Discover the SciOpen Platform and Achieve Your Research Goals with Ease.
Search articles, authors, keywords, DOl and etc.
Emerging single-cell technologies create new opportunities for unraveling tumor heterogeneity. However, the development of high-content phenotyping platform is still at its infancy. Here, we develop a microfluidic chip for two-dimensional (2D) profiling of tumor chemotactic and molecular features at single cell resolution. Individual cells were captured by the triangular micropillar arrays in the cell-loading channel, facilitating downstream single-cell analysis. For 2D phenotyping, the chemotactic properties of tumor cells were visualized through cellular migratory behavior in microchannels, while their protein expression was profiled with multiplex surface enhanced Raman scattering (SERS) nanovectors, in which Raman reporter-embedded gold@silver core–shell nanoparticles (Au@Ag REPs) were modified with DNA aptamers targeting cellular surface proteins. As a proof of concept, breast cancer cells with diverse phenotypes were tested on the chip, demonstrating the capability of this platform for simultaneous chemotactic and molecular analysis. The chip is expected to provide a powerful tool for investigating tumor heterogeneity and promoting clinical precision medicine.
Pasha, N.; Turner, N. C. Understanding and overcoming tumor heterogeneity in metastatic breast cancer treatment. Nat. Cancer 2021, 2, 680–692.
Srivatsan, S. R.; McFaline-Figueroa, J. L.; Ramani, V.; Saunders, L.; Cao, J. Y.; Packer, J.; Pliner, H. A.; Jackson, D. L.; Daza, R. M.; Christiansen, L. et al. Massively multiplex chemical transcriptomics at single-cell resolution. Science 2020, 367, 45–51.
McGranahan, N.; Swanton, C. Clonal heterogeneity and tumor evolution: Past, present, and the future. Cell 2017, 168, 613–628.
Dagogo-Jack, I.; Shaw, A. T. Tumour heterogeneity and resistance to cancer therapies. Nat. Rev. Clin. Oncol. 2018, 15, 81–94.
Vitale, I.; Shema, E.; Loi, S.; Galluzzi, L. Intratumoral heterogeneity in cancer progression and response to immunotherapy. Nat. Med. 2021, 27, 212–224.
Lawson, D. A.; Kessenbrock, K.; Davis, R. T.; Pervolarakis, N.; Werb, Z. Tumour heterogeneity and metastasis at single-cell resolution. Nat. Cell Biol. 2018, 20, 1349–1360.
Keller, L.; Pantel, K. Unravelling tumour heterogeneity by single-cell profiling of circulating tumour cells. Nat. Rev. Cancer 2019, 19, 553–567.
Friedl, P.; Gilmour, D. Collective cell migration in morphogenesis, regeneration and cancer. Nat. Rev. Mol. Cell Biol. 2009, 10, 445–457.
Chaffer, C. L.; Weinberg, R. A. A perspective on cancer cell metastasis. Science 2011, 331, 1559–1564.
Weber, M.; Hauschild, R.; Schwarz, J.; Moussion, C.; Vries, I. D.; Legler, D. F.; Luther, S. A.; Bollenbach, T.; Sixt, M. Interstitial dendritic cell guidance by haptotactic chemokine gradients. Science 2013, 339, 328–332.
Chow, M. T.; Luster, A. D. Chemokines in cancer. Cancer Immunol. Res. 2014, 2, 1125–1131.
Welch, D. R.; Hurst, D. R. Defining the hallmarks of metastasis. Cancer Res. 2019, 79, 3011–3027.
Friedl, P.; Wolf, K. Tumour-cell invasion and migration: Diversity and escape mechanisms. Nat. Rev. Cancer 2003, 3, 362–374.
Mège, R. M. Molecular basis for fluidization of cancer cells. Nat. Mater. 2019, 18, 1147–1148.
Rueda, O. M.; Sammut, S. J.; Seoane, J. A.; Chin, S. F.; Caswell-Jin, J. L.; Callari, M.; Batra, R.; Pereira, B.; Bruna, A.; Ali, H. R. et al. Dynamics of breast-cancer relapse reveal late-recurring ER-positive genomic subgroups. Nature 2019, 567, 399–404.
Cristescu, R.; Lee, J.; Nebozhyn, M.; Kim, K. M.; Ting, J. C.; Wong, S. S.; Liu, J. G.; Yue, Y. G.; Wang, J.; Yu, K. et al. Molecular analysis of gastric cancer identifies subtypes associated with distinct clinical outcomes. Nat. Med. 2015, 21, 449–456.
Wong, I. Y.; Javaid, S.; Wong, E. A.; Perk, S.; Haber, D. A.; Toner, M.; Irimia, D. Collective and individual migration following the epithelial-mesenchymal transition. Nat. Mater. 2014, 13, 1063–1071.
Zhang, Y. Q.; Zhang, W. J.; Qin, L. D. Mesenchymal-mode migration assay and antimetastatic drug screening with high-throughput microfluidic channel networks. Angew. Chem., Int. Ed. 2014, 53, 2344–2348.
Chen, Y. C.; Allen, S. G.; Ingram, P. N.; Buckanovich, R.; Merajver, S. D.; Yoon, E. Single-cell migration chip for chemotaxis-based microfluidic selection of heterogeneous cell populations. Sci. Rep. 2015, 5, 9980.
Poudineh, M.; Labib, M.; Ahmed, S.; Nguyen, L. N. M.; Kermanshah, L.; Mohamadi, R. M.; Sargent, E. H.; Kelley, S. O. Profiling functional and biochemical phenotypes of circulating tumor cells using a two-dimensional sorting device. Angew. Chem., Int. Ed. 2017, 56, 163–168.
Laing, S.; Jamieson, L. E.; Faulds, K.; Graham, D. Surface-enhanced raman spectroscopy for in vivo biosensing. Nat. Rev. Chem. 2017, 1, 0060.
Zeng, Y.; Koo, K. M.; Trau, M.; Shen, A. G.; Hu, J. M. Watching SERS glow for multiplex biomolecular analysis in the clinic: A review. Appl. Mater. Today 2019, 15, 431–444.
Zhang, Y. Z.; Wang, Z. Y.; Wu, L.; Zong, S. F.; Yun, B. F.; Cui, Y. P. Combining multiplex SERS nanovectors and multivariate analysis for in situ profiling of circulating tumor cell phenotype using a microfluidic chip. Small 2018, 14, 1704433.
Liu, Y. L.; Chou, C. K.; Kim, M.; Vasisht, R.; Kuo, Y. A.; Ang, P.; Liu, C.; Perillo, E. P.; Chen, Y. A.; Blocher, K. et al. Assessing metastatic potential of breast cancer cells based on EGFR dynamics. Sci. Rep. 2019, 9, 3395.
Islam, T.; Resat, H. Quantitative investigation of MDA-MB-231 breast cancer cell motility: Dependence on epidermal growth factor concentration and its gradient. Mol. BioSyst. 2017, 13, 2069–2082.
Deng, L.; Chen, N. Y.; Li, Y.; Zheng, H.; Lei, Q. Q. CXCR6/CXCL16 functions as a regulator in metastasis and progression of cancer. Biochim. Biophys. Acta (BBA)-Rev. Cancer 2010, 1806, 42–49.
Turkevich, J.; Stevenson, P. C.; Hillier, J. A study of the nucleation and growth processes in the synthesis of colloidal gold. Discuss. Faraday Soc. 1951, 11, 55–75.
Mallin, M. P.; Murphy, C. J. Solution-phase synthesis of sub-10 Nm Au-Ag alloy nanoparticles. Nano Lett. 2002, 2, 1235–1237.
Zhang, X.; Servos, M. R.; Liu, J. W. Instantaneous and quantitative functionalization of gold nanoparticles with thiolated DNA using a PH-assisted and surfactant-free route. J. Am. Chem. Soc. 2012, 134, 7266–7269.
Zhang, Y. B.; Wang, X. L.; Meister, E. A.; Gong, K. R.; Yan, S. C.; Lu, G. W.; Ji, X. M.; Shao, G. The effects of CoCl2 on HIF-1α protein under experimental conditions of autoprogressive hypoxia using mouse models. Int. J. Mol. Sci. 2014, 15, 10999–11012.
Li, S.; Zhang, J.; Yang, H.; Wu, C. H.; Dang, X. T.; Liu, Y. Y. Copper depletion inhibits CoCl2-induced aggressive phenotype of MCF-7 cells via downregulation of HIF-1 and inhibition of snail/twist-mediated epithelial-mesenchymal transition. Sci. Rep. 2015, 5, 12410.
Zhang, N.; Hong, B. A.; Zhou, C. H.; Du, X.; Chen, S. Q.; Deng, X. H.; Duoerkun, S.; Li, Q.; Yang, Y.; Gong, K. Cobalt chloride-induced hypoxia induces epithelial-mesenchymal transition in renal carcinoma cell lines. Ann. Clin. Lab. Sci. 2017, 47, 40–46.
Guiu, S.; Michiels, S.; André, F.; Cortes, J.; Denkert, C.; Di Leo, A.; Hennessy, B. T.; Sorlie, T.; Sotiriou, C.; Turner, N. et al. Molecular subclasses of breast cancer: How do we define them? The IMPAKT 2012 working group statement. Ann. Oncol. 2012, 23, 2997–3006.