AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article

Arginine-peptide complex-based assemblies to combat tumor hypoxia for enhanced photodynamic therapeutic effect

Yanxian Hou§Yafei Kuang§Qikun JiangShuang ZhouJiang YuZhonggui HeJin Sun( )
Shenyang Pharmaceutical University, No. 103, Wenhua Road, Shenyang 110016, China

§ Yanxian Hou and Yafei Kuang contributed equally to this work.

Show Author Information

Graphical Abstract

The THPP/Fomc-L3-Arg NPs could rapidly release photosensitizers in tumor cells. Meanwhile, the co-loaded Fmoc-L3-Arg could efficiently generate nitric oxide, inhibiting mitochondrial cellularrespiration and increasing oxygen in tumor cells to support the profound improvement of reactiveoxygen species yield and PDT efficacy. After intravenous injection, the THPP/Fomc-L3-Arg NPsgreatly accumulated at tumor tissue, and significantly inhibited tumor growth upon irradiation. Inconclusion, such an arginine-peptide complex-based nanoassembly addresses the inevitable problemof hypoxia-induced tumor resistance to PDT.

Abstract

Tumor hypoxia is one of the major factors restricting the photodynamic therapy (PDT) efficacy. To address this problem, we designed an arginine-peptide complex, namely Fluorenylmethoxycarbonyl-Leucine-Leucine-Leucine-Arginine-OH (Fmoc-L3-Arg), which is able to co-assemble with 5,10,15,20-Tetrakis (4-hydroxyphenyl) porphyrin (THPP) into stable nanoparticles (NPs) with uniform and spherical shapes. The THPP/Fomc-L3-Arg NPs were ultra-sensitive to tumorous acidic and oxidative conditions, and could rapidly release photosensitizers in tumor cells. Meanwhile, the co-loaded Fmoc-L3-Arg could efficiently generate nitric oxide (NO), inhibiting mitochondrial cellular respiration and increasing oxygen in tumor cells to support the profound improvement of reactive oxygen species (ROS) yield and PDT efficacy. After intravenous injection, the THPP/Fomc-L3-Arg NPs greatly accumulated at tumor tissue and significantly inhibited tumor growth upon irradiation. In conclusion, such an arginine-peptide complex-based nanoassembly addresses the inevitable problem of hypoxia-induced tumor resistance to PDT.

Electronic Supplementary Material

Download File(s)
12274_2022_4086_MOESM1_ESM.pdf (1.6 MB)

References

1

Maman, S.; Witz, I. P. A history of exploring cancer in context. Nat. Rev. Cancer 2018, 18, 359–376.

2

Ganz, P. A. Current US cancer statistics: Alarming trends in young adults? J. Natl. Cancer Inst. 2019, 111, 1241–1242.

3

Zhang, S. W.; Wang, Z. Y.; Kong, Z. Q.; Wang, Y. Q.; Zhang, X. B.; Sun, B. J.; Zhang, H. T.; Kan, Q. M.; He, Z. G.; Luo, C. et al. Photosensitizer-driven nanoassemblies of homodimeric prodrug for self-enhancing activation and synergistic chemo-photodynamic therapy. Theranostics 2021, 11, 6019–6032.

4

Zhang, S. W.; Wang, Y. Q.; Kong, Z. Q.; Zhang, X. B.; Sun, B. J.; Yu, H.; Chen, Q.; Luo, C.; Sun, J.; He, Z. G. Pure photosensitizer-driven nanoassembly with core-matched PEGylation for imaging-guided photodynamic therapy. Acta Pharm. Sin. B 2021, 11, 3636–3647.

5

Cheng, Y.; Kong, X. P.; Chang, Y.; Feng, Y. L.; Zheng, R. X.; Wu, X. Q.; Xu, K. Q.; Gao, X. F.; Zhang, H. Y. Spatiotemporally synchronous oxygen self-supply and reactive oxygen species production on Z-scheme heterostructures for hypoxic tumor therapy. Adv. Mater. 2020, 32, 1908109.

6

Tilki, D.; Kilic, N.; Sevinc, S.; Zywietz, F.; Stief, C. G.; Ergun, S. Zone-specific remodeling of tumor blood vessels affects tumor growth. Cancer 2007, 110, 2347–2362.

7

Wang, D. D.; Wu, H. H.; Phua, S.; Yang, G. B.; Lim, W. Q.; Gu, L.; Qian, C.; Wang, H. B.; Guo, Z.; Chen, H. Z. et al. Self-assembled single-atom nanozyme for enhanced photodynamic therapy treatment of tumor. Nat. Commun. 2020, 11, 357.

8

Zhao, D. Y.; Tao, W. H.; Li, S. H.; Li, L. X.; Sun, Y. X.; Li, G. T.; Wang, G.; Wang, Y.; Lin, B.; Luo, C. et al. Light-triggered dual-modality drug release of self-assembled prodrug-nanoparticles for synergistic photodynamic and hypoxia-activated therapy. Nanoscale Horiz. 2020, 5, 886–894.

9

Yang, H. L.; Xu, B. L.; Li, S. S.; Wu, Q. Y.; Lu, M. Z.; Han, A. L.; Liu, H. Y. A photoresponsive nanozyme for synergistic catalytic therapy and dual phototherapy. Small 2021, 17, 2007090.

10

Liu, J. T.; Du, P.; Liu, T. R.; Wong, B. J.; Wang, W. P.; Ju, H. X.; Lei, J. P. A black phosphorus/manganese dioxide nanoplatform: Oxygen self-supply monitoring, photodynamic therapy enhancement, and feedback. Biomaterials 2019, 192, 179–188.

11

Liu, C. P.; Wu, T. H.; Liu, C. Y.; Chen, K. C.; Chen, Y. X.; Chen, G. S.; Lin, S. Y. Self-supplying O2 through the catalase-like activity of gold nanoclusters for photodynamic therapy against hypoxic cancer cells. Small 2017, 13, 1700278.

12

Wang, T. T.; Zhang, H.; Han, Y. B.; Liu, H. H.; Ren, F.; Zeng, J. F.; Sun, Q.; Li, Z.; Gao, M. Y. Light-enhanced O2-evolving nanoparticles boost photodynamic therapy to elicit antitumor immunity. ACS Appl. Mater. Interfaces 2019, 11, 16367–16379.

13

Zheng, D. W.; Li, B.; Li, C. X.; Fan, J. X.; Lei, Q.; Li, C.; Xu, Z. S.; Zhang, X. Z. Carbon-dot-decorated carbon nitride nanoparticles for enhanced photodynamic therapy against hypoxic tumor via water splitting. ACS Nano 2016, 10, 8715–8722.

14

Huang, H.; Zhang, C.; Wang, X. L.; Shao, J. S.; Chen, C.; Li, H. M.; Ju, C. M.; He, J.; Gu, H. Y.; Xia, D. L. Overcoming hypoxia-restrained radiotherapy using an erythrocyte-inspired and glucose-activatable platform. Nano Lett. 2020, 20, 4211–4219.

15

Yuan, M.; Liang, S.; Zhou, Y.; Xiao, X.; Liu, B.; Yang, C. Z.; Ma, P. A.; Cheng, Z. Y.; Lin, J. A robust oxygen-carrying hemoglobin-based natural sonosensitizer for sonodynamic cancer therapy. Nano Lett. 2021, 21, 6042–6050.

16

Zhang, Y. F.; Liao, Y. Y.; Tang, Q. N.; Lin, J.; Huang, P. Biomimetic nanoemulsion for synergistic photodynamic-immunotherapy against hypoxic breast tumor. Angew. Chem., Int. Ed. 2021, 60, 10647–10653.

17

Krafft, M. P.; Riess, J. G. Therapeutic oxygen delivery by perfluorocarbon-based colloids. Adv. Colloid Interf. Sci. 2021, 294, 102407.

18

Fix, S. M.; Borden, M. A.; Dayton, P. A. Therapeutic gas delivery via microbubbles and liposomes. J. Control. Release 2015, 209, 139–149.

19

Jia, Q. Y.; Ge, J. C.; Liu, W. M.; Zheng, X. L.; Chen, S. Q.; Wen, Y. M.; Zhang, H. Y.; Wang, P. F. A magnetofluorescent carbon dot assembly as an acidic H2O2-driven oxygenerator to regulate tumor hypoxia for simultaneous bimodal imaging and enhanced photodynamic therapy. Adv. Mater. 2018, 30, 1706090.

20

Ashton, T. M.; Fokas, E.; Kunz-Schughart, L. A.; Folkes, L. K.; Anbalagan, S.; Huether, M.; Kelly, C. J.; Pirovano, G.; Buffa, F. M.; Hammond, E. M. et al. The anti-malarial atovaquone increases radiosensitivity by alleviating tumour hypoxia. Nat. Commun. 2016, 7, 12308.

21

Li, M. L.; Shao, Y. J.; Kim, J. H.; Pu, Z. J.; Zhao, X. Z.; Huang, H. Q.; Xiong, T.; Kang, Y.; Li, G. Z.; Shao, K. et al. Unimolecular photodynamic O2-economizer to overcome hypoxia resistance in phototherapeutics. J. Am. Chem. Soc. 2020, 142, 5380–5388.

22

Lv, W.; Zhang, Z.; Zhang, K. Y.; Yang, H. R.; Liu, S. J.; Xu, A. Q.; Guo, S.; Zhao, Q.; Huang, W. A mitochondria-targeted photosensitizer showing improved photodynamic therapy effects under hypoxia. Angew. Chem., Int. Ed. 2016, 55, 9947–9951.

23

Cooper, C. E. Nitric oxide and cytochrome oxidase: Substrate, inhibitor or effector? Trends Biochem. Sci. 2002, 27, 33–39.

24

Brunori, M. Nitric oxide, cytochrome-c oxidase, and myoglobin. Trends Biochem. Sci. 2001, 26, 21–23.

25

Sarti, P.; Forte, E.; Mastronicola, D.; Giuffrè, A.; Arese, M. Cytochrome c oxidase and nitric oxide in action: Molecular mechanisms and pathophysiological implications. Biochim. Biophys. Acta (BBA)- Bioenerg. 2012, 1817, 610–619.

26

Zhou, Y. Z.; Yang, T.; Liang, K.; Chandrawati, R. Metal-organic frameworks for therapeutic gas delivery. Adv. Drug Deliv. Rev. 2021, 171, 199–214.

27

Fan, W. P.; Yung, B. C.; Chen, X. Y. Stimuli-responsive NO release for on-demand gas-sensitized synergistic cancer therapy. Angew. Chem., Int. Ed. 2018, 57, 8383–8394.

28

Liu, A. L.; Wang, Q.; Zhao, Z. N.; Wu, R.; Wang, M. C.; Li, J. W.; Sun, K. Y.; Sun, Z. Y.; Lv, Z. Y.; Xu, J. et al. Nitric oxide nanomotor driving exosomes-loaded microneedles for achilles tendinopathy healing. ACS Nano 2021, 15, 13339–13350.

29

Fan, W. P.; Lu, N.; Huang, P.; Liu, Y.; Yang, Z.; Wang, S.; Yu, G. C.; Liu, Y. J.; Hu, J. K.; He, Q. J. et al. Glucose-responsive sequential generation of hydrogen peroxide and nitric oxide for synergistic cancer starving-like/gas therapy. Angew. Chem., Int. Ed. 2017, 56, 1229–1233.

30

Ren, P.; Li, J. T.; Zhao, L. Y.; Wang, A. H.; Wang, M. Y.; Li, J. L.; Jian, H. L.; Li, X. O.; Yan, X. H.; Bai, S. Dipeptide self-assembled hydrogels with shear-thinning and instantaneous self-healing properties determined by peptide sequences. ACS Appl. Mater. Interfaces 2020, 12, 21433–21440.

31

Li, S. K.; Zou, Q. L.; Li, Y. X.; Yuan, C. Q.; Xing, R. R.; Yan, X. H. Smart peptide-based supramolecular photodynamic metallo-nanodrugs designed by multicomponent coordination self-assembly. J. Am. Chem. Soc. 2018, 140, 10794–10802.

32

Zou, Q. L.; Liu, K.; Abbas, M.; Yan, X. H. Peptide-modulated self-assembly of chromophores toward biomimetic light-harvesting nanoarchitectonics. Adv. Mater. 2016, 28, 1031–1043.

33

Yan, X. H.; Zhu, P. L.; Li, J. B. Self-assembly and application of diphenylalanine-based nanostructures. Chem. Soc. Rev. 2010, 39, 1877–1890.

34

Zhang, H.; Liu, K.; Li, S. K.; Xin, X.; Yuan, S. L.; Ma, G. H.; Yan, X. H. Self-assembled minimalist multifunctional theranostic nanoplatform for magnetic resonance imaging-guided tumor photodynamic therapy. ACS Nano 2018, 12, 8266–8276.

35

Gao, M.; Meng, X.; Guo, X. L.; Zhu, J. D.; Fan, A. P.; Wang, Z.; Zhao, Y. J. All-active antitumor micelles via triggered lipid peroxidation. J. Control. Release 2018, 286, 381–393.

36

Grinberg, O. Y.; James, P. E.; Swartz, H. M. Are there significant gradients of pO2 in cells? Adv. Exp. Med. Biol. 1998, 454, 415–423.

37

Liu, K.; Xing, R. R.; Zou, Q. L.; Ma, G. H.; Möhwald, H.; Yan, X. H. Simple peptide-tuned self-assembly of photosensitizers towards anticancer photodynamic therapy. Angew. Chem., Int. Ed. 2016, 55, 3036–3039.

38

Zhang, R. Y.; Xing, R. R.; Jiao, T. F.; Ma, K.; Chen, C. J.; Ma, G. H.; Yan, X. H. Carrier-free, chemophotodynamic dual nanodrugs via self-assembly for synergistic antitumor therapy. ACS Appl. Mater. Interfaces 2016, 8, 13262–13269.

39

Fleming, S.; Ulijn, R. V. Design of nanostructures based on aromatic peptide amphiphiles. Chem. Soc. Rev. 2014, 43, 8150–8177.

40

Kuppusamy, P.; Li, H. Q.; Ilangovan, G.; Cardounel, A. J.; Zweier, J. L.; Yamada, K.; Krishna, M. C.; Mitchell, J. B. Noninvasive imaging of tumor redox status and its modification by tissue glutathione levels. Cancer Res. 2002, 62, 307–312.

41

Luo, C.; Sun, J.; Liu, D.; Sun, B. J.; Miao, L.; Musetti, S.; Li, J.; Han, X. P.; Du, Y. Q.; Li, L. et al. Self-assembled redox dual-responsive prodrug-nanosystem formed by single thioether-bridged paclitaxel-fatty acid conjugate for cancer chemotherapy. Nano Lett. 2016, 16, 5401–5408.

Nano Research
Pages 5183-5192
Cite this article:
Hou Y, Kuang Y, Jiang Q, et al. Arginine-peptide complex-based assemblies to combat tumor hypoxia for enhanced photodynamic therapeutic effect. Nano Research, 2022, 15(6): 5183-5192. https://doi.org/10.1007/s12274-022-4086-z
Topics:

900

Views

13

Crossref

14

Web of Science

14

Scopus

0

CSCD

Altmetrics

Received: 23 October 2021
Revised: 14 December 2021
Accepted: 19 December 2021
Published: 06 March 2022
© Tsinghua University Press 2022
Return