Discover the SciOpen Platform and Achieve Your Research Goals with Ease.
Search articles, authors, keywords, DOl and etc.
In pursuit of miniaturization in the semiconductor industry, two-dimensional (2D) materials are used to fabricate new electronic devices. The topological insulator (TI) material bismuth telluride (Bi2Te3), as an emerging 2D material, has potential applications in electronic and spintronic devices due to its unique electrical properties. It is well known that the surface-to-volume ratio increases as the thickness of the material decreases, resulting in a more prominent edge effect. Therefore, for a single-layer Bi2Te3, the atomic structure of the edge plays a crucial role in its electrical properties. Here, combining first-principles calculations and in situ transmission electron microscopy (TEM) experimental studies, we report that there are two types of edge structures in single-layer Bi2Te3: semiconducting flat edges and metallic zigzag edges. The dynamic evolution process of the edge structure with atomic resolution shows that the proportions of these two edges change with continuous electron beam irradiation. Our findings demonstrate the viability to use electron beam as an effective tool to precisely tailor the edge of Bi2Te3 with desired properties, which paves the way for implementation of single-layer Bi2Te3 in electronics and spintronics.
Waldrop, M. M. The semiconductor industry will soon abandon its pursuit of moore's law. Now things could get a lot more interesting. Nature 2016, 530, 144–147.
Dresselhaus, M. S. A revolution of nanoscale dimensions. Nat. Rev. Mater. 2016, 1, 15017.
Theis, T. N.; Solomon, P. M. It's time to reinvent the transistor!. Science 2010, 327, 1600–1601.
Chhowalla, M.; Jena, D.; Zhang, H. Two-dimensional semiconductors for transistors. Nat. Rev. Mater. 2016, 1, 16052.
Novoselov, K. S.; Geim, A. K.; Morozov, S. V.; Jiang, D.; Zhang, Y.; Dubonos, S. V.; Grigorieva, I. V.; Firsov, A. A. Electric field effect in atomically thin carbon films. Science 2004, 306, 666–669.
Xu, M.; Liang, T.; Shi, M.; Chen, H. Graphene-like two-dimensional materials. Chem. Rev. 2013, 113, 3766–98.
Tang, Q.; Zhou, Z. Graphene-analogous low-dimensional materials. Prog. Mater. Sci. 2013, 58, 1244–1315.
Butler, S. Z.; Hollen, S. M.; Cao, L.; Cui, Y.; Gupta, J. A.; Gutierrez, H. R.; Heinz, T. F.; Hong, S. S.; Huang, J.; Ismach, A. F. et al. Progress, challenges, and opportunities in two-dimensional materials beyond graphene. ACS Nano 2013, 7, 2898–2926.
Wang, F.; Wang, Z. X.; Jiang, C.; Yin, L.; Cheng, R. Q.; Zhan, X. Y.; Xu, K.; Wang, F. M.; Zhang, Y.; He, J. Progress on electronic and optoelectronic devices of 2D layered semiconducting materials. Small 2017, 13.
Wang, F.; Wang, Z.; Wang, Q.; Wang, F.; Yin, L.; Xu, K.; Huang, Y.; He, J. Synthesis, properties and applications of 2D non-graphene materials. Nanotechnology 2015, 26, 292001.
Fu, L.; Kane, C. L.; Mele, E. J. Topological insulators in three dimensions. Phys. Rev. Lett. 2007, 98, 106803.
Zhang, H.; Liu, C.-X.; Qi, X.-L.; Dai, X.; Fang, Z.; Zhang, S.-C. Topological insulators in Bi2Se3, Bi2Te3 and Sb2Te3 with a single Dirac cone on the surface. Nat. Phys. 2009, 5, 438–442.
Qi, X.-L.; Zhang, S.-C. The quantum spin Hall effect and topological insulators. Phys. Today 2010, 63, 33–38.
Hasan, M. Z.; Kane, C. L. Colloquium: Topological insulators. Rev. Mod. Phys. 2010, 82, 3045–3067.
Chen, Y. L.; Analytis, J. G.; Chu, J. H.; Liu, Z. K.; Mo, S. K.; Qi, X. L.; Zhang, H. J.; Lu, D. H.; Dai, X.; Fang, Z. et al. Experimental realization of a three-dimensional topological insulator, Bi2Te3. Science 2009, 325, 178–181.
Gutierrez, H. R.; Perea-Lopez, N.; Elias, A. L.; Berkdemir, A.; Wang, B.; Lv, R.; Lopez-Urias, F.; Crespi, V. H.; Terrones, H.; Terrones, M. Extraordinary room-temperature photoluminescence in triangular WS2 monolayers. Nano Lett. 2013, 13, 3447–3454.
Zhang, Y.; He, K.; Chang, C.-Z.; Song, C.-L.; Wang, L.-L.; Chen, X.; Jia, J.-F.; Fang, Z.; Dai, X.; Shan, W.-Y. et al. Crossover of the three-dimensional topological insulator Bi2Se3 to the two-dimensional limit. Nat. Phys. 2010, 6, 584–588.
Roushan, P.; Seo, J.; Parker, C. V.; Hor, Y. S.; Hsieh, D.; Qian, D.; Richardella, A.; Hasan, M. Z.; Cava, R. J.; Yazdani, A. Topological surface states protected from backscattering by chiral spin texture. Nature 2009, 460, 1106–U64.
Lu, Y.; Xu, W.; Zeng, M.; Yao, G.; Shen, L.; Yang, M.; Luo, Z.; Pan, F.; Wu, K.; Das, T. et al. Topological properties determined by atomic buckling in self-assembled ultrathin Bi(110). Nano Lett. 2015, 15, 80–7.
Kong, D.; Cui, Y. Opportunities in chemistry and materials science for topological insulators and their nanostructures. Nat. Chem. 2011, 3, 845–849.
Xiu, F.; He, L.; Wang, Y.; Cheng, L.; Chang, L.-T.; Lang, M.; Huang, G.; Kou, X.; Zhou, Y.; Jiang, X. et al. Manipulating surface states in topological insulator nanoribbons. Nat. Nanotechnol. 2011, 6, 216–221.
Sacepe, B.; Oostinga, J. B.; Li, J.; Ubaldini, A.; Couto, N. J.; Giannini, E.; Morpurgo, A. F. Gate-tuned normal and superconducting transport at the surface of a topological insulator. Nat. Commun. 2011, 2, 575.
Moore, J. E. The birth of topological insulators. Nature 2010, 464, 194–198.
Peng, H.; Lai, K.; Kong, D.; Meister, S.; Chen, Y.; Qi, X.-L.; Zhang, S.-C.; Shen, Z.-X.; Cui, Y. Aharonov-Bohm interference in topological insulator nanoribbons. Nat. Mater. 2010, 9, 225–229.
Zhao, K.; Wang, Y.; Xin, C.; Sui, Y.; Wang, X.; Wang, Y.; Liu, Z.; Li, B. Strain-engineered atomic-layer movements and valence-band maximum shifts in a two-dimensional single quintuple film of Bi2Te3. Phys. Status Solidi B 2017, 254, 1600362.
Li, X.; Ren, H.; Luo, Y. Electronic structure of bismuth telluride quasi-two-dimensional crystal: A first principles study. Appl. Phys. Lett. 2011, 98.
Shen, Y. T.; Xu, T.; Tan, X. D.; He, L. B.; Yin, K. B.; Wan, N.; Sun, L. T. In situ repair of 2D chalcogenides under electron beam irradiation. Adv. Mater. 2018, 30, 1705954.
Shen, Y. T.; Xu, T.; Tan, X. D.; Sun, J.; He, L. B.; Yin, K. B.; Zhou, Y. L.; Banhart, F.; Sun, L. T. Electron beam etching of CaO crystals observed atom by atom. Nano Lett. 2017, 17, 5119–5125.
Qi, X.-L.; Zhang, S.-C. Topological insulators and superconductors. Rev. Mod. Phys. 2011, 83, 1057–1110.
Brandbyge, M.; Mozos, J. L.; Ordejon, P.; Taylor, J.; Stokbro, K. Density-functional method for nonequilibrium electron transport. Phys. Rev. B 2002, 65.