AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article

High-resolution and large-size stretchable electrodes based on patterned silver nanowires composites

Yong Lin1,§Qingsong Li2,§Chen Ding1Jiayi Wang1,3Wei Yuan1( )Zhiyuan Liu2Wenming Su1Zheng Cui1( )
Printable Electronics Research Centre, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou 215123, China
CAS Key Laboratory of Human-Machine Intelligence-Synergy Systems, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences (CAS), Shenzhen 518055, China
School of Nano-Tech and Nano-Bionics, University of Science and Technology of China, Hefei 230026, China

§ Yong Lin and Qingsong Li contributed equally to this work.

Show Author Information

Graphical Abstract

A method was developed for preparing high-resolution, large-size stretchable electrodes by pre-constructing silver nanowires (AgNWs) patterns through screen printing and vacuum filtration then embedding them into a polydimethylsiloxane (PDMS) matrix. These electrodes have been successfully used as a large-size stretchable circuit board for a smart display system and an 18-channel high-density electrode array for surface electromyography (EMG) recording.

Abstract

Electrodes based on composites of silver nanowires (AgNWs) and elastic polymers have been widely studied and applied in various stretchable electronic devices. However, due to the high aspect ratio of nanowires, the patterning of AgNW-based composite electrodes remains a huge challenge, especially for high-resolution complex circuit wiring on large-size elastic substrates. In this paper, we propose a method for preparing large-size stretchable circuit boards with high-resolution electrodes by the combination of screen printing and vacuum filtration of AgNWs/polydimethylsiloxane (PDMS) composite. The as-prepared stretchable electrodes have smooth edges with patterning resolution up to ~50 μm. The conductivity of the composite electrode can be precisely controlled by varying deposition densities of AgNWs and have reached to 1.07 × 104 S/cm when the deposition density was 2.0 mg/cm2. In addition, the uniformity of conductivity and the resistance-strain characteristics of composite electrodes were systematically evaluated with different AgNWs deposition densities. The composite electrodes have been successfully employed to construct a large-size programmable display system and an 18-channel surface electromyography (EMG) recording, showing great potentials for some strain-insensitive stretchable circuits in wearable and health-related electronic applications.

Electronic Supplementary Material

Video
12274_4088_ESM1.mp4
Download File(s)
12274_2022_4088_MOESM1_ESM.pdf (1.8 MB)

References

1

Wang, L.; Wang, L. Y.; Zhang, Y.; Pan, J.; Li, S. Y.; Sun, X. M.; Zhang, B.; Peng, H. S. Weaving sensing fibers into electrochemical fabric for real-time health monitoring. Adv. Funct. Mater. 2018, 28, 1804456.

2

Jin, H.; Nayeem, O. G.; Lee, S.; Matsuhisa, N.; Inoue, D.; Yokota, T.; Hashizume, D.; Someya, T. Highly durable nanofiber-reinforced elastic conductors for skin-tight electronic textiles. ACS Nano 2019, 13, 7905–7912.

3

Wang, Y. F.; Wang, J.; Cao, S. T.; Kong, D. S. A stretchable and breathable form of epidermal device based on elastomeric nanofibre textiles and silver nanowires. J. Mater. Chem. C 2019, 7, 9748–9755.

4

Wang, J. C.; Zhang, K. K.; Wang, J.; Zhang, M. H.; Zhou, Y. L.; Cheng, J.; Kong, D. S. Strain-invariant conductance in an elastomeric nanocomposite mesh conductor for stretchable electronics. J. Mater. Chem. C 2020, 8, 9440–9448.

5

Ding, C.; Li, Q. S.; Lin, Y.; Wu, X. Z.; Wang, Z. Y.; Yuan, W.; Su, W. M.; Chen, W.; Cui, Z. Omnidirectionally stretchable electrodes based on wrinkled silver nanowires through the shrinkage of electrospun polymer fibers. J. Mater. Chem. C 2020, 8, 16798–16807.

6

Ma, F. X.; Lin, Y.; Yuan, W.; Ding, C.; Su, W. M.; Meng, X. Q.; Cui, Z. Fully printed, large-size alternating current electroluminescent device on fabric for wearable textile display. ACS Appl. Electron. Mater. 2021, 3, 1747–1757.

7

Shi, X.; Zuo, Y.; Zhai, P.; Shen, J. H.; Yang, Y. Y. W.; Gao, Z.; Liao, M.; Wu, J. X.; Wang, J. W.; Xu, X. J. et al. Large-area display textiles integrated with functional systems. Nature 2021, 591, 240–245.

8

Zhou, Y. L.; Zhao, C. S.; Wang, J. C.; Li, Y. Z.; Li, C. X.; Zhu, H. Y.; Feng, S. X.; Cao, S. T.; Kong, D. S. Stretchable high-permittivity nanocomposites for epidermal alternating-current electroluminescent displays. ACS Materials Lett. 2019, 1, 511–518.

9

Zhao, C. S.; Zhou, Y. L.; Gu, S. Q.; Cao, S. T.; Wang, J. C.; Zhang, M. H.; Wu, Y. Z.; Kong, D. S. Fully screen-printed, multicolor, and stretchable electroluminescent displays for epidermal electronics. ACS Appl. Mater. Interfaces 2020, 12, 47902–47910.

10

Son, D.; Kang, J.; Vardoulis, O.; Kim, Y.; Matsuhisa, N.; Oh, J. Y.; To, J. W.; Mun, J.; Katsumata, T.; Liu, Y. X. et al. An integrated self-healable electronic skin system fabricated via dynamic reconstruction of a nanostructured conducting network. Nat. Nanotechnol. 2018, 13, 1057–1065.

11

Cao, Z. R.; Yang, Y. N.; Zheng, Y. H.; Wu, W.; Xu, F. F.; Wang, R. R.; Sun, J. Highly flexible and sensitive temperature sensors based on Ti3C2TX (MXene) for electronic skin. J. Mater. Chem. A 2019, 7, 25314–25323.

12

Nie, P.; Wang, R. R.; Xu, X. J.; Cheng, Y.; Wang, X.; Shi, L. J.; Sun, J. High-performance piezoresistive electronic skin with bionic hierarchical microstructure and microcracks. ACS Appl. Mater. Interfaces 2017, 9, 14911–14919.

13

Li, D. D.; Liu, X.; Chen, X.; Lai, W. Y.; Huang, W. A simple strategy towards highly conductive silver-nanowire inks for screen-printed flexible transparent conductive films and wearable energy-storage devices. Adv. Mater. Technol. 2019, 4, 1900196.

14

Liu, X.; Li, D. D.; Chen, X.; Lai, W. Y.; Huang, W. Highly transparent and flexible all-solid-state supercapacitors based on ultralong silver nanowire conductive networks. ACS Appl. Mater. Interfaces 2018, 10, 32536–32542.

15

Huang, Z. L.; Hao, Y. F.; Li, Y.; Hu, H. J.; Wang, C. H.; Nomoto, A.; Pan, T. S.; Gu, Y.; Chen, Y. M.; Zhang, T. J. et al. Three-dimensional integrated stretchable electronics. Nat. Electron. 2018, 1, 473–480.

16

Lopes, P. A.; Santos, B. C.; De Almeida, A. T.; Tavakoli, M. Reversible polymer-gel transition for ultra-stretchable chip-integrated circuits through self-soldering and self-coating and self-healing. Nat. Commun. 2021, 12, 4666.

17

Kim, D. H.; Rogers, J. A. Stretchable electronics: Materials strategies and devices. Adv. Mater. 2008, 20, 4887–4892.

18

Webb, R. C.; Bonifas, A. P.; Behnaz, A.; Zhang, Y. Y.; Yu, K. J.; Cheng, H. Y.; Shi, M. X.; Bian, Z. G.; Liu, Z. J.; Kim, Y. S. et al. Ultrathin conformal devices for precise and continuous thermal characterization of human skin. Nat. Mater. 2013, 12, 938–944.

19

Qaiser, N.; Damdam, A. N.; Khan, S. M.; Bunaiyan, S.; Hussain, M. M. Design criteria for horseshoe and spiral-based interconnects for highly stretchable electronic devices. Adv. Funct. Mater. 2021, 31, 2007445.

20

Trung, T. Q.; Lee, N. E. Recent progress on stretchable electronic devices with intrinsically stretchable components. Adv. Mater. 2017, 29, 1603167.

21

Zhao, J.; Chi, Z. H.; Yang, Z.; Chen, X. J.; Arnold, M. S.; Zhang, Y.; Xu, J. R.; Chi, Z. G.; Aldred, M. P. Recent developments of truly stretchable thin film electronic and optoelectronic devices. Nanoscale 2018, 10, 5764–5792.

22

Matsuhisa, N.; Chen, X. D.; Bao, Z. A.; Someya, T. Materials and structural designs of stretchable conductors. Chem. Soc. Rev. 2019, 48, 2946–2966.

23

Kim, D. C.; Shim, H. J.; Lee, W.; Koo, J. H.; Kim, D. H. Material-based approaches for the fabrication of stretchable electronics. Adv. Mater. 2020, 32, 1902743.

24

Joo, H.; Jung, D.; Sunwoo, S. H.; Koo, J. H.; Kim, D. H. Material design and fabrication strategies for stretchable metallic nanocomposites. Small 2020, 16, 1906270.

25

Li, D. D.; Lai, W. Y.; Zhang, Y. Z.; Huang, W. Printable transparent conductive films for flexible electronics. Adv. Mater. 2018, 30, 1704738.

26

Jiang, J. K.; Bao, B.; Li, M. Z.; Sun, J. Z.; Zhang, C.; Li, Y.; Li, F. Y.; Yao, X.; Song, Y. L. Fabrication of transparent multilayer circuits by inkjet printing. Adv. Mater. 2016, 28, 1420–1426.

27

Matsuhisa, N.; Inoue, D.; Zalar, P.; Jin, H.; Matsuba, Y.; Itoh, A.; Yokota, T.; Hashizume, D.; Someya, T. Printable elastic conductors by in situ formation of silver nanoparticles from silver flakes. Nat. Mater. 2017, 16, 834–840.

28

Jin, H.; Matsuhisa, N.; Lee, S.; Abbas, M.; Yokota, T.; Someya, T. Enhancing the performance of stretchable conductors for e-textiles by controlled ink permeation. Adv. Mater. 2017, 29, 1605848.

29

Zhu, H. W.; Gao, H. L.; Zhao, H. Y.; Ge, J.; Hu, B. C.; Huang, J.; Yu, S. H. Printable elastic silver nanowire-based conductor for washable electronic textiles. Nano Res. 2020, 13, 2879–2884.

30

Zhu, M. G.; Xiao, H. S.; Yan, G. P.; Sun, P. K.; Jiang, J. H.; Cui, Z.; Zhao, J. W.; Zhang, Z. Y.; Peng, L. M. Radiation-hardened and repairable integrated circuits based on carbon nanotube transistors with ion gel gates. Nat. Electron. 2020, 3, 622–629.

31

Su, Y.; Jia, S.; Du, J. H.; Yuan, J. T.; Liu, C.; Ren, W. C.; Cheng, H. M. Direct writing of graphene patterns and devices on graphene oxide films by inkjet reduction. Nano Res. 2015, 8, 3954–3962.

32

Forró, C.; Demkó, L.; Weydert, S.; Vörös, J.; Tybrandt, K. Predictive model for the electrical transport within nanowire networks. ACS Nano 2018, 12, 11080–11087.

33

Choi, S.; Han, S. I.; Jung, D.; Hwang, H. J.; Lim, C.; Bae, S.; Park, O. K.; Tschabrunn, C. M.; Lee, M.; Bae, S. Y. et al. Highly conductive, stretchable and biocompatible Ag-Au core-sheath nanowire composite for wearable and implantable bioelectronics. Nat. Nanotechnol. 2018, 13, 1048–1056.

34

Choi, S.; Park, J.; Hyun, W.; Kim, J.; Kim, J.; Lee, Y. B.; Song, C.; Hwang, H. J.; Kim, J. H.; Hyeon, T. et al. Stretchable heater using ligand-exchanged silver nanowire nanocomposite for wearable articular thermotherapy. ACS Nano 2015, 9, 6626–6633.

35

Xu, F.; Zhu, Y. Highly conductive and stretchable silver nanowire conductors. Adv. Mater. 2012, 24, 5117–5122.

36

Ho, D. H.; Song, R.; Sun, Q. J.; Park, W. H.; Kim, S. Y.; Pang, C.; Kim, D. H.; Kim, S. Y.; Lee, J.; Cho, J. H. Crack-enhanced microfluidic stretchable E-skin sensor. ACS Appl. Mater. Interfaces 2017, 9, 44678–44686.

37

Forró, C.; Ihle, S. J.; Reichmuth, A. M.; Han, H.; Stauffer, F.; Weaver, S.; Bonnin, A.; Stampanoni, M.; Tybrandt, K.; Vörös, J. Visualizing and analyzing 3D metal nanowire networks for stretchable electronics. Adv. Theory Simul. 2020, 3, 2000038.

38

Zhang, Y. J.; He, P.; Luo, M.; Xu, X. W.; Dai, G. Z.; Yang, J. L. Highly stretchable polymer/silver nanowires composite sensor for human health monitoring. Nano Res. 2020, 13, 919–926.

39

Yang, Y.; Ding, S.; Araki, T.; Jiu, J. T.; Sugahara, T.; Wang, J.; Vanfleteren, J.; Sekitani, T.; Suganuma, K. Facile fabrication of stretchable Ag nanowire/polyurethane electrodes using high intensity pulsed light. Nano Res. 2016, 9, 401–414.

40

Zhu, X. Z.; Xu, J.; Qin, F.; Yan, Z. Y.; Guo, A. Q.; Kan, C. X. Highly efficient and stable transparent electromagnetic interference shielding films based on silver nanowires. Nanoscale 2020, 12, 14589–14597.

41

Liang, J. J.; Tong, K.; Pei, Q. B. A water-based silver-nanowire screen-print ink for the fabrication of stretchable conductors and wearable thin-film transistors. Adv. Mater. 2016, 28, 5986–5996.

42

Yuan, W.; Wu, X. Z.; Gu, W. B.; Lin, J.; Cui, Z. Printed stretchable circuit on soft elastic substrate for wearable application. J. Semicond. 2018, 39, 015002.

43

Cui, Z.; Han, Y. W.; Huang, Q. J.; Dong, J. Y.; Zhu, Y. Electrohydrodynamic printing of silver nanowires for flexible and stretchable electronics. Nanoscale 2018, 10, 6806–6811.

44

Oh, J. Y.; Lee, D.; Hong, S. H. Ice-templated bimodal-porous silver nanowire/PDMS nanocomposites for stretchable conductor. ACS Appl. Mater. Interfaces 2018, 10, 21666–21671.

45

Martinez, V.; Stauffer, F.; Adagunodo, M. O.; Forro, C.; Vörös, J.; Larmagnac, A. Stretchable silver nanowire-elastomer composite microelectrodes with tailored electrical properties. ACS Appl. Mater. Interfaces 2015, 7, 13467–13475.

46

Yao, S. S.; Yang, J.; Poblete, F. R.; Hu, X. G.; Zhu, Y. Multifunctional electronic textiles using silver nanowire composites. ACS Appl. Mater. Interfaces 2019, 11, 31028–31037.

47

Lee, P.; Lee, J.; Lee, H.; Yeo, J.; Hong, S.; Nam, K. H.; Lee, D.; Lee, S. S.; Ko, S. H. Highly stretchable and highly conductive metal electrode by very long metal nanowire percolation network. Adv. Mater. 2012, 24, 3326–3332.

48

Huang, G. W.; Xiao, H. M.; Fu, S. Y. Paper-based silver-nanowire electronic circuits with outstanding electrical conductivity and extreme bending stability. Nanoscale 2014, 6, 8495–8502.

49

Tybrandt, K.; Stauffer, F.; Vörös, J. Multilayer patterning of high resolution intrinsically stretchable electronics. Sci. Rep. 2016, 6, 25641.

50

Yang, M.; Kim, S. W.; Zhang, S. Y.; Park, D. Y.; Lee, C. W.; Ko, Y. H.; Yang, H. F.; Xiao, Y.; Chen, G.; Li, M. Y. Facile and highly efficient fabrication of robust Ag nanowire–elastomer composite electrodes with tailored electrical properties. J. Mater. Chem. C 2018, 6, 7207–7218.

51

Tybrandt, K.; Vörös, J. Fast and efficient fabrication of intrinsically stretchable multilayer circuit boards by wax pattern assisted filtration. Small 2016, 12, 180–184.

52

Fan, Y. J.; Li, X.; Kuang, S. Y.; Zhang, L.; Chen, Y. H.; Liu, L.; Zhang, K.; Ma, S. W.; Liang, F.; Wu, T. et al. Highly robust, transparent, and breathable epidermal electrode. ACS Nano 2018, 12, 9326–9332.

53

Um, D. S.; Lee, Y.; Kim, T.; Lim, S.; Lee, H.; Ha, M.; Khan, Z.; Kang, S.; Kim, M. P.; Kim, J. Y. et al. High-resolution filtration patterning of silver nanowire electrodes for flexible and transparent optoelectronic devices. ACS Appl. Mater. Interfaces 2020, 12, 32154–32162.

54

Lin, Y.; Yuan, W.; Ding, C.; Chen, S. L.; Su, W. M.; Hu, H. L.; Cui, Z.; Li, F. S. Facile and efficient patterning method for silver nanowires and its application to stretchable electroluminescent displays. ACS Appl. Mater. Interfaces 2020, 12, 24074–24085.

55

Kim, K. K.; Hong, S.; Cho, H. M.; Lee, J.; Suh, Y. D.; Ham, J.; Ko, S. H. Highly sensitive and stretchable multidimensional strain sensor with prestrained anisotropic metal nanowire percolation networks. Nano Lett. 2015, 15, 5240–5247.

56

Kim, A.; Ahn, J.; Hwang, H.; Lee, E.; Moon, J. A pre-strain strategy for developing a highly stretchable and foldable one-dimensional conductive cord based on a Ag nanowire network. Nanoscale 2017, 9, 5773–5778.

Nano Research
Pages 4590-4598
Cite this article:
Lin Y, Li Q, Ding C, et al. High-resolution and large-size stretchable electrodes based on patterned silver nanowires composites. Nano Research, 2022, 15(5): 4590-4598. https://doi.org/10.1007/s12274-022-4088-x
Topics:

1133

Views

42

Crossref

40

Web of Science

41

Scopus

4

CSCD

Altmetrics

Received: 29 October 2021
Revised: 19 December 2021
Accepted: 20 December 2021
Published: 22 January 2022
© Tsinghua University Press 2022
Return