AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article

Platinum single atom catalysts for hydrogen isotope separation during hydrogen evolution reaction

Jingsong Xu1,§Rui Li2,§Xiayan Yan2Qingkai Zhao2Rongguang Zeng2Jingwen Ba2Qifa Pan1Xin Xiang2( )Daqiao Meng1( )
Science and Technology on Surface Physics and Chemistry Laboratory, Jiangyou 621908, China
Institute of Materials, China Academy of Engineering Physics, Jiangyou 621907, China

§ Jingsong Xu and Rui Li contributed equally to this work.

Show Author Information

Graphical Abstract

Pt single atom catalysts (SACs) were anchored on nitrogen doped graphite foil by polyol reduction method. The as-prepared Pt SACs exhibited high activity with an overpotential of 0.022 V at 10 mA·cm−2 toward hydrogen evolution reaction and a high separation factor of 6.83 toward H/D separation.

Abstract

Electrolysis of water is widely used for hydrogen isotope separation and the development of hydrogen evolution reaction (HER) catalysts with high selectivity and activity is of key importance. Herein, we propose single atom catalysts (SACs) as promising catalysts for efficient hydrogen isotope separation. Pt SACs and Pt nanoparticles (NPs) have been fabricated on nanoarray-structured nitrogen-doped graphite foil (NGF) substrate by a polyol reduction method. The as prepared Pt1/NGF electrode exhibits high activity and selectivity toward HER with a low overpotential of 0.022 V at 10 mA·cm−2 and a high separation factor of 6.83 for hydrogen and deuterium separation, much better than Pt NPs counterpart. Density functional theory (DFT) calculations ascribe the high activity and selectivity to the constructed Pt-N2C2 structure. This work develops a new opportunity for the design and application of high-efficiency and stable SACs toward hydrogen isotope separation by electrolysis of water.

Electronic Supplementary Material

Download File(s)
12274_2022_4075_MOESM1_ESM.pdf (2.3 MB)

References

1

Kim, J. Y.; Oh, H.; Moon, H. R. Hydrogen isotope separation in confined nanospaces: Carbons, zeolites, metal–organic frameworks, and covalent organic frameworks. Adv. Mater. 2019, 31, 1805293.

2

Glugla, M.; Lässer, R.; Dörr, L.; Murdoch, D. K.; Haange, R.; Yoshida, H. The inner deuterium/tritium fuel cycle of ITER. Fusion Eng. Des. 2003, 69, 39–43.

3

Perez-Carbajo, J.; Parra, J. B.; Ania, C. O.; Merkling, P. J.; Calero, S. Molecular sieves for the separation of hydrogen isotopes. ACS Appl. Mater. Interfaces 2019, 11, 18833–18840.

4

Lozada-Hidalgo, M. Zhang, S.; Hu, S.; Esfandiar, A.; Grigorieva, I. V.; Geim, A. K. Scalable and efficient separation of hydrogen isotopes using graphene-based electrochemical pumping. Nat. Commun. 2017, 8, 15215.

5

Muhammad, R.; Jee, S.; Jung, M.; Park, J.; Kang, S. G.; Choi, K. M.; Oh, H. Exploiting the specific isotope-selective adsorption of metal–organic framework for hydrogen isotope separation. J. Am. Chem. Soc. 2021, 143, 8232–8236.

6

Si, Y. N.; He, X.; Jiang, J.; Duan, Z. M.; Wang, W. J.; Yuan, D. Q. Highly effective H2/D2 separation in a stable Cu-based metal–organic framework. Nano Res. 2021, 14, 518–525.

7

Ogawa, R.; Tanii, R.; Dawson, R.; Matsushima, H.; Ueda, M. Deuterium isotope separation by combined electrolysis fuel cell. Energy 2018, 149, 98–104.

8

Harada, K.; Tanii, R.; Matsushima, H.; Ueda, M.; Sato, K.; Haneda, T. Effects of water transport on deuterium isotope separation during polymer electrolyte membrane water electrolysis. Int. J. Hydrogen Energy 2020, 45, 31389–31395.

9

Krishtalik, L. I. Kinetic isotope effect in the hydrogen evolution reaction. Electrochim. Acta 2001, 46, 2949–2960.

10

Minamimoto, H.; Osaka, R.; Murakoshi, K. In-situ observation of isotopic hydrogen evolution reactions using electrochemical mass spectroscopy to evaluate surface morphological effect. Electrochim. Acta 2019, 304, 87–93.

11

Pozio, A.; Tosti, S. Isotope effects H/D in a PEFC with Pt-Ru/anode at low and high current density. Int. J. Hydrogen Energy 2019, 44, 7544–7554.

12

Rebollar, L.; Intikhab, S.; Snyder, J. D.; Tang M. H. Kinetic isotope effects quantify pH-sensitive water dynamics at the Pt electrode interface. J. Phys. Chem. Lett. 2020, 11, 2308–2313.

13

Ji, S. F.; Chen, Y. J.; Wang, X. L.; Zhang, Z. D.; Wang, D. S.; Li, Y. D. Chemical synthesis of single atomic site catalysts. Chem. Rev. 2020, 120, 11900–11955.

14

Li, X. N.; Yang, X. F.; Huang, Y. Q.; Zhang, T.; Liu, B. Supported noble-metal single atoms for heterogeneous catalysis. Adv. Mater. 2019, 31, 1902031.

15

Zhang, Q. Q.; Guan, J. Q. Applications of single-atom catalysts. Nano Res. 2022, 15, 38–70.

16

Yang, J. R.; Li, W. H.; Wang, D. S.; Li, Y. D. Single-atom materials: Small structures determine macroproperties. Small Struct. 2021, 2, 2000051.

17

Zhang, F. F.; Zhu, Y. L.; Lin, Q.; Zhang, L.; Zhang, X. W.; Wang, H. T. Noble-metal single-atoms in thermocatalysis, electrocatalysis, and photocatalysis. Energy Environ. Sci. 2021, 14, 2954–3009.

18

Wang, Y.; Huang, X.; Wei, Z. D. Recent developments in the use of single-atom catalysts for water splitting. Chin. J. Catal. 2021, 42, 1269–1286.

19

Zhang, Q. Q.; Guan, J. Q. Single-atom catalysts for electrocatalytic applications. Adv. Funct. Mater. 2020, 30, 2000768.

20

Zhang, N. Q.; Ye, C. L.; Yan, H.; Li, L. C.; He, H.; Wang, D. S.; Li, Y. D. Single-atom site catalysts for environmental catalysis. Nano Res. 2020, 13, 3165–3182.

21

Chen, Y. J.; Ji, S. F.; Sun, W. M.; Lei, Y. P.; Wang, Q. C.; Li, A.; Chen, W. X.; Zhou, G.; Zhang, Z. D.; Wang, Y. et al. Engineering the atomic interface with single platinum atoms for enhanced photocatalytic hydrogen production. Angew. Chem., Int. Ed. 2020, 59, 1295–1301.

22

Zhao, D.; Zhuang, Z. W.; Cao, X.; Zhang, C.; Peng, Q.; Chen, C.; Li, Y. D. Atomic site electrocatalysts for water splitting, oxygen reduction and selective oxidation. Chem. Soc. Rev. 2020, 49, 2215–2264.

23

Lu, B. Z.; Liu, Q. M.; Chen, S. W. Electrocatalysis of single-atom sites: Impacts of atomic coordination. ACS Catal. 2020, 10, 7584–7618.

24

Guo, W. X.; Wang, Z. Y.; Wang, X. Q.; Wu, Y. General design concept for single-atom catalysts toward heterogeneous catalysis. Adv. Mater. 2021, 33, 2004287.

25

Liu, D. B.; He, Q.; Ding, S. Q.; Song, L. Structural regulation and support coupling effect of single-atom catalysts for heterogeneous catalysis. Adv. Energy Mater. 2020, 10, 2001482.

26
Jing, H. Y.; Zhu, P.; Zheng, X. B.; Zhang, Z. D.; Wang, D. S.; Li, Y. D. Theory-oriented screening and discovery of advanced energy transformation materials in electrocatalysis. Adv. Powder Mater., in press, https://doi.org/10.1016/j.apmate.2021.10.004.
27

Gan, T.; He, Q.; Zhang, H.; Xiao, H. J.; Liu, Y. F.; Zhang, Y.; He, X. H.; Ji, H. B. Unveiling the kilogram-scale gold single-atom catalysts via ball milling for preferential oxidation of CO in excess hydrogen. Chem. Eng. J. 2020, 389, 124490.

28

Wang, Y. L.; Waterhouse, G. I. N.; Shang, L.; Zhang, T. R. Electrocatalytic oxygen reduction to hydrogen peroxide: From homogeneous to heterogeneous electrocatalysis. Adv. Energy Mater. 2021, 11, 2003323.

29

Chen, Y. J.; Gao, R.; Ji, S. F.; Li, H. J.; Tang, K.; Jiang, P.; Hu, H. B.; Zhang, Z. D.; Hao, H. G.; Qu, Q. Y. et al. Atomic-level modulation of electronic density at cobalt single-atom sites derived from metal–organic frameworks: Enhanced oxygen reduction performance. Angew. Chem., Int. Ed. 2021, 60, 3212–3221.

30

Han, A. L.; Wang, X. J.; Tang, K.; Zhang, Z. D.; Ye, C. L.; Kong, K. J.; Hu, H. B.; Zheng, L. R.; Jiang, P.; Zhang, C. X. et al. An adjacent atomic platinum site enables single-atom iron with high oxygen reduction reaction performance. Angew. Chem., Int. Ed. 2021, 60, 19262–19271.

31

Yuan, W. Y.; Ma, Y. Y.; Wu, H.; Cheng, L. F. Single-atom catalysts for CO oxidation, CO2 reduction, and O2 electrochemistry. J. Energy Chem. 2022, 65, 254–279.

32

Wang, X. Y.; Sang, X. H.; Dong, C. L.; Yao, S. Y.; Shuai, L.; Lu, J. G.; Yang, B.; Li, Z. J.; Lei, L. C.; Qiu, M. et al. Proton capture strategy for enhancing electrochemical CO2 reduction on atomically dispersed metal-nitrogen active sites. Angew. Chem., Int. Ed. 2021, 60, 11959–11965.

33

Xu, Y.; Chu, M. Y.; Liu, F. F.; Wang, X. C.; Liu, Y.; Cao, M. H.; Gong, J.; Luo, J.; Lin, H. P.; Li, Y. Y. et al. Revealing the correlation between catalytic selectivity and the local coordination environment of Pt single atom. Nano Lett. 2020, 20, 6865–6872.

34

Shan, J. J.; Liu, J. L.; Li, M. W.; Lustig, S.; Lee, S. Flytzani-Stephanopoulos, M. NiCu single atom alloys catalyze the C-H bond activation in the selective non-oxidative ethanol dehydrogenation reaction. Appl. Catal. B: Environ. 2018, 226, 534–543.

35

Xu, J. S.; Li, R.; Qian, X. J.; Ba, J. W., Wu, Q. W.; Luo, W. H.; Meng, D. Q. Nanoarray-structured nitrogen-doped graphite foil as the support of NiFe layered double hydroxides for enhancing oxygen evolution reaction. J. Power Sources 2020, 469, 228419.

36

Segall, M. D.; Lindan, P. J. D.; Probert, M. J.; Pickard, C. J.; Hasnip, P. J.; Clark, S. J.; Payne, M. C. First-principles simulation: Ideas, illustrations and the CASTEP code. J. Phys.:Condens. Matter 2002, 14, 2717–2744.

37

White, J. A.; Bird, D. M. Implementation of gradient-corrected exchange-correlation potentials in Car-parrinello total-energy calculations. Phys. Rev. B 1994, 50, 4954–4957.

38

Vanderbilt, D. Soft self-consistent pseudopotentials in a generalized eigenvalue formalism. Phys. Rev. B 1990, 41, 7892–7895.

39

Voiry, D.; Yamaguchi, H.; Li, J. W.; Silva, R.; Alves, D. C. B.; Fujita, T.; Chen, M. W.; Asefa, T.; Shenoy, V. B.; Eda, G. et al. Enhanced catalytic activity in strained chemically exfoliated WS2 nanosheets for hydrogen evolution. Nat. Mater. 2013, 12, 850–855.

40

Dou, S.; Tao, L.; Wang, R. L.; El Hankari, S.; Chen, R.; Wang, S. Y. Plasma-assisted synthesis and surface modification of electrode materials for renewable energy. Adv. Mater. 2018, 30, 1705850.

41

Xu, J. S.; Li, R.; Xu, C. Q.; Zeng, R. G.; Jiang, Z.; Mei, B. B.; Li, J.; Meng, D. Q.; Chen, J. Underpotential-deposition synthesis and in-line electrochemical analysis of single-atom copper electrocatalysts. Appl. Catal. B: Environ. 2021, 298, 120028.

42

Xu, J. S.; Li, R.; Zeng, R. G.; Yan, X. Y.; Zhao, Q. K.; Ba, J. W.; Luo, W. H.; Meng, D. Q. Platinum single atoms supported on nanoarray-structured nitrogen-doped graphite foil with enhanced catalytic performance for hydrogen evolution reaction. ACS Appl. Mater. Interfaces 2020, 12, 38106–38112.

43

Ouyang, B.; Zhang, Y. Q.; Wang, Y.; Zhang, Z.; Fan, H. J.; Rawat, R. S. Plasma surface functionalization induces nanostructuring and nitrogen-doping in carbon cloth with enhanced energy storage performance. J. Mater. Chem. A 2016, 4, 17801–17808.

44

Li, T. F.; Liu, J. J.; Song, Y.; Wang, F. Photochemical solid-phase synthesis of platinum single atoms on nitrogen-doped carbon with high loading as bifunctional catalysts for hydrogen evolution and oxygen reduction reactions. ACS Catal. 2018, 8, 8450–8458.

45

Cho, S. J.; Ouyang, J. Y. Attachment of platinum nanoparticles to substrates by coating and polyol reduction of a platinum precursor. J. Phys. Chem. C 2011, 115, 8519–8526.

46
Li, R.; Xu, J. S.; Zhao, Q. K.; Ren, W. S.; Zeng, R. G.; Pan, Q. F.; Yan, X. Y.; Ba, J. W.; Tang, T.; Luo, W. H. Cathodic corrosion as a facile and universal method for the preparation of supported metal single atoms. Nano Res., in press, https://doi.org/10.1007/s12274-021-3767-3.
47

Zhong, W. W.; Tu, W. G.; Wang, Z. P.; Lin, Z. P.; Xu, A. J.; Ye, X. F.; Chen, D. C.; Xiao, B. B. Ultralow-temperature assisted synthesis of single platinum atoms anchored on carbon nanotubes for efficiently electrocatalytic acidic hydrogen evolution. J. Energy Chem. 2020, 51, 280–284.

48

Li, C.; Chen, Z.; Yi, H.; Cao, Y.; Du, L.; Hu, Y. D.; Kong, F. P.; Campen, R. K.; Gao, Y. Z.; Du, C. Y. et al. Polyvinylpyrrolidone-coordinated single-site platinum catalyst exhibits high activity for hydrogen evolution reaction. Angew. Chem., Int. Ed. 2020, 59, 15902–15907.

49

Kuang, P. Y.; Wang, Y. R.; Zhu, B. C.; Xia, F. J.; Tung, C. W.; Wu, J. S.; Chen, H. M.; Yu, J. G. Pt single atoms supported on N-doped mesoporous hollow carbon spheres with enhanced electrocatalytic H2-evolution activity. Adv. Mater. 2021, 33, 2008599.

50

Ye, S. H.; Luo, F. Y.; Zhang, Q. L.; Zhang, P. Y.; Xu, T. T.; Wang, Q.; He, D. S.; Guo, L. C.; Zhang, Y.; He, C. X. et al. Highly stable single Pt atomic sites anchored on aniline-stacked graphene for hydrogen evolution reaction. Energy Environ. Sci. 2019, 12, 1000–1007.

51

Li, J.; Zhou, Y. N.; Tang, W. J.; Zhen, J.; Gao, X. P.; Wang, N.; Chen, X.; Wei, M.; Xiao, X.; Chu, W. Cold-plasma technique enabled supported Pt single atoms with tunable coordination for hydrogen evolution reaction. Appl. Catal. B: Environ. 2021, 285, 119861.

52

Wang, Z. Y.; Yang, J.; Gan, J.; Chen, W. X.; Zhou, F. Y.; Zhou, X.; Yu, Z. Q.; Zhu, J. F.; Duan, X. Z.; Wu, Y. Electrochemical conversion of bulk platinum into platinum single-atom sites for the hydrogen evolution reaction. J. Mater. Chem. A 2020, 8, 10755–10760.

53

Han, A. L.; Zhou, X. F.; Wang, X. J.; Liu, S.; Xiong, Q. H.; Zhang, Q. H.; Gu, L.; Zhuang, Z. C.; Zhang, W. J.; Li, F. X. et al. One-step synthesis of single-site vanadium substitution in 1T-WS2 monolayers for enhanced hydrogen evolution catalysis. Nat. Commun. 2021, 12, 709.

54

Wang, Y. W.; Qiu, W. J.; Song, E. H.; Gu, F.; Zheng, Z. H.; Zhao, X. L.; Zhao, Y. Q.; Liu, J. J.; Zhang, W. Q. Adsorption-energy-based activity descriptors for electrocatalysts in energy storage applications. Natl. Sci. Rev. 2018, 5, 327–341.

55

Lei, Y. P.; Wang, Y. C.; Liu, Y.; Song, C. Y.; Li, Q.; Wang, D. S.; Li, Y. D. Designing atomic active centers for hydrogen evolution electrocatalysts. Angew. Chem., Int. Ed. 2020, 59, 20794–20812.

56

Yang, J. R.; Li, W. H.; Tan, S. D.; Xu, K. N.; Wang, Y.; Wang, D. S.; Li, Y. D. The electronic metal–support interaction directing the design of single atomic site catalysts: Achieving high efficiency towards hydrogen evolution. Angew. Chem., Int. Ed. 2021, 60, 19085–19091.

57

Nørskov, J. K.; Abild-Pedersen, F.; Studt, F.; Bligaard, T. Density functional theory in surface chemistry and catalysis. Proc. Natl. Acad. Sci. USA 2011, 108, 937–943.

58

Shi, Y.; Ma, Z. R.; Xiao, Y. Y.; Yin, Y. C.; Huang, W. M.; Huang, Z. C.; Zheng, Y. Z.; Mu, F. Y.; Huang, R.; Shi, G. Y. et al. Electronic metal–support interaction modulates single-atom platinum catalysis for hydrogen evolution reaction. Nat. Commun. 2021, 12, 3021.

Nano Research
Pages 3952-3958
Cite this article:
Xu J, Li R, Yan X, et al. Platinum single atom catalysts for hydrogen isotope separation during hydrogen evolution reaction. Nano Research, 2022, 15(5): 3952-3958. https://doi.org/10.1007/s12274-022-4075-2
Topics:

949

Views

21

Crossref

21

Web of Science

19

Scopus

1

CSCD

Altmetrics

Received: 02 November 2021
Revised: 12 December 2021
Accepted: 15 December 2021
Published: 24 February 2022
© Tsinghua University Press 2022
Return