AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article

S incorporated RuO2-based nanorings for active and stable water oxidation in acid

Qing Yao1,2Zhiyong Yu1Ying-Hao Chu3Yu-Hong Lai3Ting-Shan Chan4Yong Xu5( )Qi Shao1Xiaoqing Huang2( )
College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, China
State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
Department of Materials Science and Engineering, "National Yang Ming Chiao Tung University", Hsinchu 30010, Taiwan, China
"National Synchrotron Radiation Research Center", 101 Hsin-Ann Road, Hsinchu 30076, Taiwan, China
Guangzhou Key Laboratory of Low-Dimensional Materials and Energy Storage Devices, Collaborative Innovation Center of Advanced Energy Materials, School of Materials and Energy, Guangdong University of Technology, Guangzhou 510006, China
Show Author Information

Graphical Abstract

We demonstrate that the incorporation of S into RuCuO nanorings (NRs) can optimize the interaction of Ru and O and significantly suppresses the dissolution of Ru in acidic condition. The optimal catalyst exhibits enhanced stability for 3,000 cycles of cyclic voltammetry test and more than 250 h chronopotentiometry test at 10 mA·cm−2 in 0.5 M H2SO4.

Abstract

The design of highly active and stable RuO2-based nanostructures for acidic oxygen evolution reaction (OER) is extremely important for the development of water electrolysis technology, yet remains great challenges. We here demonstrate that the incorporation of S into RuCuO nanorings (NRs) can significantly enhance the acidic OER performance. Experimental investigations show that the incorporation of S can optimize the interaction of Ru and O, and therefore significantly suppresses the dissolution of Ru in acidic condition. The optimized catalyst (SH-RuCuO NRs) displays superior OER performance to the commercial RuO2/C. Impressively, the SH-RuCuO NRs can exhibit significantly enhanced stability for 3,000 cycles of cyclic voltammetry test and more than 250 h chronopotentiometry test at 10 mA·cm−2 in 0.5 M H2SO4. This work highlights a potential strategy for designing active and stable RuO2-based electrocatalysts for acidic OER.

Electronic Supplementary Material

Download File(s)
12274_2022_4081_MOESM1_ESM.pdf (1.3 MB)

References

1

Yu, F. S.; Poole III, D.; Mathew, S.; Yan, N.; Hessels, J.; Orth, N.; Ivanović-Burmazović, I.; Reek, J. N. H. Control over electrochemical water oxidation catalysis by preorganization of molecular ruthenium catalysts in self-assembled nanospheres. Angew Chem., Int. Ed. 2018, 57, 11247–11251.

2

Suen, N. T.; Hung, S. F.; Quan, Q.; Zhang, N.; Xu, Y. J.; Chen, H. M. Electrocatalysis for the oxygen evolution reaction: Recent development and future perspectives. Chem. Soc. Rev. 2017, 46, 337–365.

3

Lagadec, M. F.; Grimaud, A. Water electrolysers with closed and open electrochemical systems. Nat. Mater. 2020, 19, 1140–1150.

4

Li, L. G.; Wang, P. T.; Shao, Q.; Huang, X. Q. Metallic nanostructures with low dimensionality for electrochemical water splitting. Chem. Soc. Rev. 2020, 49, 3072–3106.

5

Lei, Z. W.; Wang, T. Y.; Zhao, B. T.; Cai, W. B.; Liu, Y.; Jiao, S. H.; Li, Q.; Cao, R. G.; Liu, M. L. Recent progress in electrocatalysts for acidic water oxidation. Adv. Energy Mater. 2020, 10, 2000478.

6

An, L.; Wei, C.; Lu, M.; Liu, H. W.; Chen, Y. B.; Scherer, G. G.; Fisher, A. C.; Xi, P. X.; Xu, Z. J.; Yan, C. H. Recent development of oxygen evolution electrocatalysts in acidic environment. Adv. Mater. 2021, 33, 2006328.

7

Gao, J. J.; Tao, H. B.; Liu, B. Progress of nonprecious-metal-based electrocatalysts for oxygen evolution in acidic media. Adv. Mater. 2021, 33, 2003786.

8

Stoerzinger, K. A.; Rao, R. R.; Wang, X. R.; Hong, W. T.; Rouleau, C. M.; Shao-Horn, Y. The role of Ru redox in pH-dependent oxygen evolution on rutile ruthenium dioxide surfaces. Chem 2017, 2, 668–675.

9

Cui, X. J.; Ren, P. J.; Ma, C.; Zhao, J.; Chen, R. X.; Chen, S. M.; Rajan, N. P.; Li, H. B.; Yu, L.; Tian, Z. Q. et al. Robust interface Ru centers for high-performance acidic oxygen evolution. Adv. Mater. 2020, 32, 1908126.

10

Yu, J.; He, Q. J.; Yang, G. M.; Zhou, W.; Shao, Z. P.; Ni, M. Recent advances and prospective in ruthenium-based materials for electrochemical water splitting. ACS Catal. 2019, 9, 9973–10011.

11

Katsounaros, I.; Cherevko, S.; Zeradjanin, A. R.; Mayrhofer, K. J. J. Oxygen electrochemistry as a cornerstone for sustainable energy conversion. Angew. Chem., Int. Ed. 2014, 53, 102–121.

12

Kötz, R.; Stucki, S.; Scherson, D.; Kolb, D. M. J. In-situ identification of RuO4 as the corrosion product during oxygen evolution on ruthenium in acid media. J. Electroanal. Chem. Interfac. Electrochem. 1984, 172, 211–219.

13

Grimaud, A.; Diaz-Morales, O.; Han, B. H.; Hong, W. T.; Lee, Y. L.; Giordano, L.; Stoerzinger, K. A.; Koper, M. T. M.; Shao-Horn, Y. Activating lattice oxygen redox reactions in metal oxides to catalyse oxygen evolution. Nat. Chem. 2017, 9, 457–465.

14

Hodnik, N.; Jovanovič, P.; Pavlišič, A.; Jozinović, B.; Zorko, M.; Bele, M.; Šelih, V. S.; Šala, M.; Hočevar, S.; Gaberšček, M. New insights into corrosion of ruthenium and ruthenium oxide nanoparticles in acidic media. J. Phys. Chem. C 2015, 119, 10140–10147.

15

Zhu, T.; Liu, S. H.; Huang, B.; Shao, Q.; Wang, M.; Li, F.; Tan, X. Y.; Pi, Y. C.; Weng, S. C.; Huang, B. L. et al. High-performance diluted nickel nanoclusters decorating ruthenium nanowires for pH-universal overall water splitting. Energy Environ. Sci. 2021, 14, 3194–3202.

16

Yao, Q.; Huang, B. L.; Zhang, N.; Sun, M. Z.; Shao, Q.; Huang, X. Q. Channel-rich RuCu nanosheets for pH-universal overall water splitting electrocatalysis. Angew. Chem., Int. Ed. 2019, 58, 13983–13988.

17

Chen, S.; Huang, H.; Jiang, P.; Yang, K.; Diao, J. F.; Gong, S. P.; Liu, S.; Huang, M. X.; Wang, H.; Chen, Q. W. Mn-doped RuO2 nanocrystals as highly active electrocatalysts for enhanced oxygen evolution in acidic media. ACS Catal. 2020, 10, 1152–1160.

18

Cao, L. L.; Luo, Q. Q.; Chen, J. J.; Wang, L.; Lin, Y.; Wang, H. J.; Liu, X. K.; Shen, X. Y.; Zhang, W.; Liu, W. et al. Dynamic oxygen adsorption on single-atomic ruthenium catalyst with high performance for acidic oxygen evolution reaction. Nat. Commun. 2019, 10, 4849.

19

Li, Y. P.; Zhang, J. H.; Liu, Y.; Qian, Q. Z.; Li, Z. Y.; Zhu, Y.; Zhang, G. Q. Partially exposed RuP2 surface in hybrid structure endows its bifunctionality for hydrazine oxidation and hydrogen evolution catalysis. Sci. Adv. 2020, 6, eabb4197.

20

Zhuang, L. Z.; Jia, Y.; Liu, H. L.; Li, Z. H.; Li, M. R.; Zhang, L. Z.; Wang, X.; Yang, D. J.; Zhu, Z. H.; Yao, X. D. Sulfur-modified oxygen vacancies in iron-cobalt oxide nanosheets: Enabling extremely high activity of the oxygen evolution reaction to achieve the industrial water splitting benchmark. Angew. Chem., Int. Ed. 2020, 59, 14664–14670.

21

Niu, S.; Jiang, W. J.; Wei, Z. X.; Tang, T.; Ma, J. M.; Hu, J. S.; Wan, L. J. Se-doping activates FeOOH for cost-effective and efficient electrochemical water oxidation. J. Am. Chem. Soc. 2019, 141, 7005–7013.

22

Li, Z. Q.; Ren, Y. K.; Mo, L.; Liu, C. F.; Hsu, K.; Ding, Y. C.; Zhang, X. X.; Li, X. L.; Hu, L. H.; Ji, D. H. et al. Impacts of oxygen vacancies on zinc ion intercalation in VO2. ACS Nano 2020, 14, 5581–5589.

23

Xue, Y. R.; Fang, J. J.; Wang, X. D.; Xu, Z. Y.; Zhang, Y. F.; Lv, Q. Q.; Liu, M. Y.; Zhu, W.; Zhuang, Z. B. Sulfate-functionalized RuFeOx as highly efficient oxygen evolution reaction electrocatalyst in acid. Adv. Funct. Mater. 2021, 31, 2101405.

24

Kim K. S.; Winograd, N. X-Ray photoelectron spectroscopic studies of ruthenium-oxygen surfaces. J. Catal 1974, 35, 66–72.

25

Lin, Y. C.; Tian, Z. Q.; Zhang, L. J.; Ma, J. Y.; Jiang, Z.; Deibert, B. J.; Ge, R. X.; Chen, L. Chromium–ruthenium oxide solid solution electrocatalyst for highly efficient oxygen evolution reaction in acidic media. Nat. Commun. 2019, 10, 162.

26

Wen, Y. Z.; Chen, P. N.; Wang, L.; Li, S. Y.; Wang, Z. Y.; Abed, J.; Mao, X. N.; Min, Y. M.; Dinh, C. T.; De Luna, P. et al. Stabilizing highly active Ru sites by suppressing lattice oxygen participation in acidic water oxidation. J. Am. Chem. Soc. 2021, 143, 6482–6490.

27

Ravel, B.; Newville, M. ATHENA, ARTEMIS, HEPHAESTUS: Data analysis for X-ray absorption spectroscopy using IFEFFIT. J. Synchrotron Rad. 2005, 12, 537–541.

28

McCrory, C. C. L.; Jung, S.; Peters, J. C.; Jaramillo, T. F. Benchmarking heterogeneous electrocatalysts for the oxygen evolution reaction. J. Am. Chem. Soc. 2013, 135, 16977–16987.

29

Zhao, S. L.; Wang, Y.; Dong, J. C.; He, C. T.; Yin, H. J.; An, P. F.; Zhao, K.; Zhang, X. F.; Gao, C.; Zhang, L. J. et al. Ultrathin metal–organic framework nanosheets for electrocatalytic oxygen evolution. Nat. Energy 2016, 1, 16184.

30

Niu, W. H.; Li, Z.; Marcus, K.; Zhou, L.; Li, Y. L.; Ye, R. Q.; Liang, K.; Yang, Y. Surface-modified porous carbon nitride composites as highly efficient electrocatalyst for Zn–air batteries. Adv. Energy Mater. 2018, 8, 1701642.

31

Bao, J.; Zhang, X. D.; Fan, B.; Zhang, J. J.; Zhou, M.; Yang, W. L.; Hu, X.; Wang, H.; Pan, B. C.; Xie, Y. Ultrathin spinel-structured nanosheets rich in oxygen deficiencies for enhanced electrocatalytic water oxidation. Angew. Chem., Int. Ed. 2015, 54, 7399–7404.

32

Kuznetsov, D. A.; Naeem, M. A.; Kumar, P. V.; Abdala, P. M.; Fedorov, A.; Müller, C. R. Tailoring lattice oxygen binding in ruthenium pyrochlores to enhance oxygen evolution activity. J. Am. Chem. Soc. 2020, 142, 7883–7888.

33

Chen, F. Y.; Wu, Z. Y.; Adler, Z.; Wang, H. T. Stability challenges of electrocatalytic oxygen evolution reaction: From mechanistic understanding to reactor design. Joule 2021, 5, 1704–1731.

34

Wang, X. Y.; Pan, Z. Y.; Chu, X. F.; Huang, K. K.; Cong, Y. G.; Cao, R.; Sarangi, R.; Li, L. P.; Li, G. S.; Feng, S. H. Atomic-scale insights into surface lattice oxygen activation at the spinel/perovskite interface of Co3O4/La0.3Sr0.7CoO3. Angew. Chem., Int. Ed. 2019, 58, 11720–11725.

35

Zhu, Y. L.; Tahini, H. A.; Hu, Z. W.; Chen, Z. G.; Zhou, W.; Komarek, A. C.; Lin, Q.; Lin, H. J.; Chen, C. T.; Zhong, Y. J. et al. Boosting oxygen evolution reaction by creating both metal ion and lattice-oxygen active sites in a complex oxide. Adv. Mater. 2020, 32, 1905025.

Nano Research
Pages 3964-3970
Cite this article:
Yao Q, Yu Z, Chu Y-H, et al. S incorporated RuO2-based nanorings for active and stable water oxidation in acid. Nano Research, 2022, 15(5): 3964-3970. https://doi.org/10.1007/s12274-022-4081-4
Topics:

1077

Views

15

Crossref

15

Web of Science

15

Scopus

1

CSCD

Altmetrics

Received: 09 November 2021
Revised: 14 December 2021
Accepted: 19 December 2021
Published: 29 January 2022
© Tsinghua University Press 2022
Return