Graphical Abstract

Photodynamic therapy (PDT) is an emerging therapeutic strategy for hypertrophic scars (HS), which is heavily dependent on reactive oxygen species (ROS) generation. However, the unsatisfactory delivery and excitation of 5-aminolevulinic acid (ALA, a commercial photosensitizer in dermatology) result in an insufficient ROS generation, and thus limit the clinical application of PDT treating HS (HS-PDT). Consequently, sophisticated transdermal co-delivery nanoethosomes (named A/A-ES) with ALA and Au nanotriangles (AuNTs) in cores are prepared via an in-situ seed-mediated growth method, and then applied to improve HS-PDT through localized surface plasmon resonance (LSPR)-enhanced ROS generation. A/A-ES display a satisfactory performance in co-delivery in HS tissue with sufficient protoporphyrin IX production and LSPR effect in cytoplasm, which is beneficial for ALA excitation as well as ROS generation. In vitro/vivo studies reveal that A/A-ES significantly improve HS-PDT in promoting to fibroblast apoptosis and collagen remodeling through LSPR-enhanced ROS generation. Therefore, this study provides a feasible strategy that integrates transdermal delivery and LSPR to enable the beneficial effects of HS-PDT through boosting the delivery and excitation of ALA.
Xu, X. W.; Gu, S. C.; Huang, X.; Ren, J. Y.; Gu, Y. H.; Wei, C. J.; Lian, X.; Li, H. Z.; Gao, Y. S.; Jin, R. et al. The role of macrophages in the formation of hypertrophic scars and keloids. Burns Trauma 2020, 8, tkaa006.
Kim, S. W. Management of keloid scars: Noninvasive and invasive treatments. Arch. Plast. Surg. 2021, 48, 149–157.
Tosa, M.; Ogawa, R. Photodynamic therapy for keloids and hypertrophic scars: A review. Scars Burn. Heal. 2020, 6, 2059513120932059.
Nguyen, K.; Khachemoune, A. An update on topical photodynamic therapy for clinical dermatologists. J. Dermatol. Treat. 2019, 30, 732–744.
Morton, C. A.; McKenna, K. E.; Rhodes, L. E. Guidelines for topical photodynamic therapy: Update. Brit. J. Dermatol. 2008, 159, 1245–1266.
Polat, E.; Kang, K. Natural photosensitizers in antimicrobial photodynamic therapy. Biomedicines 2021, 9, 584.
Chen, J. M.; Fan, T. J.; Xie, Z. J.; Zeng, Q. Q.; Xue, P.; Zheng, T. T.; Chen, Y.; Luo, X. L.; Zhang, H. Advances in nanomaterials for photodynamic therapy applications: Status and challenges. Biomaterials 2020, 237, 119827.
Chen, Y. S.; Zhang, Z.; Xin, Y.; Zhou, R.; Jiang, K.; Sun, X. Y.; He, D. N.; Song, J.; Zhang, Y. X. Synergistic transdermal delivery of nanoethosomes embedded in hyaluronic acid nanogels for enhancing photodynamic therapy. Nanoscale 2020, 12, 15435–15442.
Zhang, Z.; Liu, Y.; Chen, Y. S.; Li, L. X.; Lan, P.; He, D. N.; Song, J.; Zhang, Y. X. Transdermal delivery of 5-aminolevulinic acid by nanoethosome gels for photodynamic therapy of hypertrophic scars. ACS Appl. Mater. Interfaces 2019, 11, 3704–3714.
Zhang, Z.; Chen, Y. S.; Xu, H.; Wo, Y.; Zhang, Z.; Liu, Y.; Su, W. J.; Cui, D. X.; Zhang, Y. X. 5-Aminolevulinic acid loaded ethosomal vesicles with high entrapment efficiency for in vitro topical transdermal delivery and photodynamic therapy of hypertrophic scars. Nanoscale 2016, 8, 19270–19279.
Chen, Y. S.; Zhang, Z.; Xin, Y.; Yu, Z. X.; Meng, X. X.; Zhang, Y.; He, D. N.; Zhang, Y. X. Functional transdermal nanoethosomes enhance photodynamic therapy of hypertrophic scars via self-generating oxygen. ACS Appl. Mater. Interfaces 2021, 13, 7955–7965.
Zhong, X. Y.; Wang, X. W.; Li, J. X.; Hu, J.; Cheng, L.; Yang, X. L. ROS-based dynamic therapy synergy with modulating tumor cell-microenvironment mediated by inorganic nanomedicine. Coordin. Chem. Rev. 2021, 437, 213828.
Du, B. J.; Liu, J. H.; Ding, G. Y.; Han, X.; Li, D.; Wang, E. K.; Wang, J. Positively charged graphene/Fe3O4/polyethylenimine with enhanced drug loading and cellular uptake for magnetic resonance imaging and magnet-responsive cancer therapy. Nano Res. 2017, 10, 2280–2295.
An, J.; Hu, Y. G.; Cheng, K.; Li, C.; Hou, X. L.; Wang, G. L.; Zhang, X. S.; Liu, B.; Zhao, Y. D.; Zhang, M. Z. ROS-augmented and tumor-microenvironment responsive biodegradable nanoplatform for enhancing chemo-sonodynamic therapy. Biomaterials 2020, 234, 119761.
Yang, B. W.; Chen, Y.; Shi, J. L. Nanocatalytic medicine. Adv. Mater. 2019, 31, 1901778.
Sun, J. Y.; Wang, J. P.; Hu, W.; Wang, Y. H.; Chou, T.; Zhang, Q.; Zhang, B. L.; Yu, Z. Q.; Yang, Y. M.; Ren, L. et al. Camouflaged gold nanodendrites enable synergistic photodynamic therapy and NIR biowindow II photothermal therapy and multimodal imaging. ACS Appl. Mater. Interfaces 2021, 13, 10778–10795.
He, Y. C.; Yang, M. X.; Zhao, S. X.; Cong, C.; Li, X. W.; Cheng, X.; Yang, J. Y.; Gao, D. W. Regulatory mechanism of localized surface plasmon resonance based on gold nanoparticles-coated paclitaxel nanoliposomes and their antitumor efficacy. ACS Sustainable Chem. Eng. 2018, 6, 13543–13550.
Kochuveedu, S. T.; Kim, D. H. Surface plasmon resonance mediated photoluminescence properties of nanostructured multicomponent fluorophore systems. Nanoscale 2014, 6, 4966–4984.
Macia, N.; Bresoli-Obach, R.; Nonell, S.; Heyne, B. Hybrid silver nanocubes for improved plasmon-enhanced singlet oxygen production and inactivation of bacteria. J. Am. Chem. Soc. 2019, 141, 684–692.
Liang, R. J.; Liu, L. L.; He, H. M.; Chen, Z. K.; Han, Z. Q.; Luo, Z. Y.; Wu, Z. H.; Zheng, M. B.; Ma, Y. F.; Cai, L. T. Oxygen-boosted immunogenic photodynamic therapy with gold nanocages@manganese dioxide to inhibit tumor growth and metastases. Biomaterials 2018, 177, 149–160.
Tabish, T. A.; Dey, P.; Mosca, S.; Salimi, M.; Palombo, F.; Matousek, P.; Stone, N. Smart gold nanostructures for light mediated cancer theranostics: Combining optical diagnostics with photothermal therapy. Adv. Sci. 2020, 7, 1903441.
Chen, H. L.; Liu, Z. M.; Jiang, O. Y.; Zhang, J. Y.; Huang, J.; You, X. R.; Liang, Z. Q.; Tao, W.; Wu, J. Nanocomposite of Au and black phosphorus quantum dots as versatile probes for amphibious SERS spectroscopy, 3D photoacoustic imaging and cancer therapy. Giant 2021, 8, 100073.
Seaberg, J.; Montazerian, H.; Hossen, M. N.; Bhattacharya, R.; Khademhosseini, A.; Mukherjee, P. Hybrid nanosystems for biomedical applications. ACS Nano 2021, 15, 2099–2142.
Zhang, S. H.; Xin, P. K.; Ou, Q. M.; Hollett, G.; Gu, Z. P.; Wu, J. Poly (ester amide)-based hybrid hydrogels for efficient transdermal insulin delivery. J. Mater. Chem. B 2018, 6, 6723–6730.
Zhong, H. L.; Huang, J.; Wu, J.; Du, J. H. Electrospinning nanofibers to 1D, 2D, and 3D scaffolds and their biomedical applications. Nano Res. 2022, 15, 787–804.
Xian, C. H.; Gu, Z. P.; Liu, G. T.; Wu, J. Whole wheat flour coating with antioxidant property accelerates tissue remodeling for enhanced wound healing. Chin. Chem. Lett. 2020, 31, 1612–1615.
Zhang, S. H.; Hou, J. Y.; Yuan, Q. J.; Xin, P. K.; Cheng, H. T.; Gu, Z. P.; Wu, J. Arginine derivatives assist dopamine-hyaluronic acid hybrid hydrogels to have enhanced antioxidant activity for wound healing. Chem. Eng. J. 2020, 392, 123775.
Wang, J.; Zhang, H.; Xiao, X.; Liang, D.; Liang, X. Y.; Mi, L.; Wang, J. F.; Liu, J. Gold nanobipyramid-loaded black phosphorus nanosheets for plasmon-enhanced photodynamic and photothermal therapy of deep-seated orthotopic lung tumors. Acta Biomater. 2020, 107, 260–271.
Zhang, Z.; Chen, Y. S.; Ding, J. Y.; Zhang, C. L.; Zhang, A. M.; He, D. N.; Zhang, Y. X. Biocompatible 5-aminolevulinic acid/Au nanoparticle-loaded ethosomal vesicles for in vitro transdermal synergistic photodynamic/photothermal therapy of hypertrophic scars. Nanoscale Res. Lett. 2017, 12, 622.
Soto-Cruz, J.; Conejo-Valverde, P.; Saenz-Arce, G.; Dou, H. J.; Rojas-Carrillo, O. Biofabrication of gold nanotriangles using liposomes as a dual functional reductant and stabilizer. Langmuir 2021, 37, 3446–3455.
Cardenas, M. T. P.; Kong, C. C.; He, J.; Litvin, S.; Meyerson, M. L.; Nie, Z. H. Immobilized seed-mediated growth of two-dimensional array of metallic nanocrystals with asymmetric shapes. ACS Nano 2018, 12, 1107–1119.
Lin, J.; Wang, S. J.; Huang, P.; Wang, Z.; Chen, S. H.; Niu, G.; Li, W. W.; He, J.; Cui, D. X.; Lu, G. M. et al. Photosensitizer-loaded gold vesicles with strong plasmonic coupling effect for imaging-guided photothermal/photodynamic therapy. ACS Nano 2013, 7, 5320–5329.
Huang, P.; Li, Z. M.; Lin, J.; Yang, D. P.; Gao, G.; Xu, C.; Bao, L.; Zhang, C. L.; Wang, K.; Song, H. et al. Photosensitizer-conjugated magnetic nanoparticles for in vivo simultaneous magnetofluorescent imaging and targeting therapy. Biomaterials 2011, 32, 3447–3458.
Gao, L.; Liu, R.; Gao, F. P.; Wang, Y. L.; Jiang, X. L.; Gao, X. Y. Plasmon-mediated generation of reactive oxygen species from near-infrared light excited gold nanocages for photodynamic therapy in vitro. ACS Nano 2014, 8, 7260–7271.
Chen, W. W.; Zhang, S. H.; Yu, Y. Y.; Zhang, H. S.; He, Q. J. Structural-engineering rationales of gold nanoparticles for cancer theranostics. Adv. Mater. 2016, 28, 8567–8585.
Kolygina, D. V.; Siek, M.; Borkowska, M.; Ahumada, G.; Barski, P.; Witt, D.; Jee, A. Y.; Miao, H.; Ahumada, J. C.; Granick, S. et al. Mixed-charge nanocarriers allow for selective targeting of mitochondria by otherwise nonselective dyes. ACS Nano 2021, 15, 11470–11490.
Korntner, S.; Lehner, C.; Gehwolf, R.; Wagner, A.; Grütz, M.; Kunkel, N.; Tempfer, H.; Traweger, A. Limiting angiogenesis to modulate scar formation. Adv. Drug Deliv. Rev. 2019, 146, 170–189.
Zhong, L. Z.; Li, M. R.; Fu, X. B. Biological approaches for hypertrophic scars. Int. Wound J. 2020, 17, 405–418.