Discover the SciOpen Platform and Achieve Your Research Goals with Ease.
Search articles, authors, keywords, DOl and etc.
As the first-line technology, micelles play a pivotal role in in vivo delivery of theranostic agents because of their high biocompatibility and universality. However, in complex physiological environments (extreme dilution, pH, and oxidation or reduction, etc.), they generally suffer from structural instability and insufficient protection for encapsulated cargos. It is urgent to reinforce the structural stability of the micelles at the single-micelle level. By using the FDA-approved Pluronic F127 surfactants and indocyanine green (ICG) bioimaging agents as model, herein, we propose the silane-crosslinking assisted strategy to reinforce the structural stability of the single-micelle. Different from the traditional silane hydrolysis under the harsh experimental conditions (acidic, alkaline, and high temperature hydrothermal, etc.), the ICG loaded F127@SiO2 hybrid single-micelles (ICG@H-micelles) with controllable sizes (15–35 nm) are synthesized at neutral pH and room temperature, which is crucial for the maintenance of the physicochemical properties of the encapsulated cargos. With the ultra-thin SiO2 (< 5 nm) at hydrophilic layer of the single-micelle, the structural and fluorescence stability of ICG@H-micelles are much higher than the conventional micelle (ICG@micelles) in the simulated physiological environments of dilution, oxidation or reduction, and low pH. Because of the high structural and fluorescence stability, the ICG@H-micelles also exhibit longer duration time in the tumor and gastrointestinal tract bioimaging.
Finbloom, J. A.; Sousa, F.; Stevens, M. M.; Desai, T. A. Engineering the drug carrier biointerface to overcome biological barriers to drug delivery. Adv. Drug Deliv. Rev. 2020, 167, 89–108.
Tenzer, S.; Docter, D.; Kuharev, J.; Musyanovych, A.; Fetz, V.; Hecht, R.; Schlenk, F.; Fischer, D.; Kiouptsi, K.; Reinhardt, C. et al. Rapid formation of plasma protein corona critically affects nanoparticle pathophysiology. Nat. Nanotechnol. 2013, 8, 772–781.
Nel, A. E.; Mädler, L.; Velegol, D.; Xia, T.; Hoek, E. M. V.; Somasundaran, P.; Klaessig, F.; Castranova, V.; Thompson, M. Understanding biophysicochemical interactions at the nano-bio interface. Nat. Mater. 2009, 8, 543–557.
Cedervall, T.; Lynch, I.; Lindman, S.; Berggård, T.; Thulin, E.; Nilsson, H.; Dawson, K. A.; Linse, S. Understanding the nanoparticle–protein corona using methods to quantify exchange rates and affinities of proteins for nanoparticles. Proc. Natl. Acad. Sci. USA 2007, 104, 2050–2055.
Van Tran, V.; Moon, J. Y.; Lee, Y. C. Liposomes for delivery of antioxidants in cosmeceuticals: Challenges and development strategies. J. Control. Release 2019, 300, 114–140.
Kauscher, U.; Holme, M. N.; Björnmalm, M.; Stevens, M. M. Physical stimuli-responsive vesicles in drug delivery: Beyond liposomes and polymersomes. Adv. Drug Deliv. Rev. 2019, 138, 259–275.
Chen, Z. J.; Yang, S. C.; Liu, X. L.; Gao, Y. H.; Dong, X.; Lai, X.; Zhu, M. H.; Feng, H. Y.; Zhu, X. D.; Lu, Q. et al. Nanobowl-supported liposomes improve drug loading and delivery. Nano Lett. 2020, 20, 4177–4187.
Dai, Y. N.; Su, J. Z.; Wu, K.; Ma, W. K.; Wang, B.; Li, M. X; Sun, P. F.; Shen, Q. M.; Wang, Q.; Fan, Q. L. Multifunctional thermosensitive liposomes based on natural phase-change material: Near-infrared light-triggered drug release and multimodal imaging-guided cancer combination therapy. ACS Appl. Mater. Interfaces 2019, 11, 10540–10553.
Chen, Z. X.; Liu, M. D.; Guo, D. K.; Zou, M. Z.; Wang, S. B.; Cheng, H.; Zhong, Z. L.; Zhang, X. Z. A MSN-based tumor-targeted nanoplatform to interfere with lactate metabolism to induce tumor cell acidosis for tumor suppression and anti-metastasis. Nanoscale 2020, 12, 2966–2972.
Zilony-Hanin, N.; Rosenberg, M.; Richman, M.; Yehuda, R.; Schori, H.; Motiei, M.; Rahimipour, S.; Groisman, A.; Segal, E.; Shefi, O. Neuroprotective effect of nerve growth factor loaded in porous silicon nanostructures in an Alzheimer’s disease model and potential delivery to the brain. Small 2019, 15, 1904203.
Shao, D.; Li, M. Q.; Wang, Z.; Zheng, X.; Lao, Y. H.; Chang, Z. M.; Zhang, F.; Lu, M. M.; Yue, J.; Hu, H. Z. et al. Bioinspired diselenide-bridged mesoporous silica nanoparticles for dual-responsive protein delivery. Adv. Mater. 2018, 30, 1801198.
Castillo, R. R.; Colilla, M.; Vallet-Regí, M. Advances in mesoporous silica-based nanocarriers for co-delivery and combination therapy against cancer. Expert Opin. Drug Deliv. 2017, 14, 229–243.
Samanta, D.; Roy, S.; Sasmal, R.; Saha, N. D.; Pradeep, K. R.; Viswanatha, R.; Agasti, S. S.; Maji, T. K. Solvent adaptive dynamic metal-organic soft hybrid for imaging and biological delivery. Angew. Chem., Int. Ed. 2019, 58, 5008–5012.
Ahmad, N.; Younus, H. A.; Zhang, G. K.; Van Hecke, K.; Verpoort, F. Direct synthesis of the 2D copper(II) 5-Prop-2-ynoxyisophthalate MOF: Comment on “surface functionalization of porous coordination nanocages via click chemistry and their application in drug delivery”. Adv. Mater. 2019, 31, 1801399.
Liu, W. L.; Zou, M. Z.; Liu, T.; Zeng, J. Y.; Li, X.; Yu, W. Y.; Li, C. X.; Ye, J. J.; Song, W.; Feng, J. et al. Expandable immunotherapeutic nanoplatforms engineered from cytomembranes of hybrid cells derived from cancer and dendritic cells. Adv. Mater. 2019, 31, 1900499.
Carrillo-Carrión, C.; Martínez, R.; Poupard, M. F. N.; Pelaz, B.; Polo, E.; Arenas-Vivo, A.; Olgiati, A.; Taboada, P.; Soliman, M. G.; Catalán, Ú. et al. Aqueous stable gold nanostar/ZIF-8 nanocomposites for light-triggered release of active cargo inside living cells. Angew. Chem., Int. Ed. 2019, 58, 7078–7082.
Huo, T. T.; Yang, Y. F.; Qian, M.; Jiang, H. L.; Du, Y. L.; Zhang, X. Y.; Xie, Y. B.; Huang, R. Q. Versatile hollow COF nanospheres via manipulating transferrin corona for precise glioma-targeted drug delivery. Biomaterials 2020, 260, 120305.
Zhang, G. Y.; Li, X. L.; Liao, Q. B.; Liu, Y. F; Xi, K.; Huang, W. Y.; Jia, X. D. Water-dispersible PEG-curcumin/amine-functionalized covalent organic framework nanocomposites as smart carriers for in vivo drug delivery. Nat. Commun. 2018, 9, 2785.
Vargason, A. M.; Anselmo, A. C.; Mitragotri, S. The evolution of commercial drug delivery technologies. Nat. Biomed. Eng. 2021, 5, 951–967.
Mitchell, M. J.; Billingsley, M. M.; Haley, R. M.; Wechsler, M. E.; Peppas, N. A.; Langer, R. Engineering precision nanoparticles for drug delivery. Nat. Rev. Drug Discov. 2021, 20, 101–124.
Guo, X.; Wang, L.; Duval, K.; Fan, J.; Zhou, S. B.; Chen, Z. Dimeric drug polymeric micelles with acid-active tumor targeting and FRET-traceable drug release. Adv. Mater. 2018, 30, 1705436.
Zhu, C. L.; Huo, D.; Chen, Q. S.; Xue, J. J.; Shen, S.; Xia, Y. N. A eutectic mixture of natural fatty acids can serve as the gating material for near-infrared-triggered drug release. Adv. Mater. 2017, 29, 1703702.
Shi, X.; Ye, Y. M.; Wang, H.; Liu, F.; Wang, Z. J. Designing pH-responsive biodegradable polymer coatings for controlled drug release via vapor-based route. ACS Appl. Mater. Interfaces 2018, 10, 38449–38458.
Zhang, F. W.; Ni, Q. Q.; Jacobson, O.; Cheng, S. Y.; Liao, A.; Wang, Z. T.; He, Z. M.; Yu, G. C.; Song, J. B.; Ma, Y. et al. Polymeric nanoparticles with a glutathione-sensitive heterodimeric multifunctional prodrug for in vivo drug monitoring and synergistic cancer therapy. Angew. Chem., Int. Ed. 2018, 57, 7066–7070.
Meng, X. Q.; Zhang, J. L.; Sun, Z. H.; Zhou, L. H.; Deng, G. J.; Li, S. P.; Li, W. J.; Gong, P.; Cai, L. T. Hypoxia-triggered single molecule probe for high-contrast NIR II/PA tumor imaging and robust photothermal therapy. Theranostics 2018, 8, 6025–6034.
Yan, Z. L.; Wang, M. Y.; Shi, M. K.; He, Y.; Zhang, Y.; Qiu, S. H.; Yang, H.; Chen, H. B.; He, H.; Guo, Z. Q. Amphiphilic BODIPY dye aggregates in polymeric micelles for wavelength-dependent photo-induced cancer therapy. J. Mater. Chem. B 2020, 8, 6886–6897.
Yang, H.; Mao, H. J.; Wan, Z. H.; Zhu, A. J.; Guo, M.; Li, Y. L.; Li, X. M.; Wan, J. L.; Yang, X. L.; Shuai, X. T. et al. Micelles assembled with carbocyanine dyes for theranostic near-infrared fluorescent cancer imaging and photothermal therapy. Biomaterials 2013, 34, 9124–9133.
Blersch, J.; Francisco, V.; Rebelo, C.; Jiménez-Balsa, A.; Antunes, H.; Gonzato, C.; Pinto, S.; Simões, S.; Liedl, K.; Haupt, K et al. A light-triggerable nanoparticle library for the controlled release of non-coding RNAs. Angew. Chem., Int. Ed. 2020, 59, 1985–1991.
Jiang, Z. W.; Cui, W.; Mager, J.; Thayumanavan, S. Postfunctionalization of noncationic RNA-polymer complexes for RNA delivery. Ind. Eng. Chem. Res. 2019, 58, 6982–6991.
Jiang, Y. M.; Lodge, T. P.; Reineke, T. M. Packaging pDNA by polymeric ABC micelles simultaneously achieves colloidal stability and structural control. J. Am. Chem. Soc. 2018, 140, 11101–11111.
Wang, W. W.; Balk, M.; Deng, Z. J.; Wischke, C.; Gossen, M.; Behl, M.; Ma, N.; Lendlein, A. Engineering biodegradable micelles of polyethylenimine-based amphiphilic block copolymers for efficient DNA and siRNA delivery. J. Control. Release 2016, 242, 71–79.
Miyamoto, T.; Tsuchiya, K.; Numata, K. Endosome-escaping micelle complexes dually equipped with cell-penetrating and endosome-disrupting peptides for efficient DNA delivery into intact plants. Nanoscale 2021, 13, 5679–5692.
Jiang, Y. Y.; Lu, H. X.; Chen, F.; Callari, M.; Pourgholami, M.; Morris, D. L.; Stenzel, M. H. PEGylated albumin-based polyion complex micelles for protein delivery. Biomacromolecules 2016, 17, 808–817.
Lee, Y. W.; Luther, D. C.; Goswami, R.; Jeon, T.; Clark, V.; Elia, J.; Gopalakrishnan, S.; Rotello, V. M. Direct cytosolic delivery of proteins through coengineering of proteins and polymeric delivery vehicles. J. Am. Chem. Soc. 2020, 142, 4349–4355.
Lv, J.; Fan, Q. Q.; Wang, H.; Cheng, Y. Y. Polymers for cytosolic protein delivery. Biomaterials 2019, 218, 119358.
Yeroslavsky, G.; Umezawa, M.; Okubo, K.; Nigoghossian, K.; Dung, D. T. K.; Miyata, K.; Kamimura, M.; Soga, K. Stabilization of indocyanine green dye in polymeric micelles for NIR-II fluorescence imaging and cancer treatment. Biomater. Sci. 2020, 8, 2245–2254.
Langridge, T. D.; Gemeinhart, R. A. Toward understanding polymer micelle stability: Density ultracentrifugation offers insight into polymer micelle stability in human fluids. J. Control. Release 2020, 319, 157–167.
Sun, X. R.; Wang, G. W.; Zhang, H.; Hu, S. Q.; Liu, X.; Tang, J. B.; Shen, Y. Q. The blood clearance kinetics and pathway of polymeric micelles in cancer drug delivery. ACS Nano 2018, 12, 6179–6192.
Xin, K. T.; Li, M.; Lu, D.; Meng, X.; Deng, J.; Kong, D. L.; Ding, D.; Wang, Z.; Zhao, Y. J. Bioinspired coordination micelles integrating high stability, triggered cargo release, and magnetic resonance imaging. ACS Appl. Mater. Interfaces 2017, 9, 80–91.
Feiner-Gracia, N.; Buzhor, M.; Fuentes, E.; Pujals, S.; Amir, R. J.; Albertazzi, L. Micellar stability in biological media dictates internalization in living cells. J. Am. Chem. Soc. 2017, 139, 16677–16687.
Lu, J.; Owen, S. C.; Shoichet, M. S. Stability of self-assembled polymeric micelles in serum. Macromolecules 2011, 44, 6002–6008.
Lu, Y.; Yue, Z. G.; Xie, J. B.; Wang, W.; Zhu, H.; Zhang, E. S.; Cao, Z. Q. Micelles with ultralow critical micelle concentration as carriers for drug delivery. Nat. Biomed. Eng. 2018, 2, 318–325.
Wang, Y. F.; Wu, Z. Z.; Ma, Z. W.; Tu, X. Y.; Zhao, S. J.; Wang, B. Y.; Ma, L. W.; Wei, H. Promotion of micelle stability via a cyclic hydrophilic moiety. Polym. Chem. 2018, 9, 2569–2573.
Huo, Q. S.; Liu, J.; Wang, L. Q.; Jiang, Y. B.; Lambert, T. N.; Fang, E. A new class of silica cross-linked micellar core−shell nanoparticles. J. Am. Chem. Soc. 2006, 128, 6447–6453.
Zhu, J.; Tang, J. W.; Zhao, L. Z.; Zhou, X. F.; Wang, Y. H.; Yu, C. Z. Ultrasmall, well-dispersed, hollow siliceous spheres with enhanced endocytosis properties. Small 2010, 6, 276–282.
Liu, J.; Yang, Q. H.; Zhang, L.; Yang, H. Q.; Gao, J. S.; Li, C. Organic-inorganic hybrid hollow nanospheres with microwindows on the shell. Chem. Mater. 2008, 20, 4268–4275.
Niu, D. C.; He, J. P.; Qin, X.; Liu, Y.; Liu, H. L.; Hu, P.; Li, Y. S.; Shi, J. L. Super-stable and large-scalable organosilica-micellar hybrid nanosystem via a confined gelation strategy for ultra-high-dosage chemotherapy. Nano Lett. 2021, 21, 9388–9397.
Honda, S.; Yamamoto, T.; Tezuka, Y. Tuneable enhancement of the salt and thermal stability of polymeric micelles by cyclized amphiphiles. Nat. Commun. 2013, 4, 1574.
Rharbi, Y.; Chen, L. S.; Winnik, M. A. Exchange mechanisms for sodium dodecyl sulfate micelles: High salt concentration. J. Am. Chem. Soc. 2004, 126, 6025–6034.
Kim, D.; Matsuoka, H.; Yusa, S. I.; Saruwatari, Y. Collapse behavior of polyion complex (PIC) micelles upon salt addition and reforming behavior by dialysis and its temperature responsivity. Langmuir 2020, 36, 15485–15492.
Saxena, V.; Sadoqi, M.; Shao, J. Degradation kinetics of indocyanine green in aqueous solution. J. Pharm. Sci. 2003, 92, 2090–2097.
Xu, W. J.; Riikonen, J.; Nissinen, T.; Suvanto, M.; Rilla, K.; Li, B. J.; Wang, Q.; Deng, F.; Lehto, V. P. Amine surface modifications and fluorescent labeling of thermally stabilized mesoporous silicon nanoparticles. J. Phys. Chem. C 2012, 116, 22307–22314.
Yang, G. Z.; Liu, Y.; Hui, Y.; Tengjisi; Chen, D.; Weitz, D. A.; Zhao, C. X. Implications of quenching-to-dequenching switch in quantitative cell uptake and biodistribution of dye-labeled nanoparticles. Angew. Chem., Int. Ed. 2021, 60, 15426–15435.
Mitragotri, S.; Burke, P. A.; Langer, R. Overcoming the challenges in administering biopharmaceuticals: Formulation and delivery strategies. Nat. Rev. Drug Discov. 2014, 13, 655–672.
Luciani, P.; De Mendoza, A. E. H.; Casalini, T.; Lang, S.; Atrott, K.; Spalinger, M. R.; Pratsinis, A.; Sobek, J.; Frey-Wagner, I.; Schumacher, J. et al. Gastroresistant oral peptide for fluorescence imaging of colonic inflammation. J. Control. Release 2017, 262, 118–126.
Hueckel, T.; Hocky, G. M.; Palacci, J.; Sacanna, S. Ionic solids from common colloids. Nature 2020, 580, 487–490.
Zhang, Z. Y.; Maji, S.; Da Fonseca Antunes, A. B.; De Rycke, R.; Hoogenboom, R.; De Geest, B. G. Salt-driven deposition of thermoresponsive polymer-coated metal nanoparticles on solid substrates. Angew. Chem., Int. Ed. 2016, 55, 7086–7090.
Rharbi, Y.; Winnik, M. A. Salt effects on solute exchange in sodium dodecyl sulfate micelles. J. Am. Chem. Soc. 2002, 124, 2082–2083.
Passos, H.; Costa, S. H.; Fernandes, A. M.; Freire, M. G.; Rogers, R. D.; Coutinho, J. A. P. A triple salting-out effect is required for the formation of ionic-liquid-based aqueous multiphase systems. Angew. Chem., Int. Ed. 2017, 56, 15058–15062.
Yu, C. Z.; Tian, B. Z.; Fan, J.; Stucky, G. D.; Zhao, D. Y. Salt effect in the synthesis of mesoporous silica templated by non-ionic block copolymers. Chem. Commun. 2001, 24, 2726–2727.
Tang, J. W.; Yu, C. Z.; Zhou, X. F.; Yan, X. X.; Zhao, D. Y. The anion sequence in the phase transformation of mesostructures templated by non-ionic block copolymers. Chem. Commun. 2004, 10, 2240–2241.
Yu, C. Z.; Tian, B. Z.; Fan, J.; Stucky, G. D.; Zhao, D. Y. Nonionic block copolymer synthesis of large-pore cubic mesoporous single crystals by use of inorganic salts. J. Am. Chem. Soc. 2002, 124, 4556–4557.