AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article

Investigation of MXenes as oxygen reduction electrocatalyst for selective H2O2 generation

Xiao Huang1Min Song1Jian Zhang1( )Jingjing Zhang1Wei Liu1Chang Zhang1Wang Zhang2( )Deli Wang1( )
Key Laboratory of Material Chemistry for Energy Conversion and Storage (Huazhong University of Science and Technology), Ministry of Education, Hubei Key Laboratory of Material Chemistry and Service Failure, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
College of Materials Science and Engineering, Shenzhen University, Shenzhen 518055, China
Show Author Information

Graphical Abstract

We found here MXenes are inherent two-electron oxygen reduction reaction (ORR) catalysts. Nb2CTx shows a high H2O2 production rate of 1.95 mol·gcat−1·h−1 at 0.1 V (vs. reversible hydrogen electrode (RHE)) and can efficiently decompose organic dyes.

Abstract

Two-electron oxygen reduction reaction (ORR) catalysts are essential for the electrosynthesis of hydrogen peroxide (H2O2). MXenes, a rising family of two-dimensional (2D) transition metal carbides, have been extensively studied for energy storage and (photo)electrocatalysis due to their rich chemical compositions and tunable electronic structures. In this work, three representative MXenes of Ti3C2Tx, V2CTx, and Nb2CTx were selected for H2O2 electrosynthesis and we found that MXenes are inherent two-electron ORR catalysts with high H2O2 selectivity. In addition, this work critically evaluates their electrocatalytic activity and stability. Interestingly, Nb2CTx catalyst maintains better electrocatalytic activity and higher stability for a long time test, although the stability of Ti3C2Tx and V2CTx catalysts is poor owing to the metal dissolution property of Ti and V in alkaline media. Moreover, the assembled device based on Nb2CTx catalyst presents a high H2O2 production and a rapid organic dye decoloration ability.

Electronic Supplementary Material

Download File(s)
12274_2021_4057_MOESM1_ESM.pdf (1.4 MB)

References

1

Anantharaj, S.; Pitchaimuthu, S.; Noda, S. A review on recent developments in electrochemical hydrogen peroxide synthesis with a critical assessment of perspectives and strategies. Adv. Colloid Interface Sci. 2021, 287, 102331.

2

Perry, S. C.; Pangotra, D.; Vieira, L.; Csepei, L. I.; Sieber, V.; Wang, L.; Ponce de León, C.; Walsh, F. C. Electrochemical synthesis of hydrogen peroxide from water and oxygen. Nat. Rev. Chem. 2019, 3, 442–458.

3

Campos-Martin, J. M.; Blanco-Brieva, G.; Fierro, J. L. G. Hydrogen peroxide synthesis: An outlook beyond the anthraquinone process. Angew. Chem., Int. Ed. 2006, 45, 6962–6984.

4

Zeng, Q. Y.; Chang, S.; Wang, M. Q.; Li, M.; Deng, Q. W.; Xiong, Z.; Zhou, B. X.; Liu, Y. B. Highly-active, metal-free, carbon-based ORR cathode for efficient organics removal and electricity generation in a PFC system. Chin. Chem. Lett. 2021, 32, 2212–2216.

5

Yamanaka, I.; Onizawa, T.; Takenaka, S.; Otsuka, K. Direct and continuous production of hydrogen peroxide with 93% selectivity using a fuel-cell system. Angew. Chem. 2003, 115, 3781–3783.

6

Chen, Z. H.; Chen, S. C.; Siahrostami, S.; Chakthranont, P.; Hahn, C.; Nordlund, D.; Dimosthenis, S.; Nørskov, J. K.; Bao, Z. N.; Jaramillo, T. F. Development of a reactor with carbon catalysts for modular-scale, low-cost electrochemical generation of H2O2. React. Chem. Eng. 2017, 2, 239–245.

7

Li, W.; Bonakdarpour, A.; Gyenge, E.; Wilkinson, D. P. Drinking water purification by electrosynthesis of hydrogen peroxide in a power-producing PEM fuel cell. ChemSusChem 2013, 6, 2137–2143.

8

Xia, C.; Xia, Y.; Zhu, P.; Fan, L.; Wang, H. T. Direct electrosynthesis of pure aqueous H2O2 solutions up to 20% by weight using a solid electrolyte. Science 2019, 366, 226–231.

9

Siahrostami, S.; Verdaguer-Casadevall, A.; Karamad, M.; Deiana, D.; Malacrida, P.; Wickman, B.; Escudero-Escribano, M.; Paoli, E. A.; Frydendal, R.; Hansen, T. W. et al. Enabling direct H2O2 production through rational electrocatalyst design. Nat. Mater. 2013, 12, 1137–1143.

10

Ji, X.; Chen, D. D.; Peng, L.; Frison, F.; Valle, C. D.; Tubaro, C.; Zecca, M.; Centomo, P.; Ye, D. Q.; Chen, P. R. Sustainable direct H2O2 synthesis over Pd catalyst supported on mesoporous carbon: The effect of surface nitrogen functionality. Catal. Today 2021, 376, 1–8.

11

Gao, J. J.; Yang, H. B.; Huang, X.; Hung, S. F.; Cai, W. Z.; Jia, C. M.; Miao, S.; Chen, H. M.; Yang, X. F.; Huang, Y. Q. et al. Enabling direct H2O2 production in acidic media through rational design of transition metal single atom catalyst. Chem 2020, 6, 658–674.

12

Zhou, W.; Rajic, L.; Meng, X. X.; Nazari, R.; Zhao, Y. W.; Wang, Y.; Gao, J. H.; Qin, Y. K.; Alshawabkeh, A. N. Efficient H2O2 electrogeneration at graphite felt modified via electrode polarity reversal: Utilization for organic pollutants degradation. Chem. Eng. J. 2019, 364, 428–439.

13

Zhang, Q. Z.; Zhou, M. H.; Ren, G. B.; Li, Y. W.; Li, Y. C.; Du, X. D. Highly efficient electrosynthesis of hydrogen peroxide on a superhydrophobic three-phase interface by natural air diffusion. Nat. Commun. 2020, 11, 1731.

14

Zhang, Q. R.; Tan, X.; Bedford, N. M.; Han, Z. J.; Thomsen, L.; Smith, S.; Amal, R.; Lu, X. Y. Direct insights into the role of epoxy groups on cobalt sites for acidic H2O2 production. Nat. Commun. 2020, 11, 4181.

15

Jiang, Y. Y.; Ni, P. J.; Chen, C. X.; Lu, Y. Z.; Yang, P.; Kong, B.; Fisher, A.; Wang, X. Selective electrochemical H2O2 production through two-electron oxygen electrochemistry. Adv. Energy Mater. 2018, 8, 1801909.

16

Shi, X. J.; Zhang, Y. R.; Siahrostami, S.; Zheng, X. L. Light-driven BiVO4–C fuel cell with simultaneous production of H2O2. Adv. Energy Mater. 2018, 8, 1801158.

17

Flox, C.; Cabot, P.; Centellas, F.; Garrido, J.; Rodriguez, R.; Arias, C.; Brillas, E. Solar photoelectro-fenton degradation of cresols using a flow reactor with a boron-doped diamond anode. Appl. Catal. B:Environ. 2007, 75, 17–28.

18

Fukuzumi, S.; Yamada, Y.; Karlin, K. D. Hydrogen peroxide as a sustainable energy carrier: Electrocatalytic production of hydrogen peroxide and the fuel cell. Electrochim. Acta 2012, 82, 493–511.

19

Jirkovský, J. S.; Panas, I.; Ahlberg, E.; Halasa, M.; Romani, S.; Schiffrin, D. J. Single atom hot-spots at Au-Pd nanoalloys for electrocatalytic H2O2 production. J. Am. Chem. Soc. 2011, 133, 19432–19441.

20

Zhao, X.; Yang, H.; Xu, J.; Cheng, T.; Li, Y. G. Bimetallic PdAu nanoframes for electrochemical H2O2 production in acids. ACS Mater. Lett. 2021, 3, 996–1002.

21

Wang, D. L.; Xin, H. L.; Hovden, R.; Wang, H. S.; Yu, Y. C.; Muller, D. A.; DiSalvo, F. J.; Abruña, H. D. Structurally ordered intermetallic platinum-cobalt core–shell nanoparticles with enhanced activity and stability as oxygen reduction electrocatalysts. Nat. Mater. 2013, 12, 81–87.

22

Zhang, J.; Zhang, J. J.; He, F.; Chen, Y. J.; Zhu, J. W.; Wang, D. L.; Mu, S. C.; Yang, H. Y. Defect and doping Co-engineered non-metal nanocarbon ORR electrocatalyst. Nano-Micro Lett. 2021, 13, 65.

23

Zhang, C.; Zhang, J.; Zhang, J. J.; Song, M.; Huang, X.; Liu, W.; Xiong, M.; Chen, Y. Q.; Xia, S. W.; Yang, H. P. et al. Tuning coal into graphene-like nanocarbon for electrochemical H2O2 production with nearly 100% Faraday efficiency. ACS Sustainable Chem. Eng. 2021, 9, 9369–9375.

24

Hu, Y. Z.; Zhang, J. J.; Shen, T.; Li, Z. R.; Chen, K.; Lu, Y.; Zhang, J.; Wang, D. L. Efficient electrochemical production of H2O2 on hollow N-doped carbon nanospheres with abundant micropores. ACS Appl. Mater. Interfaces 2021, 13, 29551–29557.

25

Lu, Z. Y.; Chen, G. X.; Siahrostami, S.; Chen, Z. H.; Liu, K.; Xie, J.; Liao, L.; Wu, T.; Lin, D. C.; Liu, Y. Y. et al. High-efficiency oxygen reduction to hydrogen peroxide catalysed by oxidized carbon materials. Nat. Catal. 2018, 1, 156–162.

26

Chen, L. L.; Xu, X. L.; Yang, W. X.; Jia, J. B. Recent advances in carbon-based electrocatalysts for oxygen reduction reaction. Chin. Chem. Lett. 2020, 31, 626–634.

27

Zhang, L. C.; Liang, J.; Yue, L. C.; Xu, Z. Q.; Dong, K.; Liu, Q.; Luo, Y. L.; Li, T. S.; Cheng, X. H.; Cui, G. W. et al. N-doped carbon nanotubes supported CoSe2 nanoparticles: A highly efficient and stable catalyst for H2O2 electrosynthesis in acidic media. Nano Res. 2022, 15, 304–309.

28

Xu, Z. Q.; Liang, J.; Wang, Y. Y.; Dong, K.; Shi, X. F.; Liu, Q.; Luo, Y. L.; Li, T. S.; Jia, Y.; Asiri, A. M. et al. Enhanced electrochemical H2O2 production via two-electron oxygen reduction enabled by surface-derived amorphous oxygen-deficient TiO2–x. ACS Appl. Mater. Interfaces 2021, 13, 33182–33187.

29

Carneiro, J. F.; Paulo, M. J.; Siaj, M.; Tavares, A. C.; Lanza, M. R. V. Nb2O5 nanoparticles supported on reduced graphene oxide sheets as electrocatalyst for the H2O2 electrogeneration. J. Catal. 2015, 332, 51–61.

30

Xia, F.; Li, B. M.; Liu, Y. Q.; Liu, Y. Z.; Gao, S. Y.; Lu, K.; Kaelin, J.; Wang, R. Y.; Marks, T. J.; Cheng, Y. W. Carbon free and noble metal free Ni2Mo6S8 electrocatalyst for selective electrosynthesis of H2O2. Adv. Funct. Mater. 2021, 31, 2104716.

31

Yang, T.; Yang, C. Y.; Le, J. B.; Yu, Z. Y.; Bu, L. Z.; Li, L. G.; Bai, S. X.; Shao, Q.; Hu, Z. W.; Pao, C. W. et al. Atomically isolated Pd sites within Pd-S nanocrystals enable trifunctional catalysis for direct, electrocatalytic and photocatalytic syntheses of H2O2. Nano Res. 2022, 15, 1861–1867.

32

Gao, G. P.; O’Mullane, A. P.; Du, A. J. 2D MXenes: A new family of promising catalysts for the hydrogen evolution reaction. ACS Catal. 2017, 7, 494–500.

33

Chaudhari, N. K.; Jin, H.; Kim, B.; San Baek, D.; Joo, S. H.; Lee, K. MXene: An emerging two-dimensional material for future energy conversion and storage applications. J. Mater. Chem. A 2017, 5, 24564–24579.

34

Li, Z. L.; Zhuang, Z. C.; Lv, F.; Zhu, H.; Zhou, L.; Luo, M. C.; Zhu, J. X.; Lang, Z. Q.; Feng, S. H.; Chen, W. et al. The marriage of the FeN4 moiety and MXene boosts oxygen reduction catalysis: Fe 3d electron delocalization matters. Adv. Mater. 2018, 30, 1803220.

35

Liu, F. F.; Liu, Y. C.; Zhao, X. D.; Liu, K. Y.; Yin, H. Q.; Fan, L. Z. Prelithiated V2C MXene: A high-performance electrode for hybrid magnesium/lithium-ion batteries by ion cointercalation. Small 2020, 16, 1906076.

36

Zhang, Y. Y.; Zhang, X. L.; Cheng, C.; Yang, Z. X. Recent progress of MXenes as the support of catalysts for the CO oxidation and oxygen reduction reaction. Chin. Chem. Lett. 2020, 31, 931–936.

37

Yu, M. C.; Liang, H. J.; Zhan, R. N.; Xu, L.; Niu, J. F. Sm-doped g-C3N4/Ti3C2 MXene heterojunction for visible-light photocatalytic degradation of ciprofloxacin. Chin. Chem. Lett. 2021, 32, 2155–2158.

38

Zhang, J. Q.; Zhao, Y. F.; Guo, X.; Chen, C.; Dong, C. L.; Liu, R. S.; Han, C. P.; Li, Y. D.; Gogotsi, Y.; Wang, G. X. Single platinum atoms immobilized on an MXene as an efficient catalyst for the hydrogen evolution reaction. Nat. Catal. 2018, 1, 985–992.

39

Liu, Y.; Dai, Z. W.; Zhang, W.; Jiang, Y.; Peng, J.; Wu, D. L.; Chen, B.; Wei, W.; Chen, X.; Liu, Z. J. et al. Sulfonic-group-grafted Ti3C2Tx MXene: A silver bullet to settle the instability of polyaniline toward high-performance Zn-ion batteries. ACS Nano 2021, 15, 9065–9075.

40

Liu, Y.; Jiang, Y.; Hu, Z.; Peng, J.; Lai, W. H.; Wu, D. L.; Zuo, S. W.; Zhang, J.; Chen, B.; Dai, Z. W. et al. In-situ electrochemically activated surface vanadium valence in V2C MXene to achieve high capacity and superior rate performance for Zn-ion batteries. Adv. Funct. Mater. 2021, 31, 2008033.

41

Zhang, W.; Peng, J.; Hua, W. B.; Liu, Y.; Wang, J. S.; Liang, Y. R.; Lai, W. H.; Jiang, Y.; Huang, Y.; Zhang, W. et al. Architecting amorphous vanadium oxide/MXene nanohybrid via tunable anodic oxidation for high-performance sodium-ion batteries. Adv. Energy Mater. 2021, 11, 2100757.

42

Li, G. Y.; Li, N.; Peng, S. T.; He, B.; Wang, J.; Du, Y.; Zhang, W. B.; Han, K.; Dang, F. Highly efficient Nb2C MXene cathode catalyst with uniform O-terminated surface for lithium–oxygen batteries. Adv. Energy Mater. 2020, 11, 2002721.

43

Li, J.; Yuan, X. T.; Lin, C.; Yang, Y. Q.; Xu, L.; Du, X.; Xie, J. L.; Lin, J. H.; Sun, J. L. Achieving high pseudocapacitance of 2D titanium carbide (MXene) by cation intercalation and surface modification. Adv. Energy Mater. 2017, 7, 1602725.

44

Chen, J. N.; Yuan, X. L.; Lyu, F.; Zhong, Q. X.; Hu, H. C.; Pan, Q.; Zhang, Q. Integrating MXene nanosheets with cobalt-tipped carbon nanotubes for an efficient oxygen reduction reaction. J. Mater. Chem. A 2019, 7, 1281–1286.

45

Chen, X. F.; Zhu, Y. Z.; Zhang, M.; Sui, J. Y.; Peng, W. C.; Li, Y.; Zhang, G. L.; Zhang, F. B.; Fan, X. B. N-Butyllithium-treated Ti3C2Tx MXene with excellent pseudocapacitor performance. ACS Nano 2019, 13, 9449–9456.

46

Luo, S. J.; Xie, L. Y.; Han, F.; Wei, W.; Huang, Y.; Zhang, H.; Zhu, M. S.; Schmidt, O. G.; Wang, L. Nanoscale parallel circuitry based on interpenetrating conductive assembly for flexible and high-power zinc-ion battery. Adv. Funct. Mater. 2019, 29, 1901336.

47

Wang, B.; Wang, M. Y.; Liu, F. Y.; Zhang, Q.; Yao, S.; Liu, X. L.; Huang, F. Ti3C2: An ideal Co-catalyst? Angew. Chem., Int. Ed. 2020, 59, 1914–1918.

48

Su, T. M.; Peng, R.; Hood, Z. D.; Naguib, M.; Ivanov, I. N.; Keum, J. K.; Qin, Z. Z.; Guo, Z. H.; Wu, Z. L. One-step synthesis of Nb2O5/C/Nb2C (MXene) composites and their use as photocatalysts for hydrogen evolution. ChemSusChem 2018, 11, 688–699.

49

Ding, P. P.; Cui, L. L.; Li, D.; Jing, W. H. Innovative dual-compartment flow reactor coupled with a gas diffusion electrode for in situ generation of H2O2. Ind. Eng. Chem. Res. 2019, 58, 6925–6932.

50

Yu, F. K.; Zhou, M. H.; Zhou, L.; Peng, R. D. A novel electro-fenton process with H2O2 generation in a rotating disk reactor for organic pollutant degradation. Environ. Sci. Technol. Lett. 2014, 1, 320–324.

51

Assumpção, M. H. M. T.; De Souza, R. F. B.; Reis, R. M.; Rocha, R. S.; Steter, J. R.; Hammer, P.; Gaubeur, I.; Calegaro, M. L.; Lanza, M. R. V.; Santos, M. C. Low tungsten content of nanostructured material supported on carbon for the degradation of phenol. Appl. Catal. B: Environ. 2013, 142−143, 479–486.

Nano Research
Pages 3927-3932
Cite this article:
Huang X, Song M, Zhang J, et al. Investigation of MXenes as oxygen reduction electrocatalyst for selective H2O2 generation. Nano Research, 2022, 15(5): 3927-3932. https://doi.org/10.1007/s12274-021-4057-9
Topics:

878

Views

42

Crossref

40

Web of Science

40

Scopus

1

CSCD

Altmetrics

Received: 27 October 2021
Revised: 01 December 2021
Accepted: 07 December 2021
Published: 14 January 2022
© Tsinghua University Press and Springer-Verlag GmbH Germany, part of Springer Nature 2021
Return