AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article

Develop potential multi-target drugs by self-assembly of quercetin with amino acids and metal ion to achieve significant efficacy in anti-Alzheimer’s disease

Chunling Zhu( )Yuheng YangXiaowen LiXingyu ChenXucong LinXiaoping Wu
Institute of Food Safety and Environment Monitoring, College of Chemistry, Fuzhou University, Fuzhou 350116, China
Show Author Information

Graphical Abstract

Self-assembled nanoparticles (NPs) were developed as multi-target drugs (MTDs) by using9-fluorenylmethyloxycarbonyl-tryptophan (Fmoc-Trp), quercetin, and Fe2+ as buildingblocks through coordination and electrostatic interaction to generate Fmoc-Trp-Fe2+-Quercetin (FTFQ) NPs. The prepared self-assembled NPs exhibited enhanced therapeuticeffects to Alzheimer’s disease (AD) zebrafish through simultaneously acting on severaltargets such as inhibiting β-site APP cleaving enzyme (BACE1) activity, reducing Aβaggregation, inducing Aβ fibrils disaggregation, and eliminating toxic reactive oxygenspecies (ROS).

Abstract

Exploring multi-target drugs (MTDs) is a prevalent method against Alzheimer’s disease (AD). However, the current developed MTDs based on the “framework combination” technique or using flavonoids have not realized better healing effects owing to a complex metabolic process and low bioavailability. Here, we propose an alternative strategy to develop self-assembled nanoparticles (NPs) as MTDs using 9-fluorenylmethyloxycarbonyl-tryptophan (Fmoc-Trp), quercetin (Que), and Fe2+ as building blocks through coordination and electrostatic interaction to generate Fmoc-Trp-Fe2+-Que (FTFQ) NPs. Whether in cell or in vivo, FTFQ NPs exhibited considerable biocompatibility attributing to the inherent biological affinity of assembly units. By combining the advantages of assemble approach and nanostructures, the obtained FTFQ NPs greatly enhanced the bioavailability of Que and displayed synergistic therapeutic effects through reducing Aβ aggregation in direct/indirect means and eliminating the toxicity induced by ROS and Aβ oligomer/fibrils. Furthermore, FTFQ NPs could obviously restore the AD zebrafish’s mobility and stimulus response ability. More importantly, developing self-assembly NPs as MTDs could be an efficient and general method to promote other novel MTDs by extending the assemble units to other drugs, peptides, and metal ions. Based on above benefits, these self-assembled NPs could be as potential MTDs and show great promising application in AD treatment.

Electronic Supplementary Material

Download File(s)
12274_2021_4066_MOESM1_ESM.pdf (1.6 MB)

References

1

Scheltens, P.; De Strooper, B.; Kivipelto, M.; Holstege, H.; Chételat, G.; Teunissen, C. E.; Cummings, J.; van der Flier, W. M. Alzheimer's disease. Lancet 2021, 397, 1577–1590.

2

Ballard, C.; Aarsland, D.; Cummings, J.; O’Brien, J.; Mills, R.; Molinuevo, J. L.; Fladby, T.; Williams, G.; Doherty, P.; Corbett, A. et al. Drug repositioning and repurposing for Alzheimer disease. Nat. Rev. Neurol. 2020, 16, 661–673.

3

Golde, T. E.; DeKosky, S. T.; Galasko, D. Alzheimer's disease: The right drug, the right time. Science 2018, 362, 1250–1251.

4

Chen, J. L.; Zhang, P. Y.; Abe, M.; Aikawa, H.; Zhang, L. Y.; Frank, A. J.; Zembryski, T.; Hubbs, C.; Park, H.; Withka, J. et al. Design, optimization, and study of small molecules that target tau pre-mRNA and affect splicing. J. Am. Chem. Soc. 2020, 142, 8706–8727.

5

Ma, M. M.; Liu, Z. Q.; Gao, N.; Pi, Z. F.; Du, X. B.; Ren, J. S.; Qu, X. G. Self-protecting biomimetic nanozyme for selective and synergistic clearance of peripheral amyloid-β in an Alzheimer’s disease model. J. Am. Chem. Soc. 2020, 142, 21702–21711.

6

Zhang, F.; Zhong, R. J.; Cheng, C.; Li, S.; Le, W. D. New therapeutics beyond amyloid-β and tau for the treatment of Alzheimer’s disease. Acta Pharmacol. Sin. 2021, 42, 1382–1389.

7

van der Kant, R.; Goldstein, L. S. B.; Ossenkoppele, R. Amyloid-β-independent regulators of tau pathology in Alzheimer disease. Nat. Rev. Neurosci. 2020, 21, 21–35.

8

Irwin, M. R.; Vitiello, M. V. Implications of sleep disturbance and inflammation for Alzheimer's disease dementia. Lancet Neurol. 2019, 18, 296–306.

9

Bachurin, S. O.; Bovina, E. V.; Ustyugov, A. A. Drugs in clinical trials for Alzheimer's disease: The major trends. Med. Res. Rev. 2017, 37, 1186–1225.

10

Cao, J. Q.; Hou, J. W.; Ping, J.; Cai, D. M. Advances in developing novel therapeutic strategies for Alzheimer’s disease. Mol. Neurodegener. 2018, 13, 64.

11

Kim, M.; Kang, J.; Lee, M.; Han, J.; Nam, G.; Tak, E.; Kim, M. S.; Lee, H. J.; Nam, E.; Park, J. et al. Minimalistic principles for designing small molecules with multiple reactivities against pathological factors in dementia. J. Am. Chem. Soc. 2020, 142, 8183–8193.

12

Geldenhuys, W. J.; Youdim, M. B. H.; Carroll, R. T.; Van der Schyf, C. J. The emergence of designed multiple ligands for neurodegenerative disorders. Prog. Neurobiol. 2011, 94, 347–359.

13

Schneider, L. S.; Geffen, Y.; Rabinowitz, J.; Thomas, R. G.; Schmidt, R.; Ropele, S.; Weinstock, M.; Group, L. S. Low-dose ladostigil for mild cognitive impairment: A phase 2 placebo-controlled clinical trial. Neurology 2019, 93, e1474–e1484.

14

Perez, D. I.; Martinez, A.; Gil, C.; Campillo, N. E. From bitopic inhibitors to multitarget drugs for the future treatment of Alzheimer’s disease. Curr. Med. Chem. 2015, 22, 3789–3806.

15

Blaikie, L.; Kay, G. Kong Thoo Lin, P. Current and emerging therapeutic targets of Alzheimer's disease for the design of multi-target directed ligands. MedChemComm 2019, 10, 2052–2072.

16

Bolognesi, M. L. Polypharmacology in a single drug: Multitarget drugs. Curr. Med. Chem. 2013, 20, 1639–1645.

17

Benek, O.; Korabecny, J.; Soukup, O. A perspective on multi-target drugs for Alzheimer's disease. Trends Pharmacol. Sci. 2020, 41, 434–445.

18

Khan, H.; Ullah, H.; Aschner, M.; Cheang, W. S.; Akkol, E. K. Neuroprotective effects of quercetin in Alzheimer's disease. Biomolecules 2020, 10, 59.

19

Russo, M.; Spagnuolo, C.; Tedesco, I.; Bilotto, S.; Russo, G. L. The flavonoid quercetin in disease prevention and therapy: Facts and fancies. Biochem. Pharmacol. 2012, 83, 6–15.

20

Zaplatic, E.; Bule, M.; Shah, S. Z. A.; Uddin, S.; Niaz, K. Molecular mechanisms underlying protective role of quercetin in attenuating Alzheimer's disease. Life Sci. 2019, 224, 109–119.

21

Suganthy, N.; Devi, K. P.; Nabavi, S. F.; Braidy, N.; Nabavi, S. M. Bioactive effects of quercetin in the central nervous system: Focusing on the mechanisms of actions. Biomed. Pharmacother. 2016, 84, 892–908.

22

Jiménez-Aliaga, K.; Bermejo-Bescós, P.; Benedí, J.; Martín-Aragón, S. Quercetin and rutin exhibit antiamyloidogenic and fibril-disaggregating effects in vitro and potent antioxidant activity in APPswe cells. Life Sci. 2011, 89, 939–945.

23

Shi, Y.; Liang, X. C.; Zhang, H.; Wu, Q. L.; Qu, L.; Sun, Q. Quercetin protects rat dorsal root ganglion neurons against high glucose-induced injury in vitro through Nrf-2/HO-1 activation and NF-κB inhibition. Acta Pharmacol. Sin. 2013, 34, 1140–1148.

24

Ansari, M. A.; Abdul, H. M.; Joshi, G.; Opii, W. O.; Butterfield, D. A. Protective effect of quercetin in primary neurons against Aβ(1-42): Relevance to Alzheimer's disease. J. Nutr. Biochem. 2009, 20, 269–275.

25

Amanzadeh, E.; Esmaeili, A.; Abadi, R. E. N.; Kazemipour, N.; Pahlevanneshan, Z.; Beheshti, S. Quercetin conjugated with superparamagnetic iron oxide nanoparticles improves learning and memory better than free quercetin via interacting with proteins involved in LTP. Sci. Rep. 2019, 9, 6876.

26

Paula, P. C.; Angelica Maria, S. G.; Luis, C. H.; Gloria Patricia, C. G. Preventive effect of quercetin in a triple transgenic Alzheimer’s disease mice model. Molecules 2019, 24, 2287.

27

Rifaai, R. A.; Mokhemer, S. A.; Saber, E. A.; El-Aleem, S. A. A.; El-Tahawy, N. D. G. Neuroprotective effect of quercetin nanoparticles: A possible prophylactic and therapeutic role in Alzheimer’s disease. J. Chem. Neuroanat. 2020, 107, 101795.

28

Kumar, P.; Sharma, G.; Kumar, R.; Singh, B.; Malik, R.; Katare, O. P.; Raza, K. Promises of a biocompatible nanocarrier in improved brain delivery of quercetin: Biochemical, pharmacokinetic and biodistribution evidences. Int. J. Pharm. 2016, 515, 307–314.

29

Sun, D. D.; Li, N.; Zhang, W. W.; Zhao, Z. W.; Mou, Z. P.; Huang, D. H.; Liu, J.; Wang, W. Y. Design of PLGA-functionalized quercetin nanoparticles for potential use in Alzheimer’s disease. Colloids Surf. B:Biointerf. 2016, 148, 116–129.

30

Liu, H. H.; Han, Y. B.; Wang, T. T.; Zhang, H.; Xu, Q.; Yuan, J. X.; Li, Z. Targeting microglia for therapy of Parkinson’s disease by using biomimetic ultrasmall nanoparticles. J. Am. Chem. Soc. 2020, 142, 21730–21742.

31

Li, Y. X.; Zou, Q. L.; Yuan, C. Q.; Li, S. K.; Xing, R. R.; Yan, X. H. Amino acid coordination driven self-assembly for enhancing both the biological stability and tumor accumulation of curcumin. Angew. Chem., Int. Ed. 2018, 57, 17084–17088.

32

Li, S. K.; Zou, Q. L.; Xing, R. R.; Govindaraju, T.; Fakhrullin, R.; Yan, X. H. Peptide-modulated self-assembly as a versatile strategy for tumor supramolecular nanotheranostics. Theranostics 2019, 9, 3249–3261.

33

Mukherjee, S.; Madamsetty, V. S.; Bhattacharya, D.; Chowdhury, S. R.; Paul, M. K.; Mukherjee, A. Recent advancements of nanomedicine in neurodegenerative disorders theranostics. Adv. Funct. Mater. 2020, 30, 2003054.

34

Liu, Z. X.; Li, X. L.; Wu, X. P.; Zhu, C. L. A dual-inhibitor system for the effective antifibrillation of Aβ40 peptides by biodegradable EGCG-Fe(III)/PVP nanoparticles. J. Mater. Chem. B 2019, 7, 1292–1299.

35

Vácha, R.; Linse, S.; Lund, M. Surface effects on aggregation kinetics of amyloidogenic peptides. J. Am. Chem. Soc. 2014, 136, 11776–11782.

36

Gaumet, M.; Vargas, A.; Gurny, R.; Delie, F. Nanoparticles for drug delivery: The need for precision in reporting particle size parameters. Eur. J. Pharm. Biopharm. 2008, 69, 1–9.

37

Erdogan, G.; Karadag, R.; Dolen, E. Potentiometrie and spectrophotometric determination of the stability constants of quercetin complexes with aluminium(III) and iron(II). Rev. Anal. Chem. 2005, 24, 247–261.

38

de Castilho, T. S.; Matias, T. B.; Nicolini, K. P.; Nicolini, J. Study of interaction between metal ions and quercetin. Food Sci. Hum. Well. 2018, 7, 215–219.

39

Muñoz, V. A.; Ferrari, G. V.; Sancho, M. I.; Montaña, M. P. Spectroscopic and thermodynamic study of chrysin and quercetin complexes with Cu(II). J. Chem. Eng. Data 2016, 61, 987–995.

40

da Silva, W. M. B.; de Oliveira Pinheiro, S.; Alves, D. R.; de Menezes, J. E. S. A.; Magalhães, F. E. A.; Silva, F. C. O.; Silva, J.; Marinho, E. S.; de Morais, S. M. Synthesis of quercetin-metal complexes, in vitro and in silico anticholinesterase and antioxidant evaluation, and in vivo toxicological and anxiolitic activities. Neurotoxic. Res. 2020, 37, 893–903.

41

Porfírio, D. A.; de Queiroz Ferreira, R.; Malagutti, A. R.; Valle, E. M. A. Electrochemical study of the increased antioxidant capacity of flavonoids through complexation with iron(II) ions. Electrochim. Acta 2014, 141, 33–38.

42

Salgado, P.; Melin, V.; Contreras, D.; Moreno, Y.; Mansilla, H. D. Fenton reaction driven by iron ligands. J. Chil. Chem. Soc. 2013, 58, 2096–2101.

43

Leopoldini, M.; Russo, N.; Chiodo, S.; Toscano, M. Iron chelation by the powerful antioxidant flavonoid quercetin. J. Agric. Food Chem. 2006, 54, 6343–6351.

44

Murakami, K.; Irie, K. Three structural features of functional food components and herbal medicine with amyloid β42 anti-Aggregation properties. Molecules 2019, 24, 2125.

45

Chow, V. W.; Mattson, M. P.; Wong, P. C.; Gleichmann, M. An overview of APP processing enzymes and products. NeuroMol. Med. 2010, 12, 1–12.

46

Keskin, A. D.; Kekuš, M.; Adelsberger, H.; Neumann, U.; Shimshek, D. R.; Song, B.; Zott, B.; Peng, T. Y.; Förstl, H.; Staufenbiel, M. et al. BACE inhibition-dependent repair of Alzheimer’s pathophysiology. Proc. Natl. Acad. Sci. USA 2017, 114, 8631–8636.

47

Zhu, K. C.; Peters, F.; Filser, S.; Herms, J. Consequences of pharmacological BACE inhibition on synaptic structure and function. Biol. Psychiatry 2018, 84, 478–487.

48

Saleem, S.; Kannan, R. R. Zebrafish: An emerging real-time model system to study Alzheimer's disease and neurospecific drug discovery. Cell Death Discov. 2018, 4, 45.

49
Jia H. R. Zhu Y. X. Duan Q. Y. Chen Z. Wu F. G. Nanomaterials meet zebrafish: Toxicity evaluation and drug delivery applications J. Control. Release 2019 311–312 301 318 10.1016/j.jconrel.2019.08.022

Jia, H. R.; Zhu, Y. X.; Duan, Q. Y.; Chen, Z.; Wu, F. G. Nanomaterials meet zebrafish: Toxicity evaluation and drug delivery applications. J. Control. Release 2019, 311–312, 301–318.

50

Faridi, A.; Sun, Y. X.; Okazaki, Y.; Peng, G. T.; Gao, J.; Kakinen, A.; Faridi, P.; Zhao, M.; Javed, I.; Purcell, A. W. et al. Mitigating human IAPP amyloidogenesis in vivo with chiral silica nanoribbons. Small 2018, 14, 1802825.

51

Wang, X. B.; Zhang, J. B.; He, K. J.; Wang, F.; Liu, C. F. Advances of zebrafish in neurodegenerative disease: From models to drug discovery. Front. Pharmacol. 2021, 12, 713963.

52

Huang, W. H.; Li, C. S.; Shen, Z. R.; Zhu, X. Y.; Xia, B.; Li, C. Q. Development of a zebrafish model for rapid drug screening against Alzheimer's disease. J. Pharm. Pharmacol. 2016, 4, 162–173.

53

Guggiana-Nilo, D. A.; Engert, F. Properties of the visible light phototaxis and UV avoidance behaviors in the larval zebrafish. Front. Behav. Neurosci. 2016, 10, 160.

54

Javed, I.; Peng, G. T.; Xing, Y. T.; Yu, T. Y.; Zhao, M.; Kakinen, A.; Faridi, A.; Parish, C. L.; Ding, F.; Davis, T. P. et al. Inhibition of amyloid beta toxicity in zebrafish with a chaperone-gold nanoparticle dual strategy. Nat. Commun. 2019, 10, 3780.

55

Sang, Z. P.; Wang, K. R.; Shi, J.; Liu, W. M.; Cheng, X. F.; Zhu, G. F.; Wang, Y. L.; Zhao, Y. Y.; Qiao, Z. P.; Wu, A. G. et al. The development of advanced structural framework as multi-target-directed ligands for the treatment of Alzheimer’s disease. Eur. J. Med. Chem. 2020, 192, 112180.

Nano Research
Pages 5173-5182
Cite this article:
Zhu C, Yang Y, Li X, et al. Develop potential multi-target drugs by self-assembly of quercetin with amino acids and metal ion to achieve significant efficacy in anti-Alzheimer’s disease. Nano Research, 2022, 15(6): 5173-5182. https://doi.org/10.1007/s12274-021-4066-8
Topics:

892

Views

10

Crossref

11

Web of Science

10

Scopus

1

CSCD

Altmetrics

Received: 10 August 2021
Revised: 07 December 2021
Accepted: 10 December 2021
Published: 14 March 2022
© Tsinghua University Press and Springer-Verlag GmbH Germany, part of Springer Nature 2021
Return