AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article

Simultaneous switching of supramolecular chirality and organizational chirality driven by Coulomb expansion

Ming-Xia Shi1Jiyu Xu2( )Kai Sun1Min-Long Tao1Ji-Yong Yang1Da-Xiao Yang1Zi-Long Wang1Zuo Li1Jun-Zhong Wang1( )Qi-Kun Xue3( )Sheng Meng2( )
School of Physical Science and Technology, Southwest University, Chongqing 400715, China
Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
Department of Physics, Tsinghua University, Beijing 100084, China
Show Author Information

Graphical Abstract

The electric field from a scanning tunneling microscopy (STM) tip significantly modulates theinterfacial charge transfer and induces the Coulomb expansion of pentacene layers, and thus thesupramolecular chirality of pentacene pinwheels and the organizational chirality of entire networkdomains can be simultaneously switched from one enantiomorph to another.

Abstract

Chiral switching is a fascinating topic and plays an important role in construction of homochirality. Nevertheless, due to the complexity and flexibility of noncovalent interactions, switching the chirality of entire supramolecular assemblies has hitherto remained a challenge. Here we report the electric field-controlled chirality switching of pentacene pinwheel arrays and two-dimensional (2D) network domains. Pentacene molecules on Cd(0001) surface form the porous network structure with building blocks of hexamer pinwheels. Driven by the electric field from a scanning tunneling microscopy (STM) tip, the supramolecular chirality of pentacene pinwheels and the organizational chirality of entire network domains can be simultaneously switched from one enantiomorph to another. Furthermore, such chiral switching is reversible and repeatable under successive voltage pulses. First-principles calculations demonstrate that electric field significantly modulates the interfacial charge transfer and induces the Coulomb expansion of pentacene layers, and the subsequent reaggregation leads to the chiral flipping of the supramolecular pinwheels and 2D domains. Our results provide a new strategy for dynamic control of the 2D chiral structures and help to steer the supramolecular assembly toward homochirality.

Electronic Supplementary Material

Download File(s)
12274_2021_4058_MOESM1_ESM.pdf (1.2 MB)

References

1

Barlow, S. M.; Raval, R. Complex organic molecules at metal surfaces: Bonding, organization, and chirality. Surf. Sci. Rep. 2003, 50, 201–341.

2
Ernst, K. H. Supramolecular surface chirality. In Supramolecular Chirality. Crego-Calama, M.; Reinhoudt, D. N., Eds.; Berlin, Heidelberg: Springer, 2006; pp 209–252.https://doi.org/10.1007/128_036
3

Elemans, J. A. A. W.; De Cat, I.; Xu, H.; De Feyter, S. Two-dimensional chirality at liquid-solid interfaces. Chem. Soc. Rev. 2009, 38, 722–736.

4

Lorenzo, M. O.; Baddeley, C. J.; Muryn, C.; Raval, R. Extended surface chirality from supramolecular assemblies of adsorbed chiral molecules. Nature 2000, 404, 376–379.

5

Kühnle, A.; Linderoth, T. R.; Hammer, B.; Besenbacher, F. Chiral recognition in dimerization of adsorbed cysteine observed by scanning tunnelling microscopy. Nature 2002, 415, 891–893.

6

Haq, S.; Liu, N.; Humblot, V.; Jansen, A. P. J.; Raval, R. Drastic symmetry breaking in supramolecular organization of enantiomerically unbalanced monolayers at surfaces. Nat. Chem. 2009, 1, 409–414.

7

Stetsovych, O.; Švec, M.; Vacek, J.; Chocholoušová, J. V.; Jančařík, A.; Rybáček, J.; Kosmider, K.; Stará, I. G.; Jelínek, P.; Starý, I. From helical to planar chirality by on-surface chemistry. Nat. Chem. 2017, 9, 213–218.

8

Fasel, R.; Parschau, M.; Ernst, K. H. Amplification of chirality in two-dimensional enantiomorphous lattices. Nature 2006, 439, 449–452.

9

Gellman, A. J.; Huang, Y.; Feng, X.; Pushkarev, V. V.; Holsclaw, B.; Mhatre, B. S. Superenantioselective chiral surface explosions. J. Am. Chem. Soc. 2013, 135, 19208–19214.

10

Yun, Y. J.; Gellman, A. J. Adsorption-induced auto-amplification of enantiomeric excess on an achiral surface. Nat. Chem. 2015, 7, 520–525.

11

Cao, H.; De Feyter, S. Amplification of chirality in surface-confined supramolecular bilayers. Nat. Commun. 2018, 9, 3416.

12

Parschau, M.; Romer, S.; Ernst, K. H. Induction of homochirality in achiral enantiomorphous monolayers. J. Am. Chem. Soc. 2004, 126, 15398–15399.

13

Masini, F.; Kalashnyk, N.; Knudsen, M. M.; Cramer, J. R.; Laegsgaard, E.; Besenbacher, F.; Gothelf, K. V.; Linderoth, T. R. Chiral induction by seeding surface assemblies of chiral switches. J. Am. Chem. Soc. 2011, 133, 13910–13913.

14

Tahara, K.; Yamaga, H.; Ghijsens, E.; Inukai, K.; Adisoejoso, J.; Blunt, M. O.; De Feyter, S.; Tobe, Y. Control and induction of surface-confined homochiral porous molecular networks. Nat. Chem. 2011, 3, 714–719.

15

Chen, T.; Yang, W. H.; Wang, D.; Wan, L. J. Globally homochiral assembly of two-dimensional molecular networks triggered by co-absorbers. Nat. Commun. 2013, 4, 1389.

16

Nuermaimaiti, A.; Bombis, C.; Knudsen, M. M.; Cramer, J. R.; Laegsgaard, E.; Besenbacher, F.; Gothelf, K. V.; Linderoth, T. R. Chiral induction with chiral conformational switches in the limit of low “sergeants to soldiers” ratio. ACS Nano 2014, 8, 8074–8081.

17

Fang, Y.; Ghijsens, E.; Ivasenko, O.; Cao, H.; Noguchi, A.; Mali, K. S.; Tahara, K.; Tobe, Y.; De Feyter, S. Dynamic control over supramolecular handedness by selecting chiral induction pathways at the solution-solid interface. Nat. Chem. 2016, 8, 711–717.

18

Berg, A. M.; Patrick, D. L. Preparation of chiral surfaces from achiral molecules by controlled symmetry breaking. Angew. Chem., Int. Ed. 2005, 44, 1821–1823.

19

Choi, B. Y.; Kahng, S. J.; Kim, S.; Kim, H.; Kim, H. W.; Song, Y. J.; Ihm, J.; Kuk, Y. Conformational molecular switch of the azobenzene molecule: A scanning tunneling microscopy study. Phys. Rev. Lett. 2006, 96, 156106.

20

Li, S. Y.; Chen, T.; Yue, J. Y.; Wang, D.; Wan, L. J. Switching the surface homochiral assembly by surface host-guest chemistry. Chem. Commun. 2017, 53, 11095–11098.

21

Weigelt, S.; Busse, C.; Petersen, L.; Rauls, E.; Hammer, B.; Gothelf, K. V.; Besenbacher, F.; Linderoth, T. R. Chiral switching by spontaneous conformational change in adsorbed organic molecules. Nat. Mater. 2006, 5, 112–117.

22

Parschau, M.; Passerone, D.; Rieder, K. H.; Hug, H. J.; Ernst, K. H. Switching the chirality of single adsorbate complexes. Angew. Chem., Int. Ed. 2009, 48, 4065–4068.

23

Simic-Milosevic, V.; Meyer, J.; Morgenstern, K. Chirality change of chloronitrobenzene on Au(111) induced by inelastic electron tunneling. Angew. Chem., Int. Ed. 2009, 48, 4061–4064.

24

Liu, N.; Darling, G. R.; Raval, R. Dynamic chiral flipping within strongly chemisorbed molecular monolayers at surfaces. Chem. Commun. 2011, 47, 11324–11326.

25

Bauer, A.; Maier, M.; Schosser, W. M.; Diegel, J.; Paschke, F.; Dedkov, Y.; Pauly, F.; Winter, R. F.; Fonin, M. Tip-induced inversion of the chirality of a molecule's adsorption potential probed by the switching directionality. Adv. Mater. 2020, 32, 1907390.

26

Maksymovych, P.; Dougherty, D. B.; Zhu, X. Y.; Yates, J. T. Jr. Nonlocal dissociative chemistry of adsorbed molecules induced by localized electron injection into metal surfaces. Phys. Rev. Lett. 2007, 99, 016101.

27

Maksymovych, P.; Sorescu, D. C.; Jordan, K. D.; Yates, J. T. Jr. Collective reactivity of molecular chains self-assembled on a surface. Science 2008, 322, 1664–1667.

28

Chen, L.; Li, H.; Wee, A. T. S. Nonlocal chemical reactivity at organic-metal interfaces. ACS Nano 2009, 3, 3684–3690.

29

Ladenthin, J. N.; Grill, L.; Gawinkowski, S.; Liu, S. Y.; Waluk, J.; Kumagai, T. Hot carrier-induced tautomerization within a single porphycene molecule on Cu(111). ACS Nano 2015, 9, 7287–7295.

30

Li, M.; den Boer, D.; Iavicoli, P.; Adisoejoso, J.; Uji-i, H.; Van der Auweraer, M.; Amabilino, D. B.; Elemans, J. A. A. W.; De Feyter, S. Tip-induced chemical manipulation of metal porphyrins at a liquid/solid interface. J. Am. Chem. Soc. 2014, 136, 17418–17421.

31

Zheng, Q. N.; Liu, X. H.; Liu, X. R.; Chen, T.; Yan, H. J.; Zhong, Y. W.; Wang, D.; Wan, L. J. Bilayer molecular assembly at a solid/liquid interface as triggered by a mild electric field. Angew. Chem., Int. Ed. 2014, 53, 13395–13399.

32

Borca, B.; Michnowicz, T.; Pétuya, R.; Pristl, M.; Schendel, V.; Pentegov, I.; Kraft, U.; Klauk, H.; Wahl, P.; Gutzler, R. et al. Electric-field-driven direct desulfurization. ACS Nano 2017, 11, 4703–4709.

33

Matvija, P.; Rozbořil, F.; Sobotík, P.; Ošťádal, I.; Pieczyrak, B.; Jurczyszyn, L.; Kocán, P. Electric-field-controlled phase transition in a 2D molecular layer. Sci. Rep. 2017, 7, 7357.

34

Alemani, M.; Peters, M. V.; Hecht, S.; Rieder, K. H.; Moresco, F.; Grill, L. Electric field-induced isomerization of azobenzene by STM. J. Am. Chem. Soc. 2006, 128, 14446–14447.

35

Cometto, F. P.; Kern, K.; Lingenfelder, M. Local conformational switching of supramolecular networks at the solid/liquid interface. ACS Nano 2015, 9, 5544–5550.

36

Velpula, G.; Teyssandier, J.; De Feyter, S.; Mali, K. S. Nanoscale control over the mixing behavior of surface-confined bicomponent supramolecular networks using an oriented external electric field. ACS Nano 2017, 11, 10903–10913.

37

Cai, Z. F.; Zhan, G. L.; Daukiya, L.; Eyley, S.; Thielemans, W.; Severin, K.; De Feyter, S. Electric-field-mediated reversible transformation between supramolecular networks and covalent organic frameworks. J. Am. Chem. Soc. 2019, 141, 11404–11408.

38

Sun, K.; Shao, T. N.; Xie, J. L.; Lan, M.; Yuan, H. K.; Xiong, Z. H.; Wang, J. Z.; Liu, Y.; Xue, Q. K. Chiral pinwheel clusters lacking local point chirality. Small 2012, 8, 2078–2082.

39

Eremtchenko, M.; Temirov, R.; Bauer, D.; Schaefer, J. A.; Tautz, F. S. Formation of molecular order on a disordered interface layer: Pentacene/Ag(111). Phys. Rev. B 2005, 72, 115430.

40

Smerdon, J. A.; Bode, M.; Guisinger, N. P.; Guest, J. R. Monolayer and bilayer pentacene on Cu(111). Phys. Rev. B 2011, 84, 165436.

41

Tao, M. L.; Xiao, H. F.; Sun, K.; Tu, Y. B.; Yuan, H. K.; Xiong, Z. H.; Wang, J. Z.; Xue, Q. K. Visualizing buried silicon atoms at the Cd-Si(111)-7 × 7 interface with localized electrons. Phys. Rev. B 2017, 96, 125410.

42

Stadler, C.; Hansen, S.; Kröger, I.; Kumpf, C.; Umbach, E. Tuning intermolecular interaction in long-range-ordered submonolayer organic films. Nat. Phys. 2009, 5, 153–158.

43

Antczak, G.; Boom, K.; Morgenstern, K. Revealing the presence of mobile molecules on the surface. J. Phys. Chem. C 2017, 121, 542–549.

44
Silly, F.; Shaw, A. Q.; Castell, M. R.; Briggs, G. A. D. A chiral pinwheel supramolecular network driven by the assembly of PTCDI and melamine. Chem. Commun. 2008, 16, 1907–1909.https://doi.org/10.1039/b715658h
45

Smerdon, J. A.; Rankin, R. B.; Greeley, J. P.; Guisinger, N. P.; Guest, J. R. Chiral “pinwheel” heterojunctions self-assembled from C60 and pentacene. ACS Nano 2013, 7, 3086–3094.

46

Wang, Y. L.; Sun, K.; Tu, Y. B.; Tao, M. L.; Xie, Z. B.; Yuan, H. K.; Xiong, Z. H.; Wang, J. Z. Chirality switching of the self-assembled CuPc domains induced by electric field. Phys. Chem. Chem. Phys. 2018, 20, 7125–7131.

47

Bauert, T.; Zoppi, L.; Koller, G.; Garcia, A.; Baldridge, K. K.; Ernst, K. H. Large induced interface dipole moments without charge transfer: Buckybowls on metal surfaces. J. Phys. Chem. Lett. 2011, 2, 2805–2809.

48

Gonella, G.; Dai, H. L.; Rockey, T. J. Tetracene monolayer and multilayer thin films on Ag(111): Substrate-adsorbate charge-transfer bonding and inter-adsorbate interaction. J. Phys. Chem. C 2008, 112, 4696–4703.

49

Baby, A.; Gruenewald, M.; Zwick, C.; Otto, F.; Forker, R.; van Straaten, G.; Franke, M.; Stadtmüller, B.; Kumpf, C.; Brivio, G. P. et al. Fully atomistic understanding of the electronic and optical properties of a prototypical doped charge-transfer interface. ACS Nano 2017, 11, 10495–10508.

50

Katayama, T.; Mukai, K.; Yoshimoto, S.; Yoshinobu, J. Thermally activated transformation from a charge-transfer state to a rehybridized state of tetrafluoro-tetracyanoquinodimethane on Cu(100). J. Phys. Chem. Lett. 2010, 1, 2917–2921.

51

Müller, K.; Seitsonen, A. P.; Brugger, T.; Westover, J.; Greber, T.; Jung, T.; Kara, A. Electronic structure of an organic/metal interface: Pentacene/Cu(110). J. Phys. Chem. C 2012, 116, 23465–23471.

52

Yokoyama, T.; Takahashi, T.; Shinozaki, K.; Okamoto, M. Quantitative analysis of long-range interactions between adsorbed dipolar molecules on Cu(111). Phys. Rev. Lett. 2007, 98, 206102.

53

Last, I.; Levy, Y.; Jortner, J. Beyond the Rayleigh instability limit for multicharged finite systems: From fission to Coulomb explosion. Proc. Natl. Acad. Sci. USA 2002, 99, 9107–9112.

54

Mason, P. E.; Uhlig, F.; Vaněk, V.; Buttersack, T.; Bauerecker, S.; Jungwirth, P. Coulomb explosion during the early stages of the reaction of alkali metals with water. Nat. Chem. 2015, 7, 250–254.

55

Kresse, G. Furthmüller, J. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B 1996, 54, 11169–11186.

56

Blöchl, P. E. Projector augmented-wave method. Phys. Rev. B 1994, 50, 17953–17979.

57

Perdew, J. P.; Burke, K.; Ernzerhof, M. Generalized gradient approximation made simple. Phys. Rev. Lett. 1996, 77, 3865–3868.

58

Grimme, S.; Antony, J.; Ehrlich, S.; Krieg, H. A. A consistent and accurate ab initio parametrization of density functional dispersion correction (DFT-D) for the 94 elements H-Pu. J. Chem. Phys. 2010, 132, 154104.

Nano Research
Pages 5316-5321
Cite this article:
Shi M-X, Xu J, Sun K, et al. Simultaneous switching of supramolecular chirality and organizational chirality driven by Coulomb expansion. Nano Research, 2022, 15(6): 5316-5321. https://doi.org/10.1007/s12274-021-4058-8
Topics:

791

Views

3

Crossref

3

Web of Science

3

Scopus

0

CSCD

Altmetrics

Received: 29 September 2021
Accepted: 08 December 2021
Published: 29 September 2021
© Tsinghua University Press and Springer-Verlag GmbH Germany, part of Springer Nature 2021
Return