven self-assembly of monolayer colloidal crystals for supersensitive plasmonic sensors. Small 2020, 16, 1905480.

45
Israelachvili, J. N. Intermolecular and Surface Forces, 3rd ed.; Elsevier: Oxford, 2011.https://doi.org/10.1016/B978-0-12-391927-4.10001-5
46

Min, Y. N. J.; Akbulut, M.; Kristiansen, K.; Golan, Y.; Israelachvili, J. The role of interparticle and external forces in nanoparticle assembly. Nat. Mater. 2008, 7, 527–538.

47

Blinov, L. M.; Sonin, A. A. Anisotropy and effective range of the van der Waals forces of the solid crystalline substrates investigated by means of liquid crystals. Langmuir 1987, 3, 660–661.

48

Mundoor, H.; Senyuk, B.; Smalyukh, I. I. Triclinic nematic colloidal crystals from competing elastic and electrostatic interactions. Science 2016, 352, 69–73.

49

Brandino, G. P.; Cicero, G.; Bonferroni, B.; Ferretti, A.; Calzolari, A.; Bertoni, C. M.; Catellani, A. Polarization properties of (11¯00) and (112¯0) SiC surfaces from first principles. Phys. Rev. B 2007, 76, 085322.

50

Zhang, Z. Y.; Cui, J. F.; Wang, B.; Jiang, H. Y.; Chen, G. X.; Yu, J. H.; Lin, C. T.; Tang, C.; Hartmaier, A.; Zhang, J. J. et al. In situ TEM observation of rebonding on fractured silicon carbide. Nanoscale 2018, 76, 6261–6269.

51

Wang, S. L.; Wu, Y. Q.; Lin, L. W.; He, Y. H.; Huang, H. Fracture strain of SiC nanowires and direct evidence of electron-beam induced amorphisation in the strained nanowires. Small 2015, 11, 1672–1676.

52

Sedighi, M.; Svetovoy, V. B.; Broer, W. H.; Palasantzas, G. Casimir forces from conductive silicon carbide surfaces. Phys. Rev. B 2014, 89, 195440.

Nano Research
Pages 3729-3736
Cite this article:
Cui J, Zhang Z, Lv L, et al. Quantitatively investigating the self-attraction of nanowires. Nano Research, 2022, 15(4): 3729-3736. https://doi.org/10.1007/s12274-021-4051-2
Topics:

1011

Views

3

Crossref

3

Web of Science

3

Scopus

0

CSCD

Altmetrics

Published: 27 December 2021
© Tsinghua University Press and Springer-Verlag GmbH Germany, part of Springer Nature 2021
Return