AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article

An implantable antibacterial drug-carrier: Mesoporous silica coatings with size-tunable vertical mesochannels

Mengli Liu1,§Fang Huang2,§Chin-Te Hung1Liwei Wang1Wei Bi3( )Yupu Liu1Wei Li1( )
Department of Chemistry, Laboratory of Advanced Materials, Shanghai Key Lab of Molecular Catalysis and Innovative Materials, and State Key Laboratory of Molecular Engineering of Polymers, Fudan University, Shanghai 200433, China
Zhongshan Hospital, Fudan University (Xiamen Branch), Xiamen 361015, China
Department of Stomatology, Zhongshan Hospital, Fudan University, Shanghai 200032, China

§ Mengli Liu and Fang Huang contributed equally to this work.

Show Author Information

Graphical Abstract

Mesoporous silica coatings (MSCs) with vertical and size-tunable mesochannels are fabricated on a variety of metal substrates via a nano-interfacial oriented assembly approach. Importantly, the MSCs on titanium substrates (Ti@MSCs) exhibit excellent drug adsorption, sustained release, and antibacterial performances.

Abstract

Implant-associated bacterial infection remains one of the most common and serious complications. Therefore, a surface boasting long-term antibacterial ability for implants is highly desirable. Herein, mesoporous silica coatings (MSCs) with vertical and size-tunable mesochannels are fabricated on a variety of metal substrates via a nano-interfacial oriented assembly approach. Such facile and versatile approach relies on the vertically oriented fusion of composite micelles on the nanoscale flatness surface of substrates. Such orientation assembly process endows the MSCs with vertical mesochannels, tunable mesopore size (ca. 5.5–13.5 nm), and switchable substrates even with complex and diversified surfaces. Importantly, the MSCs on titanium substrates (Ti@MSCs) exhibit excellent performances for drug adsorption and sustained release. The saturation adsorption capacity can reach 0.544 μg·cm−2 towards minocycline hydrochloride (MC-HCl) antibiotic molecules, which is 6.5 times as the bare titanium (Ti) substrate. In addition, the drug release time can be controlled from 84 to 216 h by simply adjusting the mesopore size. As a proof of concept, the Ti@MSCs can realize a higher antibacterial rate (95.9%), compared with the bare Ti (70.3%). The results highlight the high potential of MSCs as implant coating for long-term preventing and eliminating peri-implantitis.

Electronic Supplementary Material

Download File(s)
12274_2021_4055_MOESM1_ESM.pdf (2.7 MB)

References

1

Su, K.; Tan, L.; Liu, X. M.; Cui, Z. D.; Zheng, Y. F.; Li, B.; Han, Y.; Li, Z. Y.; Zhu, S. L.; Liang, Y. Q. et al. Rapid photo-sonotherapy for clinical treatment of bacterial infected bone implants by creating oxygen deficiency using sulfur doping. ACS Nano 2020, 14, 2077–2089.

2

Li, J. M.; Jansen, J. A.; Walboomers, X. F.; Van Den Beucken, J. J. J. P. Mechanical aspects of dental implants and osseointegration: A narrative review. J. Mech. Behav. Biomed. Mater. 2020, 103, 103574.

3

Wang, Q. G.; Zhou, P.; Liu, S. F.; Attarilar, S.; Ma, R. L. W.; Zhong, Y. S.; Wang, L. Q. Multi-scale surface treatments of titanium implants for rapid osseointegration: A review. Nanomaterials 2020, 10, 1244.

4

Lensing, R.; Behrens, P.; Müller, P. P.; Lenarz, T.; Stieve, M. In vivo testing of a bioabsorbable magnesium alloy serving as total ossicular replacement prostheses. J. Biomater. Appl. 2014, 28, 688–696.

5

He, G. P.; Wu, Y. H.; Zhang, Y.; Zhu, Y.; Liu, Y.; Li, N.; Li, M.; Zheng, G.; He, B. H.; Yin, Q. S. et al. Addition of Zn to the ternary Mg-Ca-Sr alloys significantly improves their antibacterial properties. J. Mater. Chem. B 2015, 3, 6676–6689.

6

Tong, X.; Shi, Z. M.; Xu, L. C.; Lin, J. X.; Zhang, D. C.; Wang, K.; Li, Y. C.; Wen, C. E. Degradation behavior, cytotoxicity, hemolysis, and antibacterial properties of electro-deposited Zn–Cu metal foams as potential biodegradable bone implants. Acta Biomater. 2020, 102, 481–492.

7

Wang, J. L.; Xu, J. K.; Hopkins, C.; Chow, D. H. K.; Qin, L. Biodegradable magnesium-based implants in orthopedics: A general review and perspectives. Adv. Sci. 2020, 7, 1902443.

8

Yang, H. T.; Jia, B.; Zhang, Z. C.; Qu, X. H.; Li, G. N.; Lin, W. J.; Zhu, D. H.; Dai, K. R.; Zheng, Y. F. Alloying design of biodegradable zinc as promising bone implants for load-bearing applications. Nat. Commun. 2020, 11, 401.

9

Liu, R. H.; Chen, S. C.; Huang, P. N.; Liu, G. Q.; Luo, P.; Li, Z. P.; Xiao, Y.; Chen, Z. F.; Chen, Z. T. Immunomodulation-based strategy for improving soft tissue and metal implant integration and its implications in the development of metal soft tissue materials. Adv. Funct. Mater. 2020, 30, 1910672.

10

Greer, A. I. M.; Goriainov, V.; Kanczler, J.; Black, C. R. M.; Turner, L. A.; Meek, R. M. D.; Burgess, K.; MacLaren, I.; Dalby, M. J.; Oreffo, R. O. C. et al. Nanopatterned titanium implants accelerate bone formation in vivo. ACS Appl. Mater. Interfaces 2020, 12, 33541–33549.

11

Guo, T. Q.; Gulati, K.; Arora, H.; Han, P. P.; Fournier, B.; Ivanovski, S. Orchestrating soft tissue integration at the transmucosal region of titanium implants. Acta Biomater. 2021, 124, 33–49.

12

Besinis, A.; Hadi, S. D.; Le, H. R.; Tredwin, C.; Handy, R. D. Antibacterial activity and biofilm inhibition by surface modified titanium alloy medical implants following application of silver, titanium dioxide, and hydroxyapatite nanocoatings. Nanotoxicology 2017, 11, 327–338.

13

Filipović, U.; Dahmane, R. G.; Ghannouchi, S.; Zore, A.; Bohinc, K. Bacterial adhesion on orthopedic implants. Adv. Colloid Interface Sci. 2020, 283, 102228.

14

Tao, B. L.; Zhao, W. K.; Lin, C. C.; Yuan, Z.; He, Y.; Lu, L.; Chen, M. W.; Ding, Y.; Yang, Y. L.; Xia, Z. Z. L. et al. Surface modification of titanium implants by ZIF-8@Levo/LBL coating for inhibition of bacterial-associated infection and enhancement of in vivo osseointegration. Chem. Eng. J. 2020, 390, 124621.

15

Shirai, T.; Shimizu, T.; Ohtani, K.; Zen, Y.; Takaya, M.; Tsuchiya, H. Antibacterial iodine-supported titanium implants. Acta Biomater. 2011, 7, 1928–1933.

16

Ripamonti, U.; Roden, L. C.; Renton, L. F. Osteoinductive hydroxyapatite-coated titanium implants. Biomaterials 2012, 33, 3813–3823.

17

Badv, M.; Bayat, F.; Weitz, J. I.; Didar, T. F. Single and multi-functional coating strategies for enhancing the biocompatibility and tissue integration of blood-contacting medical implants. Biomaterials 2020, 258, 120291.

18

Arcos, D.; Vallet-Regí, M. Substituted hydroxyapatite coatings of bone implants. J. Mater. Chem. B 2020, 8, 1781–1800.

19

Du, X.; Li, X. Y.; Xiong, L.; Zhang, X. J.; Kleitz, F.; Qiao, S. Z. Mesoporous silica nanoparticles with organo-bridged silsesquioxane framework as innovative platforms for bioimaging and therapeutic agent delivery. Biomaterials 2016, 91, 90–127.

20

Qiu, J. J.; Qian, W. H.; Zhang, J. K.; Chen, D. F.; Yeung, K. W. K.; Liu, X. Y. Minocycline hydrochloride loaded graphene oxide enables enhanced osteogenic activity in the presence of Gram-positive bacteria. Staphylococcus aureus. J. Mater. Chem. B 2019, 7, 3590–3598.

21

Chen, X.; Huang, X. Q.; Zheng, C. P.; Liu, Y. N.; Xu, T. Y.; Liu, J. Preparation of different sized nano-silver loaded on functionalized graphene oxide with highly effective antibacterial properties. J. Mater. Chem. B 2015, 3, 7020–7029.

22

Zhao, L. Z.; Wang, H. R.; Huo, K. F.; Cui, L. Y.; Zhang, W. R.; Ni, H. W.; Zhang, Y. M.; Wu, Z. F.; Chu, P. K. Antibacterial nano-structured titania coating incorporated with silver nanoparticles. Biomaterials 2011, 32, 5706–5716.

23

Fu, J. Y.; Gu, Z. Y.; Liu, Y.; Zhang, J.; Song, H.; Yang, Y. N.; Yang, Y.; Noonan, O.; Tang, J.; Yu, C. Z. Bottom-up self-assembly of heterotrimeric nanoparticles and their secondary Janus generations. Chem. Sci. 2019, 10, 10388–10394.

24

Zhao, Z. W.; Wang, X.; Jing, X. X.; Zhao, Y. J.; Lan, K.; Zhang, W.; Duan, L. L.; Guo, D. Y.; Wang, C. Y.; Peng, L. et al. General synthesis of ultrafine monodispersed hybrid nanoparticles from highly stable monomicelles. Adv. Mater. 2021, 33, 2100820.

25

Shang, L.; Bian, T.; Zhang, B. H.; Zhang, D. H.; Wu, L. Z.; Tung, C. H.; Yin, Y. D.; Zhang, T. R. Graphene-supported ultrafine metal nanoparticles encapsulated by mesoporous silica: Robust catalysts for oxidation and reduction reactions. Angew. Chem., Int. Ed. 2014, 126, 254–258.

26

Yang, J. P.; Shen, D. K.; Wei, Y.; Li, W.; Zhang, F.; Kong, B.; Zhang, S. H.; Teng, W.; Fan, J. W.; Zhang, W. X. et al. Monodisperse core–shell structured magnetic mesoporous aluminosilicate nanospheres with large dendritic mesochannels. Nano Res. 2015, 8, 2503–2514.

27

Pan, Z.; Zhang, K. R.; Gao, H. L.; Zhou, Y.; Yan, B. B.; Yang, C.; Zhang, Z. Y.; Dong, L.; Chen, S. M.; Xu, R. et al. Activating proper inflammation for wound-healing acceleration via mesoporous silica nanoparticle tissue adhesive. Nano Res. 2020, 13, 373–379.

28

Song, H.; Nor, Y. A.; Yu, M. H.; Yang, Y. N.; Zhang, J.; Zhang, H. W.; Xu, C.; Mitter, N.; Yu, C. Z. Silica nanopollens enhance adhesion for long-term bacterial inhibition. J. Am. Chem. Soc. 2016, 138, 6455–6462.

29

Häffner, S. M.; Parra-Ortiz, E.; Browning, K. L.; Jørgensen, E.; Skoda, M. W. A.; Montis, C.; Li, X. M.; Berti, D.; Zhao, D. Y.; Malmsten, M. Membrane interactions of virus-like mesoporous silica nanoparticles. ACS Nano 2021, 15, 6787–6800.

30

Kankala, R. K.; Han, Y. H.; Na, J.; Lee, C. H.; Sun, Z. Q.; Wang, S. B.; Kimura, T.; Ok, Y. S.; Yamauchi, Y.; Chen, A. Z. et al. Nanoarchitectured structure and surface biofunctionality of mesoporous silica nanoparticles. Adv. Mater. 2020, 32, 1907035.

31

Wu, K. C. W.; Yamauchi, Y. Controlling physical features of mesoporous silicananoparticles (MSNs) for emerging applications. J. Mater. Chem. 2012, 22, 1251–1256.

32

Kalantari, M.; Yu, M. H.; Yang, Y. N.; Strounina, E.; Gu, Z. Y.; Huang, X. D.; Zhang, J.; Song, H.; Yu, C. Z. Tailoring mesoporous-silica nanoparticles for robust immobilization of lipase and biocatalysis. Nano Res. 2017, 10, 605–617.

33

Lei, C.; Cao, Y. X.; Hosseinpour, S.; Gao, F.; Liu, J. Y.; Fu, J. Y.; Staples, R.; Ivanovski, S.; Xu, C. Hierarchical dual-porous hydroxyapatite doped dendritic mesoporous silica nanoparticles based scaffolds promote osteogenesis in vitro and in vivo. Nano Res. 2021, 14, 770–777.

34

Liu, Y. P.; Shen, D. K.; Chen, G.; Elzatahry, A. A.; Pal, M.; Zhu, H. W.; Wu, L. L.; Lin, J. J.; Al-Dahyan, D.; Li, W. et al. Mesoporous silica thin membranes with large vertical mesochannels for nanosize-based separation. Adv. Mater. 2017, 29, 1702274.

35

Shen, D. K.; Yang, J. P.; Li, X. M.; Zhou, L.; Zhang, R. Y.; Li, W.; Chen, L.; Wang, R.; Zhang, F.; Zhao, D. Y. Biphase stratification approach to three-dimensional dendritic biodegradable mesoporous silica nanospheres. Nano Lett. 2014, 14, 923–932.

36

Shinde, D. B.; Sheng, G.; Li, X.; Ostwal, M.; Emwas, A. H.; Huang, K. W.; Lai, Z. P. Crystalline 2D covalent organic framework membranes for high-flux organic solvent nanofiltration. J. Am. Chem. Soc. 2018, 140, 14342–14349.

37

Chang, H. J.; Chen, T. Y.; Zhao, Z. P.; Dai, Z. J.; Chen, Y. L.; Mou, C. Y.; Liu, Y. H. Ordered mesoporous zeolite thin films with perpendicular reticular nanochannels of wafer size area. Chem. Mater. 2018, 30, 8303–8313.

38

Li, B.; Liu, Y. Q.; Wan, C. J.; Liu, Z. Y.; Wang, M.; Qi, D. P.; Yu, J. C.; Cai, P. Q.; Xiao, M.; Zeng, Y. et al. Mediating short-term plasticity in an artificial memristive synapse by the orientation of silica mesopores. Adv. Mater. 2018, 30, 1706395.

39

Bolisetty, S.; Peydayesh, M.; Mezzenga, R. Sustainable technologies for water purification from heavy metals: Review and analysis. Chem. Soc. Rev. 2019, 48, 463–487.

40

Lai, C. H.; Ashby, D. S.; Lin, T. C.; Lau, J.; Dawson, A.; Tolbert, S. H.; Dunn, B. S. Application of poly (3-hexylthiophene-2, 5-diyl) as a protective coating for high rate cathode materials. Chem. Mater. 2018, 30, 2589–2599.

41

Iqbal, M.; Kim, J.; Yuliarto, B.; Jiang, B.; Li, C. L.; Dag, Ö.; Malgras, V.; Yamauchi, Y. Standing mesochannels: Mesoporous PdCu films with vertically aligned mesochannels from nonionic micellar solutions. ACS Appl. Mater. Interfaces 2018, 10, 40623–40630.

42

Kao, K. C.; Lin, C. H.; Chen, T. Y.; Liu, Y. H.; Mou, C. Y. A general method for growing large area mesoporous silica thin films on flat substrates with perpendicular nanochannels. J. Am. Chem. Soc. 2015, 137, 3779–3782.

43

Feng, X. D.; Imran, Q.; Zhang, Y. Z.; Sixdenier, L.; Lu, X. L.; Kaufman, G.; Gabinet, U.; Kawabata, K.; Elimelech, M.; Osuji, C. O. Precise nanofiltration in a fouling-resistant self-assembled membrane with water-continuous transport pathways. Sci. Adv. 2019, 5, eaav9308.

44

Houben, S. J. A.; Van Merwijk, S. A.; Langers, B. J. H.; Oosterlaken, B. M.; Borneman, Z.; Schenning, A. P. H. J. Smectic liquid crystalline polymer membranes with aligned nanopores in an anisotropic scaffold. ACS Appl. Mater. Interfaces 2021, 13, 7592–7599.

45

Li, X. J.; Janke, A.; Formanek, P.; Fery, A.; Stamm, M.; Tripathi, B. P. High permeation and antifouling polysulfone ultrafiltration membranes with in situ synthesized silica nanoparticles. Mater. Today Commun. 2020, 22, 100784.

46

Wang, J. R.; Vilà, N.; Walcarius, A. Redox-active vertically aligned mesoporous silica thin films as transparent surfaces for energy storage applications. ACS Appl. Mater. Interfaces 2020, 12, 24262–24270.

47
Zhao, J. B.; Yuan, H. F.; Yang, G.; Liu, Y. F.; Qin, X. M.; Chen, Z.; Weng-Chon, C.; Zhou, L. M.; Fang, S. M. AuPt bimetallic nanoalloys supported on SBA-15: A superior catalyst for quinoline selective hydrogenation in water. Nano Res., in press, DOI: 10.1007/s12274-021-3732-1.
48

Jiokeng, S. L. Z.; Tonle, I. K.; Walcarius, A. Amino-attapulgite/mesoporous silica composite films generated by electro-assisted self-assembly for the voltammetric determination of diclofenac. Sens. Actuators B Chem. 2019, 287, 296–305.

49

Vilà, N.; Ghanbaja, J.; Walcarius, A. Clickable bifunctional and vertically aligned mesoporous silica films. Adv. Mater. Interfaces 2016, 3, 1500440.

50

Li, W.; Liu, J.; Zhao, D. Y. Mesoporous materials for energy conversion and storage devices. Nat. Rev. Mater. 2016, 1, 16023.

51

Li, W.; Elzatahry, A.; Aldhayan, D.; Zhao, D. Y. Core–shell structured titanium dioxide nanomaterials for solar energy utilization. Chem. Soc. Rev. 2018, 47, 8203–8237.

52

Liu, M. L.; Chen, B. B.; Li, R. S.; Li, C. M.; Zou, H. Y.; Huang, C. Z. Dendritic CuSe with hierarchical side-branches: Synthesis, efficient adsorption, and enhanced photocatalytic activities under daylight. ACS Sustainable Chem. Eng. 2017, 5, 4154–4160.

53

Liu, Y. P.; Wang, J. X.; Teng, W.; Hung, C. T.; Zhai, Y. P.; Shen, D. K.; Li, W. Ultrahigh adsorption capacity and kinetics of vertically oriented mesoporous coatings for removal of organic pollutants. Small 2021, 17, 2101363.

Nano Research
Pages 4243-4250
Cite this article:
Liu M, Huang F, Hung C-T, et al. An implantable antibacterial drug-carrier: Mesoporous silica coatings with size-tunable vertical mesochannels. Nano Research, 2022, 15(5): 4243-4250. https://doi.org/10.1007/s12274-021-4055-y
Topics:

809

Views

7

Crossref

7

Web of Science

7

Scopus

0

CSCD

Altmetrics

Received: 28 October 2021
Revised: 06 December 2021
Accepted: 07 December 2021
Published: 22 January 2022
© Tsinghua University Press and Springer-Verlag GmbH Germany, part of Springer Nature 2021
Return