AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article

Self-sorting double network hydrogels with photo-definable biochemical cues as artificial synthetic extracellular matrix

Dongdong Wu1,2,§Hai Lei2,3,§Xian Xie1,2,§Liang Zhou1,2Peng Zheng1,2Yi Cao2,3( )Yan Zhang1,2( )
State Key Laboratory of Analytical Chemistry for Life Sciences, Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
Chemistry and Biomedicine Innovation Center (ChemBIC), Nanjing University, Nanjing 210023, China
Collaborative Innovation Center of Advanced Microstructures, National Laboratory of Solid State Microstructure, Department of Physics, Nanjing University, Nanjing 210093, China

§ Dongdong Wu, Hai Lei, and Xian Xie contributed equally to this work.

Show Author Information

Graphical Abstract

Combining peptide self-assembly and photo-click chemistry, a self-sorting double network hydrogel (SDNH) with spatially well-defined bioactive ligands was developed. The programmed SDNH with a desired function through photo-click reactions can be used for a variety of applications such as stem cell culture in 3D.

Abstract

In soft connective tissues, the extracellular matrix (ECM) provides spatiotemporally well-defined mechanical and chemical cues that regulate the functions of residing cells. However, it remains challenging to replicate these essential features in synthetic biomaterials. Here, we develop a self-sorting double network hydrogel (SDNH) with spatially well-defined bioactive ligands as synthetic ECM. Specifically, the SDNH is made of two peptides that can independently self-assemble into fibers of different microscopic features, mimicking the hierarchical protein assemblies in ECM. Each peptide contains a photo-reactive moiety for orthogonally patterning bioactive molecules (i.e., cyclic arginine-glycine-aspartate (cRGD) and osteogenic growth peptide (OGP)) using UV and visible light. As a proof-of-principle, we demonstrate the engineering of SDNH with spatially separated or colocalized cRGD and OGP molecules to control the response of encapsulated stem cells. Our study represents an important step towards defining the mechanical and biochemical cues of synthetic ECM using advanced chemical biology tools.

Electronic Supplementary Material

Download File(s)
12274_2022_4089_MOESM1_ESM.pdf (1.3 MB)

References

1

Gkretsi, V.; Stylianopoulos, T. Cell adhesion and matrix stiffness: Coordinating cancer cell invasion and metastasis. Front. Oncol. 2018, 8, 145.

2

Chaudhuri, O.; Cooper-White, J.; Janmey, P. A.; Mooney, D. J.; Shenoy, V. B. Effects of extracellular matrix viscoelasticity on cellular behaviour. Nature 2020, 584, 535–546.

3

Plotnikov, S. V.; Pasapera, A. M.; Sabass, B.; Waterman, C. M. Force fluctuations within focal adhesions mediate ECM-rigidity sensing to guide directed cell migration. Cell 2012, 151, 1513–1527.

4

Yamada, K. M.; Sixt, M. Mechanisms of 3D cell migration. Nat. Rev. Mol. Cell Biol. 2019, 20, 738–752.

5

Chaudhuri, O.; Gu, L.; Klumpers, D.; Darnell, M.; Bencherif, S. A.; Weaver, J. C.; Huebsch, N.; Lee, H. P.; Lippens, E.; Duda, G. N. et al. Hydrogels with tunable stress relaxation regulate stem cell fate and activity. Nat. Mater. 2016, 15, 326–334.

6

Theocharis, A. D.; Skandalis, S. S.; Gialeli, C.; Karamanos, N. K. Extracellular matrix structure. Adv. Drug Deliv. Rev. 2016, 97, 4–27.

7

Rosales, A. M.; Anseth, K. S. The design of reversible hydrogels to capture extracellular matrix dynamics. Nat. Rev. Mater. 2016, 1, 15012.

8

Huang, G. Y.; Li, F.; Zhao, X.; Ma, Y. F.; Li, Y. H.; Lin, M.; Jin, G. R.; Lu, T. J.; Genin, G. M.; Xu, F. Functional and biomimetic materials for engineering of the three-dimensional cell microenvironment. Chem. Rev. 2017, 117, 12764–12850.

9

Buerkle, L. E.; Rowan, S. J. Supramolecular gels formed from multi-component low molecular weight species. Chem. Soc. Rev. 2012, 41, 6089–6102.

10

Okesola, B. O.; Mata, A. Multicomponent self-assembly as a tool to harness new properties from peptides and proteins in material design. Chem. Soc. Rev. 2018, 47, 3721–3736.

11

Raeburn, J.; Adams, D. J. Multicomponent low molecular weight gelators. Chem. Commun. 2015, 51, 5170–5180.

12

Li, J.; Du, X. W.; Hashim, S.; Shy, A.; Xu, B. Aromatic-aromatic interactions enable α-helix to β-sheet transition of peptides to form supramolecular hydrogels. J. Am. Chem. Soc. 2017, 139, 71–74.

13

Tao, K.; Makam, P.; Aizen, R.; Gazit, E. Self-assembling peptide semiconductors. Science 2017, 358.

14

Makam, P.; Gazit, E. Minimalistic peptide supramolecular co-assembly: Expanding the conformational space for nanotechnology. Chem. Soc. Rev. 2018, 47, 3406–3420.

15

Singh, N.; Maity, C.; Zhang, K.; Angulo-Pachón, C. A.; Van Esch, J. H.; Eelkema, R.; Escuder, B. Synthesis of a double network supramolecular hydrogel by having one network catalyse the formation of the second. Chem. Eur. J. 2017, 23, 2018–2021.

16

Nagy, K. J.; Giano, M. C.; Jin, A.; Pochan, D. J.; Schneider, J. P. Enhanced mechanical rigidity of hydrogels formed from enantiomeric peptide assemblies. J. Am. Chem. Soc. 2011, 133, 14975–14977.

17

Che, X. Y.; Bai, B. L.; Zhang, T. R.; Zhang, C. L.; Zhang, C. X.; Zhang, P.; Wang, H. T.; Li, M. Gelation behaviour and gel properties of two-component organogels containing a photoresponsive gelator. New J. Chem. 2017, 41, 8614–8619.

18

Ardoña, H. A. M.; Draper, E. R.; Citossi, F.; Wallace, M.; Serpell, L. C.; Adams, D. J.; Tovar, J. D. Kinetically controlled coassembly of multichromophoric peptide hydrogelators and the impacts on energy transport. J. Am. Chem. Soc. 2017, 139, 8685–8692.

19

Hai, Z. J.; Li, J. D.; Wu, J. J.; Xu, J. C.; Liang, G. L. Alkaline phosphatase-triggered simultaneous hydrogelation and chemiluminescence. J. Am. Chem. Soc. 2017, 139, 1041–1044.

20

Zheng, Z.; Chen, P. Y.; Xie, M. L.; Wu, C. F.; Luo, Y. F.; Wang, W. T.; Jiang, J.; Liang, G. L. Cell environment-differentiated self-assembly of nanofibers. J. Am. Chem. Soc. 2016, 138, 11128–11131.

21

Cornwell, D. J.; Daubney, O. J.; Smith, D. K. Photopatterned multidomain gels: Multi-component self-assembled hydrogels based on partially self-sorting 1,3:2,4-dibenzylidene-D-sorbitol derivatives. J. Am. Chem. Soc. 2015, 137, 15486–15492.

22

Tanaka, W.; Shigemitsu, H.; Fujisaku, T.; Kubota, R.; Minami, S.; Urayama, K.; Hamachi, I. Post-assembly fabrication of a functional multicomponent supramolecular hydrogel based on a self-sorting double network. J. Am. Chem. Soc. 2019, 141, 4997–5004.

23

Morris, K. L.; Chen, L.; Raeburn, J.; Sellick, O. R.; Cotanda, P.; Paul, A.; Griffiths, P. C.; King, S. M.; O’Reilly, R. K.; Serpell, L. et al. Chemically programmed self-sorting of gelator networks. Nat. Commun. 2013, 4, 1480.

24

Li, C. C.; Rowland, M. J.; Shao, Y.; Cao, T. Y.; Chen, C.; Jia, H. Y.; Zhou, X.; Yang, Z. Q.; Scherman, O. A.; Liu, D. S. Responsive double network hydrogels of interpenetrating DNA and CB[8] host-guest supramolecular systems. Adv. Mater. 2015, 27, 3298–3304.

25

Kubota, R.; Liu, S.; Shigemitsu, H.; Nakamura, K.; Tanaka, W.; Ikeda, M.; Hamachi, I. Imaging-based study on control factors over self-sorting of supramolecular nanofibers formed from peptide- and lipid-type hydrogelators. Bioconjugate Chem. 2018, 29, 2058–2067.

26

Cross, E. R.; Sproules, S.; Schweins, R.; Draper, E. R.; Adams, D. J. Controlled tuning of the properties in optoelectronic self-sorted gels. J. Am. Chem. Soc. 2018, 140, 8667–8670.

27

Wang, Y. M.; Lovrak, M.; Liu, Q.; Maity, C.; Le Sage, V. A. A.; Guo, X. H.; Eelkema, R.; Esch, J. H. V. Hierarchically compartmentalized supramolecular gels through multilevel self-sorting. J. Am. Chem. Soc. 2019, 141, 2847–2851.

28

Onogi, S.; Shigemitsu, H.; Yoshii, T.; Tanida, T.; Ikeda, M.; Kubota, R.; Hamachi, I. In situ real-time imaging of self-sorted supramolecular nanofibres. Nat. Chem. 2016, 8, 743–752.

29

Draper, E. R.; Eden, E. G. B.; McDonald, T. O.; Adams, D. J. Spatially resolved multicomponent gels. Nat. Chem. 2015, 7, 848–852.

30

Shigemitsu, H.; Fujisaku, T.; Tanaka, W.; Kubota, R.; Minami, S.; Urayama, K.; Hamachi, I. An adaptive supramolecular hydrogel comprising self-sorting double nanofibre networks. Nat. Nanotechnol. 2018, 13, 165–172.

31

Mosiewicz, K. A.; Kolb, L.; Van Der Vlies, A. J.; Martino, M. M.; Lienemann, P. S.; Hubbell, J. A.; Ehrbar, M.; Lutolf, M. P. in situ cell manipulation through enzymatic hydrogel photopatterning. Nat. Mater. 2013, 12, 1072–1078.

32

Grim, J. C.; Brown, T. E.; Aguado, B. A.; Chapnick, D. A.; Viert, A. L.; Liu, X.; Anseth, K. S. A Reversible and repeatable thiol–ene bioconjugation for dynamic patterning of signaling proteins in hydrogels. ACS Central Science 2018, 4, 909–916.

33

Deforest, C. A.; Tirrell, D. A. A photoreversible protein-patterning approach for guiding stem cell fate in three-dimensional gels. Nat. Mater. 2015, 14, 523–531.

34

Gandavarapu, N. R.; Azagarsamy, M. A; Anseth, K. S. Photo-click living strategy for controlled, reversible exchange of biochemical ligands. Adv. Mater. 2014, 26, 2521–2526.

35

Wade, R. J.; Bassin, E. J.; Gramlich, W. M.; Burdick, J. A. Nanofibrous hydrogels with spatially patterned biochemical signals to control cell behavior. Adv. Mater. 2015, 27, 1356–1362.

36

Wylie, R. G.; Ahsan, S.; Aizawa, Y.; Maxwell, K. L.; Morshead, C. M.; Shoichet, M. S. Spatially controlled simultaneous patterning of multiple growth factors in three-dimensional hydrogels. Nat. Mater. 2011, 10, 799–806.

37

Song, W. J.; Wang, Y. Z.; Qu, J.; Lin, Q. Selective functionalization of a genetically encoded alkene-containing protein via "Photoclick Chemistry" in bacterial cells. J. Am. Chem. Soc. 2008, 130, 9654–9655.

38

Tian, Y. L.; Jacinto, M. P.; Zeng, Y.; Yu, Z. P.; Qu, J.; Liu, W. R.; Lin, Q. Genetically encoded 2-aryl-5-carboxytetrazoles for site-selective protein photo-cross-linking. J. Am. Chem. Soc. 2017, 139, 6078–6081.

39

He, M. T.; Li, J. B.; Tan, S.; Wang, R. Z.; Zhang, Y. Photodegradable supramolecular hydrogels with fluorescence turn-on reporter for photomodulation of cellular microenvironments. J. Am. Chem. Soc. 2013, 135, 18718–18721.

40

Li, J. B.; Kong, H.; Huang, L.; Cheng, B.; Qin, K.; Zheng, M. M.; Yan, Z.; Zhang, Y. Visible light-initiated bioorthogonal photoclick cycloaddition. J. Am. Chem. Soc. 2018, 140, 14542–14546.

41

Draper, E. R.; Adams, D. J. How should multicomponent supramolecular gels be characterised. Chem. Soc. Rev. 2018, 47, 3395–3405.

42

Prasanthkumar, S.; Ghosh, S.; Nair, V. C.; Saeki, A.; Seki, S.; Ajayaghosh, A. Organic donor-acceptor assemblies form coaxial p-n heterojunctions with high photoconductivity. Angew. Chem., Int. Ed. 2015, 54, 946–950.

43

Sugiyasu, K.; Kawano, S. I.; Fujita, N.; Shinkai, S. Self-sorting organogels with p−n heterojunction points. Chem. Mater. 2008, 20, 2863–2865.

44

Wang, X.; Yan, C.; Ye, K.; He, Y.; Li, Z. H.; Ding, J. D. Effect of RGD nanospacing on differentiation of stem cells. Biomaterials 2013, 34, 2865–2874.

45

Pigossi, S. C.; Medeiros, M. C.; Saska, S.; Cirelli, J. A.; Scarel-Caminaga, R. M. Role of osteogenic growth peptide (OGP) and OGP (10-14) in bone regeneration: A review. Int. J. Mol. Sci. 2016, 17, 1885.

46

Bab, I.; Chorev, M. Osteogenic growth peptide: From concept to drug design. Biopolymers 2002, 66, 33–48.

47

Policastro, G. M.; Lin, F.; Callahan, L. A. S.; Esterle, A.; Graham, M.; Stakleff, K. S.; Becker, M. L. OGP functionalized phenylalanine-based poly (ester urea) for enhancing osteoinductive potential of human mesenchymal stem cells. Biomacromolecules 2015, 16, 1358–1371.

48

Liu, J.; Tan, C. S. Y.; Yu, Z. Y.; Lan, Y.; Abell, C.; Scherman, O. A. Biomimetic supramolecular polymer networks exhibiting both toughness and self-recovery. Adv. Mater. 2017, 29, 1604951.

Nano Research
Pages 4294-4301
Cite this article:
Wu D, Lei H, Xie X, et al. Self-sorting double network hydrogels with photo-definable biochemical cues as artificial synthetic extracellular matrix. Nano Research, 2022, 15(5): 4294-4301. https://doi.org/10.1007/s12274-022-4089-9
Topics:

864

Views

16

Crossref

14

Web of Science

16

Scopus

1

CSCD

Altmetrics

Received: 25 November 2021
Revised: 14 December 2021
Accepted: 19 December 2021
Published: 25 January 2022
© Tsinghua University Press 2022
Return