AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article

Tailoring Bi2Te3 edge with semiconductor and metal properties under electron beam irradiation

Yuting Shen1,2Hailin Yu1( )Tao Xu2Qiubo Zhang2,3Kuibo Yin2Shan Cong1Yushen Liu1Litao Sun2( )
School of Electronic and Information Engineering, Changshu Institute of Technology, Changshu 215500, China
SEU–FEI Nano–Pico Center, Key Lab of MEMS of Ministry of Education, Collaborative Innovation Center for Micro/Nano Fabrication, Device and System, Southeast University, Nanjing 210096, China
Materials Science Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
Show Author Information

Graphical Abstract

Electron beam irradiation can be utilized to tailor single-layer Bi2Te3 with semiconducting flat edges and metallic zigzag edges with atomic resolution.

Abstract

In pursuit of miniaturization in the semiconductor industry, two-dimensional (2D) materials are used to fabricate new electronic devices. The topological insulator (TI) material bismuth telluride (Bi2Te3), as an emerging 2D material, has potential applications in electronic and spintronic devices due to its unique electrical properties. It is well known that the surface-to-volume ratio increases as the thickness of the material decreases, resulting in a more prominent edge effect. Therefore, for a single-layer Bi2Te3, the atomic structure of the edge plays a crucial role in its electrical properties. Here, combining first-principles calculations and in situ transmission electron microscopy (TEM) experimental studies, we report that there are two types of edge structures in single-layer Bi2Te3: semiconducting flat edges and metallic zigzag edges. The dynamic evolution process of the edge structure with atomic resolution shows that the proportions of these two edges change with continuous electron beam irradiation. Our findings demonstrate the viability to use electron beam as an effective tool to precisely tailor the edge of Bi2Te3 with desired properties, which paves the way for implementation of single-layer Bi2Te3 in electronics and spintronics.

Electronic Supplementary Material

Download File(s)
12274_2021_4053_MOESM1_ESM.pdf (5.9 MB)

References

1

Waldrop, M. M. The semiconductor industry will soon abandon its pursuit of moore's law. Now things could get a lot more interesting. Nature 2016, 530, 144–147.

2

Dresselhaus, M. S. A revolution of nanoscale dimensions. Nat. Rev. Mater. 2016, 1, 15017.

3

Theis, T. N.; Solomon, P. M. It's time to reinvent the transistor!. Science 2010, 327, 1600–1601.

4

Chhowalla, M.; Jena, D.; Zhang, H. Two-dimensional semiconductors for transistors. Nat. Rev. Mater. 2016, 1, 16052.

5
Yan, F. G.; Wei, Z. M.; Wei, X.; Lv, Q. S.; Zhu, W. K.; Wang, K. Y. Toward high-performance photodetectors based on 2D materials: Strategy on methods. Small Methods 2018, 2.
6

Novoselov, K. S.; Geim, A. K.; Morozov, S. V.; Jiang, D.; Zhang, Y.; Dubonos, S. V.; Grigorieva, I. V.; Firsov, A. A. Electric field effect in atomically thin carbon films. Science 2004, 306, 666–669.

7

Xu, M.; Liang, T.; Shi, M.; Chen, H. Graphene-like two-dimensional materials. Chem. Rev. 2013, 113, 3766–98.

8

Tang, Q.; Zhou, Z. Graphene-analogous low-dimensional materials. Prog. Mater. Sci. 2013, 58, 1244–1315.

9

Butler, S. Z.; Hollen, S. M.; Cao, L.; Cui, Y.; Gupta, J. A.; Gutierrez, H. R.; Heinz, T. F.; Hong, S. S.; Huang, J.; Ismach, A. F. et al. Progress, challenges, and opportunities in two-dimensional materials beyond graphene. ACS Nano 2013, 7, 2898–2926.

10

Wang, F.; Wang, Z. X.; Jiang, C.; Yin, L.; Cheng, R. Q.; Zhan, X. Y.; Xu, K.; Wang, F. M.; Zhang, Y.; He, J. Progress on electronic and optoelectronic devices of 2D layered semiconducting materials. Small 2017, 13.

11

Wang, F.; Wang, Z.; Wang, Q.; Wang, F.; Yin, L.; Xu, K.; Huang, Y.; He, J. Synthesis, properties and applications of 2D non-graphene materials. Nanotechnology 2015, 26, 292001.

12
Gao, F.; Yang, H. H.; Hu, P. A. Interfacial engineering for fabricating high-performance field-effect transistors based on 2D materials. Small Methods 2018, 2.
13

Fu, L.; Kane, C. L.; Mele, E. J. Topological insulators in three dimensions. Phys. Rev. Lett. 2007, 98, 106803.

14

Zhang, H.; Liu, C.-X.; Qi, X.-L.; Dai, X.; Fang, Z.; Zhang, S.-C. Topological insulators in Bi2Se3, Bi2Te3 and Sb2Te3 with a single Dirac cone on the surface. Nat. Phys. 2009, 5, 438–442.

15

Qi, X.-L.; Zhang, S.-C. The quantum spin Hall effect and topological insulators. Phys. Today 2010, 63, 33–38.

16

Hasan, M. Z.; Kane, C. L. Colloquium: Topological insulators. Rev. Mod. Phys. 2010, 82, 3045–3067.

17

Chen, Y. L.; Analytis, J. G.; Chu, J. H.; Liu, Z. K.; Mo, S. K.; Qi, X. L.; Zhang, H. J.; Lu, D. H.; Dai, X.; Fang, Z. et al. Experimental realization of a three-dimensional topological insulator, Bi2Te3. Science 2009, 325, 178–181.

18
Yazyev, O. V.; Moore, J. E.; Louie, S. G. Spin polarization and transport of surface states in the topological insulators Bi2Se3 and Bi2Te3 from first principles. Phys. Rev. Lett. 2010, 105.
19

Gutierrez, H. R.; Perea-Lopez, N.; Elias, A. L.; Berkdemir, A.; Wang, B.; Lv, R.; Lopez-Urias, F.; Crespi, V. H.; Terrones, H.; Terrones, M. Extraordinary room-temperature photoluminescence in triangular WS2 monolayers. Nano Lett. 2013, 13, 3447–3454.

20
Mak, K. F.; Lee, C.; Hone, J.; Shan, J.; Heinz, T. F. Atomically thin MoS2: A new direct-gap semiconductor. Phys. Rev. Lett. 2010, 105.
21

Zhang, Y.; He, K.; Chang, C.-Z.; Song, C.-L.; Wang, L.-L.; Chen, X.; Jia, J.-F.; Fang, Z.; Dai, X.; Shan, W.-Y. et al. Crossover of the three-dimensional topological insulator Bi2Se3 to the two-dimensional limit. Nat. Phys. 2010, 6, 584–588.

22
Liu, C.-X.; Zhang, H.; Yan, B.; Qi, X.-L.; Frauenheim, T.; Dai, X.; Fang, Z.; Zhang, S.-C. Oscillatory crossover from two-dimensional to three-dimensional topological insulators. Phys. Rev. B 2010, 81.
23
Lu, H.-Z.; Shan, W.-Y.; Yao, W.; Niu, Q.; Shen, S.-Q. Massive Dirac fermions and spin physics in an ultrathin film of topological insulator. Phys. Rev. B 2010, 81.
24

Roushan, P.; Seo, J.; Parker, C. V.; Hor, Y. S.; Hsieh, D.; Qian, D.; Richardella, A.; Hasan, M. Z.; Cava, R. J.; Yazdani, A. Topological surface states protected from backscattering by chiral spin texture. Nature 2009, 460, 1106–U64.

25

Lu, Y.; Xu, W.; Zeng, M.; Yao, G.; Shen, L.; Yang, M.; Luo, Z.; Pan, F.; Wu, K.; Das, T. et al. Topological properties determined by atomic buckling in self-assembled ultrathin Bi(110). Nano Lett. 2015, 15, 80–7.

26

Kong, D.; Cui, Y. Opportunities in chemistry and materials science for topological insulators and their nanostructures. Nat. Chem. 2011, 3, 845–849.

27

Xiu, F.; He, L.; Wang, Y.; Cheng, L.; Chang, L.-T.; Lang, M.; Huang, G.; Kou, X.; Zhou, Y.; Jiang, X. et al. Manipulating surface states in topological insulator nanoribbons. Nat. Nanotechnol. 2011, 6, 216–221.

28

Sacepe, B.; Oostinga, J. B.; Li, J.; Ubaldini, A.; Couto, N. J.; Giannini, E.; Morpurgo, A. F. Gate-tuned normal and superconducting transport at the surface of a topological insulator. Nat. Commun. 2011, 2, 575.

29

Moore, J. E. The birth of topological insulators. Nature 2010, 464, 194–198.

30

Peng, H.; Lai, K.; Kong, D.; Meister, S.; Chen, Y.; Qi, X.-L.; Zhang, S.-C.; Shen, Z.-X.; Cui, Y. Aharonov-Bohm interference in topological insulator nanoribbons. Nat. Mater. 2010, 9, 225–229.

31

Zhao, K.; Wang, Y.; Xin, C.; Sui, Y.; Wang, X.; Wang, Y.; Liu, Z.; Li, B. Strain-engineered atomic-layer movements and valence-band maximum shifts in a two-dimensional single quintuple film of Bi2Te3. Phys. Status Solidi B 2017, 254, 1600362.

32

Li, X.; Ren, H.; Luo, Y. Electronic structure of bismuth telluride quasi-two-dimensional crystal: A first principles study. Appl. Phys. Lett. 2011, 98.

33

Shen, Y. T.; Xu, T.; Tan, X. D.; He, L. B.; Yin, K. B.; Wan, N.; Sun, L. T. In situ repair of 2D chalcogenides under electron beam irradiation. Adv. Mater. 2018, 30, 1705954.

34

Shen, Y. T.; Xu, T.; Tan, X. D.; Sun, J.; He, L. B.; Yin, K. B.; Zhou, Y. L.; Banhart, F.; Sun, L. T. Electron beam etching of CaO crystals observed atom by atom. Nano Lett. 2017, 17, 5119–5125.

35

Qi, X.-L.; Zhang, S.-C. Topological insulators and superconductors. Rev. Mod. Phys. 2011, 83, 1057–1110.

36
Kirkland, E. J. Advanced computing in electron microscopy; Springer Science and Business Media: New York, 2010.
37

Brandbyge, M.; Mozos, J. L.; Ordejon, P.; Taylor, J.; Stokbro, K. Density-functional method for nonequilibrium electron transport. Phys. Rev. B 2002, 65.

Nano Research
Pages 4710-4716
Cite this article:
Shen Y, Yu H, Xu T, et al. Tailoring Bi2Te3 edge with semiconductor and metal properties under electron beam irradiation. Nano Research, 2022, 15(5): 4710-4716. https://doi.org/10.1007/s12274-021-4053-0
Topics:

2581

Views

13

Crossref

10

Web of Science

13

Scopus

1

CSCD

Altmetrics

Received: 31 October 2021
Revised: 02 December 2021
Accepted: 06 December 2021
Published: 08 February 2022
© Tsinghua University Press and Springer-Verlag GmbH Germany, part of Springer Nature 2021
Return