AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Review Article

Investigation of electronic excited states in single-molecule junctions

Wei Xu1Ruihao Li1Chenhao Wang1Jiahe Zhong1Junyang Liu1,2 ( )Wenjing Hong1,2( )
State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province (IKKEM), Xiamen 361005, China
Show Author Information

Graphical Abstract

The single molecules in the nanocavity could reach the excited states through electrical or opticalexcitation. The underlying mechanisms of deactivated processes of excited states, such as radiativedecay, non-radiative decay, energy transfer, electron transfer, and vibronic transition aresummarized in this review.

Abstract

The investigation of electronic excited states in single-molecule junctions not only provides platforms to reveal the photophysical and photochemical processes at the molecular level, but also brings opportunities for the development of single-molecule optoelectronic devices. Understanding the interaction mechanisms between molecules and nanocavities is essential to obtain on-demand properties in devices by artificial design, since molecules in junctions exhibit unique behaviors of excited states benefited from the structures of metallic nanocavities. Here, we review the excitation mechanisms involved in the interplay between molecules and plasmonic nanocavities, and reveal the influence of nanostructures on excited-state properties by demonstrating the differences in excited state decay processes. Furthermore, vibronic transitions of molecules between nanoelectrodes are also discussed, offering a new single-molecule characterization method. Finally, we provide the potential applications and challenges in single-molecule optoelectronic devices and the possible directions in exploring the underlying mechanisms of photophysical and photochemical processes.

References

1

Jia, C. C.; Migliore, A.; Xin, N.; Huang, S. Y.; Wang, J. Y.; Yang, Q.; Wang, S. P.; Chen, H. L.; Wang, D. M.; Feng, B. Y. et al. Covalently bonded single-molecule junctions with stable and reversible photoswitched conductivity. Science 2016, 352, 1443–1445.

2

Lounis, B.; Moerner, W. E. Single photons on demand from a single molecule at room temperature. Nature 2000, 407, 491–493.

3

Qiu, X. H.; Nazin, G. V.; Ho, W. Vibrationally resolved fluorescence excited with submolecular precision. Science 2003, 299, 542–546.

4

Xu, J. Y.; Zhu, X.; Tan, S. J.; Zhang, Y.; Li, B.; Tian, Y. Z.; Shan, H.; Cui, X. F.; Zhao, A. D.; Dong, Z. C. et al. Determining structural and chemical heterogeneities of surface species at the single-bond limit. Science 2021, 371, 818–822.

5

Meng, L. N.; Xin, N.; Hu, C.; Wang, J. Y.; Gui, B.; Shi, J. J.; Wang, C.; Shen, C.; Zhang, G. Y.; Guo, H. et al. Side-group chemical gating via reversible optical and electric control in a single molecule transistor. Nat. Commun. 2019, 10, 1450.

6

Cao, S. Y.; Rosławska, A.; Doppagne, B.; Romeo, M.; Féron, M.; Chérioux, F.; Bulou, H.; Scheurer, F.; Schull, G. Energy funnelling within multichromophore architectures monitored with subnanometre resolution. Nat. Chem. 2021, 13, 766–770.

7

Chen, L. J.; Feng, A. N.; Wang, M. N.; Liu, J. Y.; Hong, W. J.; Guo, X. F.; Xiang, D. Towards single-molecule optoelectronic devices. Sci. China Chem. 2018, 61, 1368–1384.

8

Galperin, M.; Nitzan, A. Molecular optoelectronics: The interaction of molecular conduction junctions with light. Phys. Chem. Chem. Phys. 2012, 14, 9421–9438.

9

Zhu, S. J.; Song, Y. B.; Zhao, X. H.; Shao, J. R.; Zhang, J. H.; Yang, B. The photoluminescence mechanism in carbon dots (graphene quantum dots, carbon nanodots, and polymer dots): Current state and future perspective. Nano Res. 2015, 8, 355–381.

10

Du, W.; Wang, T.; Chu, H. S.; Wu, L.; Liu, R. R.; Sun, S.; Phua, W. K.; Wang, L. J.; Tomczak, N.; Nijhuis, C. A. On-chip molecular electronic plasmon sources based on self-assembled monolayer tunnel junctions. Nat. Photonics 2016, 10, 274–280.

11

Zhang, S. R.; Guo, C. Y.; Ni, L. F.; Hans, K. M.; Zhang, W. Q.; Peng, S. J.; Zhao, Z. K.; Guhr, D. C.; Qi, Z.; Liu, H. T. et al. In-situ control of on-chip angstrom gaps, atomic switches, and molecular junctions by light irradiation. Nano Today 2021, 39, 101226.

12

Darwish, N.; Aragonès, A. C.; Darwish, T.; Ciampi, S.; Díez-Pérez, I. Multi-responsive photo- and chemo-electrical single-molecule switches. Nano Lett. 2014, 14, 7064–7070.

13

Kundu, S.; Patra, A. Nanoscale strategies for light harvesting. Chem. Rev. 2017, 117, 712–757.

14

Arakawa, Y.; Holmes, M. J. Progress in quantum-dot single photon sources for quantum information technologies: A broad spectrum overview. Appl. Phys. Rev. 2020, 7, 021309.

15

Toninelli, C.; Gerhardt, I.; Clark, A. S.; Reserbat-Plantey, A.; Götzinger, S.; Ristanović, Z.; Colautti, M.; Lombardi, P.; Major, K. D.; Deperasińska, I. et al. Single organic molecules for photonic quantum technologies. Nat. Mater. 2021, 20, 1615–1628.

16

Atatüre, M.; Englund, D.; Vamivakas, N.; Lee, S. Y.; Wrachtrup, J. Material platforms for spin-based photonic quantum technologies. Nat. Rev. Mater. 2018, 3, 38–51.

17

Santhosh, K.; Bitton, O.; Chuntonov, L.; Haran, G. Vacuum rabi splitting in a plasmonic cavity at the single quantum emitter limit. Nat. Commun. 2016, 7, 11823.

18

Liu, J. Y.; Huang, X. Y.; Wang, F.; Hong, W. J. Quantum interference effects in charge transport through single-molecule junctions: Detection, manipulation, and application. Acc. Chem. Res. 2019, 52, 151–160.

19

Zheng, H. N.; Hou, S. J.; Xin, C. G.; Wu, Q. Q.; Jiang, F.; Tan, Z. B.; Zhou, X.; Lin, L. C.; He, W. X.; Li, Q. M. et al. Room-temperature quantum interference in single perovskite quantum dot junctions. Nat. Commun. 2019, 10, 5458.

20

Fracasso, D.; Valkenier, H.; Hummelen, J. C.; Solomon, G. C.; Chiechi, R. C. Evidence for quantum interference in SAMs of arylethynylene thiolates in tunneling junctions with eutectic Ga-In (EGaIn) top-contacts. J. Am. Chem. Soc. 2011, 133, 9556–9563.

21

Bai, J.; Daaoub, A.; Sangtarash, S.; Li, X. H.; Tang, Y. X.; Zou, Q.; Sadeghi, H.; Liu, S.; Huang, X. J.; Tan, Z. B. et al. Anti-resonance features of destructive quantum interference in single-molecule thiophene junctions achieved by electrochemical gating. Nat. Mater. 2019, 18, 364–369.

22

Li, Y. Q.; Buerkle, M.; Li, G. F.; Rostamian, A.; Wang, H.; Wang, Z. X.; Bowler, D. R.; Miyazaki, T.; Xiang, L. M.; Asai, Y. et al. Gate controlling of quantum interference and direct observation of anti-resonances in single molecule charge transport. Nat. Mater. 2019, 18, 357–363.

23

Park, J.; Pasupathy, A. N.; Goldsmith, J. I.; Chang, C.; Yaish, Y.; Petta, J. R.; Rinkoski, M.; Sethna, J. P.; Abruña, H. D.; McEuen, P. L. et al. Coulomb blockade and the kondo effect in single-atom transistors. Nature 2002, 417, 722–725.

24

Lovat, G.; Choi, B.; Paley, D. W.; Steigerwald, M. L.; Venkataraman, L.; Roy, X. Room-temperature current blockade in atomically defined single-cluster junctions. Nat. Nanotechnol. 2017, 12, 1050–1054.

25

Cui, J. B.; Burghard, M.; Kern, K. Room temperature single electron transistor by local chemical modification of carbon nanotubes. Nano Lett. 2002, 2, 117–120.

26

Sasaki, S.; De Franceschi, S.; Elzerman, J. M.; Van Der Wiel, W. G.; Eto, M.; Tarucha, S.; Kouwenhoven, L. P. Kondo effect in an integer-spin quantum dot. Nature 2000, 405, 764–767.

27

Jeong, H.; Chang, A. M.; Melloch, M. R. The kondo effect in an artificial quantum dot molecule. Science 2001, 293, 2221–2223.

28

Xing, Y. Q.; Chen, H.; Hu, B.; Ye, Y. H.; Hofer, W. A.; Gao, H. J. Reversible switching of kondo resonance in a single-molecule junction. Nano Res. 2022, 15, 1466–1471.

29

Xin, N.; Guan, J. X.; Zhou, C. G.; Chen, X. J. N.; Gu, C. H.; Li, Y.; Ratner, M. A.; Nitzan, A.; Stoddart, J. F.; Guo, X. F. Concepts in the design and engineering of single-molecule electronic devices. Nat. Rev. Phys. 2019, 1, 211–230.

30

Su, T. A.; Neupane, M.; Steigerwald, M. L.; Venkataraman, L.; Nuckolls, C. Chemical principles of single-molecule electronics. Nat. Rev. Mater. 2016, 1, 16002.

31
Born, M.; Wolf, E. Principles of Optics: Electromagnetic Theory of Propagation, Interference and Diffraction of Light; Elsevier: Amsterdam, 2013.
32

Kastrup, L.; Hell, S. W. Absolute optical cross section of individual fluorescent molecules. Angew. Chem., Int. Ed. 2004, 43, 6646–6649.

33

Yang, B.; Chen, G.; Ghafoor, A.; Zhang, Y. F.; Zhang, Y.; Zhang, Y.; Luo, Y.; Yang, J. L.; Sandoghdar, V.; Aizpurua, J. et al. Sub-nanometre resolution in single-molecule photoluminescence imaging. Nat. Photonics 2020, 14, 693–699.

34

Akselrod, G. M.; Argyropoulos, C.; Hoang, T. B.; Ciracì, C.; Fang, C.; Huang, J. N.; Smith, D. R.; Mikkelsen, M. H. Probing the mechanisms of large purcell enhancement in plasmonic nanoantennas. Nat. Photonics 2014, 8, 835–840.

35

Luo, X. G.; Tsai, D. P.; Gu, M.; Hong, M. H. Extraordinary optical fields in nanostructures: From sub-diffraction-limited optics to sensing and energy conversion. Chem. Soc. Rev. 2019, 48, 2458–2494.

36

Li, J. F.; Li, C. Y.; Aroca, R. F. Plasmon-enhanced fluorescence spectroscopy. Chem. Soc. Rev. 2017, 46, 3962–3979.

37

Yang, Y.; Liu, J. Y.; Feng, S.; Wen, H. M.; Tian, J. H.; Zheng, J. T.; Schöllhorn, B.; Amatore, C.; Chen, Z. N.; Tian, Z. Q. Unexpected current–voltage characteristics of mechanically modulated atomic contacts with the presence of molecular junctions in an electrochemically assisted-MCBJ. Nano Res. 2016, 9, 560–570.

38

Zhou, J. F.; Wang, K.; Xu, B. Q.; Dubi, Y. Photoconductance from exciton binding in molecular junctions. J. Am. Chem. Soc. 2018, 140, 70–73.

39

Zang, Y. P.; Zou, Q.; Fu, T. R.; Ng, F.; Fowler, B.; Yang, J. J.; Li, H. X.; Steigerwald, M. L.; Nuckolls, C.; Venkataraman, L. Directing isomerization reactions of cumulenes with electric fields. Nat. Commun. 2019, 10, 4482.

40

Baumberg, J. J.; Aizpurua, J.; Mikkelsen, M. H.; Smith, D. R. Extreme nanophotonics from ultrathin metallic gaps. Nat. Mater. 2019, 18, 668–678.

41

Hugall, J. T.; Singh, A.; Van Hulst, N. F. Plasmonic cavity coupling. ACS Photonics 2018, 5, 43–53.

42

Kuhnke, K.; Große, C.; Merino, P.; Kern, K. Atomic-scale imaging and spectroscopy of electroluminescence at molecular interfaces. Chem. Rev. 2017, 117, 5174–5222.

43

Baranov, D. G.; Wersäll, M.; Cuadra, J.; Antosiewicz, T. J.; Shegai, T. Novel nanostructures and materials for strong light–matter interactions. ACS Photonics 2018, 5, 24–42.

44

Kinkhabwala, A.; Yu, Z. F.; Fan, S. H.; Avlasevich, Y.; Müllen, K.; Moerner, W. E. Large single-molecule fluorescence enhancements produced by a bowtie nanoantenna. Nat. Photonics 2009, 3, 654–657.

45

Chikkaraddy, R.; Turek, V. A.; Kongsuwan, N.; Benz, F.; Carnegie, C.; Van De Goor, T.; De Nijs, B.; Demetriadou, A.; Hess, O.; Keyser, U. F. et al. Mapping nanoscale hotspots with single-molecule emitters assembled into plasmonic nanocavities using DNA origami. Nano Lett. 2018, 18, 405–411.

46

Pohl, D. W.; Denk, W.; Lanz, M. Optical stethoscopy: Image recording with resolution λ/20. Appl. Phys. Lett. 1984, 44, 651–653.

47

Kongsuwan, N.; Demetriadou, A.; Chikkaraddy, R.; Benz, F.; Turek, V. A.; Keyser, U. F.; Baumberg, J. J.; Hess, O. Suppressed quenching and strong-coupling of purcell-enhanced single-molecule emission in plasmonic nanocavities. ACS Photonics 2018, 5, 186–191.

48

Zhang, R.;Zhang, Y.;Dong, Z. C.;Jiang, S.;Zhang, C.;Chen, L. G.;Zhang, L.;Liao, Y.;Aizpurua, J.;Luo, Y.;Yang, J. L.; Hou, J. G. Chemical mapping of a single molecule by plasmon-enhanced Raman scattering. Nature 2013, 498, 82–86.

49

Chikkaraddy, R.; De Nijs, B.; Benz, F.; Barrow, S. J.; Scherman, O. A.; Rosta, E.; Demetriadou, A.; Fox, P.; Hess, O.; Baumberg, J. J. Single-molecule strong coupling at room temperature in plasmonic nanocavities. Nature 2016, 535, 127–130.

50

Ojambati, O. S.; Chikkaraddy, R.; Deacon, W. D.; Horton, M.; Kos, D.; Turek, V. A.; Keyser, U. F.; Baumberg, J. J. Quantum electrodynamics at room temperature coupling a single vibrating molecule with a plasmonic nanocavity. Nat. Commun. 2019, 10, 1049.

51

Zhang, Y.; Meng, Q. S.; Zhang, L.; Luo, Y.; Yu, Y. J.; Yang, B.; Zhang, Y.; Esteban, R.; Aizpurua, J.; Luo, Y. et al. Sub-nanometre control of the coherent interaction between a single molecule and a plasmonic nanocavity. Nat. Commun. 2017, 8, 15225.

52

Liu, Y. T.; Bian, Y. J.; Zhang, Y. Y.; Hang, C.; Zhang, X. L.; Lou, S. T.; Jin, Q. Y. Fluorescence of cotpp mediated by the plasmon–exciton coupling effect in the tunneling junction. J. Phys. Chem. Lett. 2021, 12, 5349–5356.

53

Zhang, L.; Yu, Y. J.; Chen, L. G.; Luo, Y.; Yang, B.; Kong, F. F.; Chen, G.; Zhang, Y.; Zhang, Q.; Luo, Y. et al. Electrically driven single-photon emission from an isolated single molecule. Nat. Commun. 2017, 8, 580.

54

Rogez, B.; Cao, S.; Dujardin, G.; Comtet, G.; Le Moal, E.; Mayne, A.; Boer-Duchemin, E. The mechanism of light emission from a scanning tunnelling microscope operating in air. Nanotechnology 2016, 27, 465201.

55

Chong, M. C.; Reecht, G.; Bulou, H.; Boeglin, A.; Scheurer, F.; Mathevet, F.; Schull, G. Narrow-line single-molecule transducer between electronic circuits and surface plasmons. Phys. Rev. Lett. 2016, 116, 036802.

56

Merino, P.; Große, C.; Roslawska, A.; Kuhnke, K.; Kern, K. Exciton dynamics of C60-based single-photon emitters explored by Hanbury Brown–Twiss scanning tunnelling microscopy. Nat. Commun. 2015, 6, 8461.

57

Reecht, G.; Scheurer, F.; Speisser, V.; Dappe, Y. J.; Mathevet, F.; Schull, G. Electroluminescence of a polythiophene molecular wire suspended between a metallic surface and the tip of a scanning tunneling microscope. Phys. Rev. Lett. 2014, 112, 047403.

58

Chen, C.; Chu, P.; Bobisch, C. A.; Mills, D. L.; Ho, W. Viewing the interior of a single molecule: Vibronically resolved photon imaging at submolecular resolution. Phys. Rev. Lett. 2010, 105, 217402.

59

Dong, Z. C.; Zhang, X. L.; Gao, H. Y.; Luo, Y.; Zhang, C.; Chen, L. G.; Zhang, R.; Tao, X.; Zhang, Y.; Yang, J. L. et al. Generation of molecular hot electroluminescence by resonant nanocavity plasmons. Nat. Photonics 2010, 4, 50–54.

60

Chen, G.; Luo, Y.; Gao, H. Y.; Jiang, J.; Yu, Y. J.; Zhang, L.; Zhang, Y.; Li, X. G.; Zhang, Z. Y.; Dong, Z. C. Spin-triplet-mediated up-conversion and crossover behavior in single-molecule electroluminescence. Phys. Rev. Lett. 2019, 122, 117401.

61

Uemura, T.; Furumoto, M.; Nakano, T.; Akai-Kasaya, M.; Saito, A.; Aono, M.; Kuwahara, Y. Local-plasmon-enhanced up-conversion fluorescence from copper phthalocyanine. Chem. Phys. Lett. 2007, 448, 232–236.

62

Doležal, J.; Canola, S.; Merino, P.; Švec, M. Exciton-trion conversion dynamics in a single molecule. ACS Nano 2021, 15, 7694–7699.

63

Imada, H.; Miwa, K.; Imai-Imada, M.; Kawahara, S.; Kimura, K.; Kim, Y. Single-molecule investigation of energy dynamics in a coupled plasmon-exciton system. Phys. Rev. Lett. 2017, 119, 013901.

64

Tian, X. J.; Kong, F. F.; Yu, Y. J.; Jing, S. H.; Zhang, X. B.; Liao, Y.; Zhang, Y.; Zhang, Y.; Dong, Z. C. Plasmon-enhanced S2 electroluminescence from the high-lying excited state of a single porphyrin molecule. Appl. Phys. Lett. 2020, 117, 243301.

65

Gutzler, R.; Garg, M.; Ast, C. R.; Kuhnke, K.; Kern, K. Light–matter interaction at atomic scales. Nat. Rev. Phys. 2021, 3, 441–453.

66

Vadai, M.; Nachman, N.; Ben-Zion, M.; Bürkle, M.; Pauly, F.; Cuevas, J. C.; Selzer, Y. Plasmon-induced conductance enhancement in single-molecule junctions. J. Phys. Chem. Lett. 2013, 4, 2811–2816.

67

Thon, A.; Merschdorf, M.; Pfeiffer, W.; Klamroth, T.; Saalfrank, P.; Diesing, D. Photon-assisted tunneling versus tunneling of excited electrons in metal–insulator–metal junctions. Appl. Phys. A 2004, 78, 189–199.

68

Wu, S. W.; Ho, W. Two-photon-induced hot-electron transfer to a single molecule in a scanning tunneling microscope. Phys. Rev. B 2010, 82, 085444.

69

Vezzoli, A.; Brooke, R. J.; Higgins, S. J.; Schwarzacher, W.; Nichols, R. J. Single-molecule photocurrent at a metal–molecule–semiconductor junction. Nano Lett. 2017, 17, 6702–6707.

70

Fung, E. D.; Adak, O.; Lovat, G.; Scarabelli, D.; Venkataraman, L. Too hot for photon-assisted transport: Hot-electrons dominate conductance enhancement in illuminated single-molecule junctions. Nano Lett. 2017, 17, 1255–1261.

71

Zhang, W. Q.; Liu, H. S.; Lu, J. S.; Ni, L. F.; Liu, H. T.; Li, Q.; Qiu, M.; Xu, B. Q.; Lee, T.; Zhao, Z. K. et al. Atomic switches of metallic point contacts by plasmonic heating. Light Sci. Appl. 2019, 8, 34.

72

Yoshida, K.; Shibata, K.; Hirakawa, K. Terahertz field enhancement and photon-assisted tunneling in single-molecule transistors. Phys. Rev. Lett. 2015, 115, 138302.

73

Cocker, T. L.; Peller, D.; Yu, P.; Repp, J.; Huber, R. Tracking the ultrafast motion of a single molecule by femtosecond orbital imaging. Nature 2016, 539, 263–267.

74

Du, S. Q.; Yoshida, K.; Zhang, Y.; Hamada, I.; Hirakawa, K. Terahertz dynamics of electron–vibron coupling in single molecules with tunable electrostatic potential. Nat. Photonics 2018, 12, 608–612.

75

Peller, D.; Kastner, L. Z.; Buchner, T.; Roelcke, C.; Albrecht, F.; Moll, N.; Huber, R.; Repp, J. Sub-cycle atomic-scale forces coherently control a single-molecule switch. Nature 2020, 585, 58–62.

76

Kang, T.; Bahk, Y. M.; Kim, D. S. Terahertz quantum plasmonics at nanoscales and angstrom scales. Nanophotonics 2020, 9, 435–451.

77

Lange, S. L.; Noori, N. K.; Kristensen, T. M. B.; Steenberg, K.; Jepsen, P. U. Ultrafast THz-driven electron emission from metal metasurfaces. J. Appl. Phys. 2020, 128, 070901.

78

Battacharyya, S.; Kibel, A.; Kodis, G.; Liddell, P. A.; Gervaldo, M.; Gust, D.; Lindsay, S. Optical modulation of molecular conductance. Nano Lett. 2011, 11, 2709–2714.

79

Wang, S. K.; Wattanatorn, N.; Chiang, N.; Zhao, Y. X.; Kim, M.; Ma, H.; Jen, A. K. Y.; Weiss, P. S. Photoinduced charge transfer in single-molecule pn junctions. J. Phys. Chem. Lett. 2019, 10, 2175–2181.

80

Zhao, Z. K.; Guo, C. Y.; Ni, L. F.; Zhao, X. Y.; Zhang, S. R.; Xiang, D. In situ photoconductivity measurements of imidazole in optical fiber break-junctions. Nanoscale Horiz. 2021, 6, 386–392.

81

Loth, S.; Etzkorn, M.; Lutz, C. P.; Eigler, D. M.; Heinrich, A. J. Measurement of fast electron spin relaxation times with atomic resolution. Science 2010, 329, 1628–1630.

82

Peng, J. B.; Sokolov, S.; Hernangómez-Pérez, D.; Evers, F.; Gross, L.; Lupton, J. M.; Repp, J. Atomically resolved single-molecule triplet quenching. Science 2021, 373, 452–456.

83

Chandler, H. J.; Stefanou, M.; Campbell, E. E. B.; Schaub, R. Li@C60 as a multi-state molecular switch. Nat. Commun. 2019, 10, 2283.

84

Yasuda, S.; Nakamura, T.; Matsumoto, M.; Shigekawa, H. Phase switching of a single isomeric molecule and associated characteristic rectification. J. Am. Chem. Soc. 2003, 125, 16430–16433.

85

Quintans, C. S.; Andrienko, D.; Domke, K. F.; Aravena, D.; Koo, S.; Díez-Pérez, I.; Aragonès, A. C. Tuning single-molecule conductance by controlled electric field-induced trans-to-cis isomerisation. Appl. Sci. 2021, 11, 3317.

86

Turro, N. J.; Ramamurthy, V.; Scaiano, J. C. Modern molecular photochemistry of organic molecules. Photochem. Photobiol. 2012, 88, 1033.

87

Avouris, P.; Persson, B. N. J. Excited states at metal surfaces and their non-radiative relaxation. J. Phys. Chem. 1984, 88, 837–848.

88
Chance, R. R.; Prock, A.; Silbey, R. Molecular fluorescence and energy transfer near interfaces. In Advances in Chemical Physics. Prigogine, I.; Rice, S. A., Eds.; John Wiley & Sons: Hoboken, 1978; pp 1–65.https://doi.org/10.1002/9780470142561.ch1
89

Waldeck, D. H.; Alivisatos, A. P.; Harris, C. B. Nonradiative damping of molecular electronic excited states by metal surfaces. Surf. Sci. 1985, 158, 103–125.

90

Hoffmann, G.; Libioulle, L.; Berndt, R. Tunneling-induced luminescence from adsorbed organic molecules with submolecular lateral resolution. Phys. Rev. B 2002, 65, 212107.

91

Luo, Y.; Chen, G.; Zhang, Y.; Zhang, L.; Yu, Y. J.; Kong, F. F.; Tian, X. J.; Zhang, Y.; Shan, C. X.; Luo, Y. et al. Electrically driven single-photon superradiance from molecular chains in a plasmonic nanocavity. Phys. Rev. Lett. 2019, 122, 233901.

92

Doppagne, B.; Neuman, T.; Soria-Martinez, R.; López, L. E. P.; Bulou, H.; Romeo, M.; Berciaud, S.; Scheurer, F.; Aizpurua, J.; Schull, G. Single-molecule tautomerization tracking through space- and time-resolved fluorescence spectroscopy. Nat. Nanotechnol. 2020, 15, 207–211.

93

Zhang, X. L.; Chen, L. G.; Lv, P.; Gao, H. Y.; Wei, S. J.; Dong, Z. C.; Hou, J. G. Fluorescence decay of quasimonolayered porphyrins near a metal surface separated by short-chain alkanethiols. Appl. Phys. Lett. 2008, 92, 223118.

94

Dong, Z. C.; Guo, X. L.; Trifonov, A. S.; Dorozhkin, P. S.; Miki, K.; Kimura, K.; Yokoyama, S.; Mashiko, S. Vibrationally resolved fluorescence from organic molecules near metal surfaces in a scanning tunneling microscope. Phys. Rev. Lett. 2004, 92, 086801.

95

Marquardt, C. W.; Grunder, S.; Blaszczyk, A.; Dehm, S.; Hennrich, F.; Löhneysen, H. V.; Mayor, M.; Krupke, R. Electroluminescence from a single nanotube–molecule–nanotube junction. Nat. Nanotechnol. 2010, 5, 863–867.

96

Zhu, S. E.; Kuang, Y. M.; Geng, F.; Zhu, J. Z.; Wang, C. Z.; Yu, Y. J.; Luo, Y.; Xiao, Y.; Liu, K. Q.; Meng, Q. S. et al. Self-decoupled porphyrin with a tripodal anchor for molecular-scale electroluminescence. J. Am. Chem. Soc. 2013, 135, 15794–15800.

97

Ijaz, T.; Yang, B.; Wang, R. P.; Zhu, J. Z.; Farrukh, A.; Chen, G.; Franc, G.; Zhang, Y.; Gourdon, A.; Dong, Z. C. Self-decoupled tetrapodal perylene molecules for luminescence studies of isolated emitters on Au(111). Appl. Phys. Lett. 2019, 115, 173101.

98
Zhao, S. Q.; Chen, H.; Qian, Q. Z.; Zhang, H. W.; Yang, Y.; Hong, W. J. Non-covalent interaction-based molecular electronics with graphene electrodes. Nano Res., in press, https:// 10.1007/s12274-021-3687-2.
99

Xiang, D.; Wang, X. L.; Jia, C. C.; Lee, T.; Guo, X. F. Molecular-scale electronics: From concept to function. Chem. Rev. 2016, 116, 4318–4440.

100

You, Y.; Nam, W. Photofunctional triplet excited states of cyclometalated Ir(III) complexes: Beyond electroluminescence. Chem. Soc. Rev. 2012, 41, 7061–7084.

101

Xu, H.; Chen, R. F.; Sun, Q.; Lai, W. Y.; Su, Q. Q.; Huang, W.; Liu, X. G. Recent progress in metal–organic complexes for optoelectronic applications. Chem. Soc. Rev. 2014, 43, 3259–3302.

102

Zhao, J. Z.; Wu, W. H.; Sun, J. F.; Guo, S. Triplet photosensitizers: From molecular design to applications. Chem. Soc. Rev. 2013, 42, 5323–5351.

103

Zhou, G. J.; Wong, W. Y. Organometallic acetylides of PtII, AuI and HgII as new generation optical power limiting materials. Chem. Soc. Rev. 2011, 40, 2541–2566.

104

Ojambati, O. S.; Chikkaraddy, R.; Deacon, W. M.; Huang, J. Y.; Wright, D.; Baumberg, J. J. Efficient generation of two-photon excited phosphorescence from molecules in plasmonic nanocavities. Nano Lett. 2020, 20, 4653–4658.

105

Neuman, T.; Esteban, R.; Casanova, D.; García-Vidal, F. J.; Aizpurua, J. Coupling of molecular emitters and plasmonic cavities beyond the point-dipole approximation. Nano Lett. 2018, 18, 2358–2364.

106

Ojambati, O. S.; Deacon, W. M.; Chikkaraddy, R.; Readman, C.; Lin, Q. Q.; Koczor-Benda, Z.; Rosta, E.; Scherman, O. A.; Baumberg, J. J. Breaking the selection rules of spin-forbidden molecular absorption in plasmonic nanocavities. ACS Photonics 2020, 7, 2337–2342.

107

Kimura, K.; Miwa, K.; Imada, H.; Imai-Imada, M.; Kawahara, S.; Takeya, J.; Kawai, M.; Galperin, M.; Kim, Y. Selective triplet exciton formation in a single molecule. Nature 2019, 570, 210–213.

108

Lin, Y. T.; Ye, Y. Z.; Fang, W. Electrically driven single-photon sources. J. Semicond. 2019, 40, 071904.

109

Rosławska, A.; Leon, C. C.; Grewal, A.; Merino, P.; Kuhnke, K.; Kern, K. Atomic-scale dynamics probed by photon correlations. ACS Nano 2020, 14, 6366–6375.

110

Nothaft, M.; Höhla, S.; Jelezko, F.; Frühauf, N.; Pflaum, J.; Wrachtrup, J. Electrically driven photon antibunching from a single molecule at room temperature. Nat. Commun. 2012, 3, 628.

111

Leon, C. C.; Gunnarsson, O.; De Oteyza, D. G.; Roslawska, A.; Merino, P.; Grewal, A.; Kuhnke, K.; Kern, K. Single photon emission from a plasmonic light source driven by a local field-induced coulomb blockade. ACS Nano 2020, 14, 4216–4223.

112

Barkai, E.; Jung, Y.; Silbey, R. Theory of single-molecule spectroscopy: Beyond the ensemble average. Annu. Rev. Phys. Chem. 2004, 55, 457–507.

113

Li, Y. Q.; Wang, H.; Wang, Z. X.; Qiao, Y. J.; Ulstrup, J.; Chen, H. Y.; Zhou, G.; Tao, N. J. Transition from stochastic events to deterministic ensemble average in electron transfer reactions revealed by single-molecule conductance measurement. Proc. Natl. Acad. Sci. USA 2019, 116, 3407–3412.

114

Lippitz, M.; Kulzer, F.; Orrit, M. Statistical evaluation of single nano-object fluorescence. ChemPhysChem 2005, 6, 770–789.

115

Patera, L. L.; Queck, F.; Scheuerer, P.; Repp, J. Mapping orbital changes upon electron transfer with tunnelling microscopy on insulators. Nature 2019, 566, 245–248.

116

Patera, L. L.; Queck, F.; Scheuerer, P.; Moll, N.; Repp, J. Accessing a charged intermediate state involved in the excitation of single molecules. Phys. Rev. Lett. 2019, 123, 016001.

117

Patera, L. L.; Queck, F.; Repp, J. Imaging charge localization in a conjugated oligophenylene. Phys. Rev. Lett. 2020, 125, 176803.

118

Doppagne, B.; Chong, M. C.; Bulou, H.; Boeglin, A.; Scheurer, F.; Schull, G. Electrofluorochromism at the single-molecule level. Science 2018, 361, 251–255.

119

Farrukh, A.; Tian, X. J.; Kong, F. F.; Yu, Y. J.; Jing, S. H.; Chen, G.; Zhang, Y.; Liao, Y.; Zhang, Y.; Dong, Z. C. Bias-polarity dependent electroluminescence from a single platinum phthalocyanine molecule. Chin. J. Chem. Phys. 2021, 34, 87–94.

120

Van Grondelle, R.; Dekker, J. P.; Gillbro, T.; Sundstrom, V. Energy transfer and trapping in photosynthesis. Biochim. Biophys. Acta Bioenerg. 1994, 1187, 1–65.

121

Van Grondelle, R.; Novoderezhkin, V. I. Energy transfer in photosynthesis: Experimental insights and quantitative models. Phys. Chem. Chem. Phys. 2006, 8, 793–807.

122
Priya, S.; Inman, D. J. Energy Harvesting Technologies; Springer: Boston, 2009.https://doi.org/10.1007/978-0-387-76464-1
123

Castano, A. P.; Demidova, T. N.; Hamblin, M. R. Mechanisms in photodynamic therapy: Part one—photosensitizers, photochemistry and cellular localization. Photodiagn. Photodyn. Ther. 2004, 1, 279–293.

124

Kwiatkowski, S.; Knap, B.; Przystupski, D.; Saczko, J.; Kedzierska, E.; Knap-Czop, K.; Kotlińska, J.; Michel, O.; Kotowski, K.; Kulbacka, J. Photodynamic therapy-mechanisms, photosensitizers and combinations. Biomed. Pharmacother. 2018, 106, 1098–1107.

125

Zhang, Y.; Luo, Y.; Zhang, Y.; Yu, Y. J.; Kuang, Y. M.; Zhang, L.; Meng, Q. S.; Luo, Y.; Yang, J. L.; Dong, Z. C. et al. Visualizing coherent intermolecular dipole–dipole coupling in real space. Nature 2016, 531, 623–627.

126

Imada, H.; Miwa, K.; Imai-Imada, M.; Kawahara, S.; Kimura, K.; Kim, Y. Real-space investigation of energy transfer in heterogeneous molecular dimers. Nature 2016, 538, 364–367.

127

Raman, C. V.; Krishnan, K. S. A new type of secondary radiation. Nature 1928, 121, 501–502.

128

Robert, B. Resonance Raman spectroscopy. Photosynth. Res. 2009, 101, 147–155.

129

Jeanmaire, D. L.; Van Duyne, R. P. Surface Raman spectroelectrochemistry: Part I. Heterocyclic, aromatic, and aliphatic amines adsorbed on the anodized silver electrode. J. Electroanal. Chem. Interfacial Electrochem. 1977, 84, 1–20.

130

Albrecht, M. G.; Creighton, J. A. Anomalously intense Raman spectra of pyridine at a silver electrode. J. Am. Chem. Soc. 1977, 99, 5215–5217.

131

Gersten, J.; Nitzan, A. Electromagnetic theory of enhanced Raman scattering by molecules adsorbed on rough surfaces. J. Chem. Phys. 1980, 73, 3023–3037.

132

Moskovits, M. Surface-enhanced spectroscopy. Rev. Mod. Phys. 1985, 57, 783–826.

133

Wu, D. Y.; Li, J. F.; Ren, B.; Tian, Z. Q. Electrochemical surface-enhanced Raman spectroscopy of nanostructures. Chem. Soc. Rev. 2008, 37, 1025–1041.

134

Kneipp, K.; Wang, Y.; Kneipp, H.; Perelman, L. T.; Itzkan, I.; Dasari, R. R.; Feld, M. S. Single molecule detection using surface-enhanced Raman scattering (SERS). Phys. Rev. Lett. 1997, 78, 1667–1670.

135

Nie, S. M.; Emory, S. R. Probing single molecules and single nanoparticles by surface-enhanced Raman scattering. Science 1997, 275, 1102–1106.

136

Xu, H. X.; Bjerneld, E. J.; Käll, M.; Börjesson, L. Spectroscopy of single hemoglobin molecules by surface enhanced Raman scattering. Phys. Rev. Lett. 1999, 83, 4357–4360.

137

Michaels, A. M.; Jiang, J.; Brus, L. Ag nanocrystal junctions as the site for surface-enhanced Raman scattering of single rhodamine 6G molecules. J. Phys. Chem. B 2000, 104, 11965–11971.

138

Tian, J. H.; Liu, B.; Li, X. L; Yang, Z. L.; Ren, B.; Wu, S. T.; Tao, N. J.; Tian, Z. Q. Study of molecular junctions with a combined surface-enhanced Raman and mechanically controllable break junction method. J. Am. Chem. Soc. 2006, 128, 14748–14749.

139

Ward, D. R.; Grady, N. K.; Levin, C. S.; Halas, N. J.; Wu, Y. P.; Nordlander, P.; Natelson, D. Electromigrated nanoscale gaps for surface-enhanced Raman spectroscopy. Nano Lett. 2007, 7, 1396–1400.

140

Liu, Z.; Ding, S. Y.; Chen, Z. B.; Wang, X.; Tian, J. H.; Anema, J. R.; Zhou, X. S.; Wu, D. Y.; Mao, B. W.; Xu, X. et al. Revealing the molecular structure of single-molecule junctions in different conductance states by fishing-mode tip-enhanced Raman spectroscopy. Nat. Commun. 2011, 2, 305.

141

Zheng, J.; Liu, J.; Zhuo, Y.; Li, R.; Jin, X.; Yang, Y.; Chen, Z.-B.; Shi, J.; Xiao, Z.; Hong, W.; Tian, Z.-q. Electrical and SERS detection of disulfide-mediated dimerization in single-molecule benzene-1,4-dithiol junctions. Chem. Sci. 2018, 9, 5033–5038.

142

Konishi, T.; Kiguchi, M.; Takase, M.; Nagasawa, F.; Nabika, H.; Ikeda, K.; Uosaki, K.; Ueno, K.; Misawa, H.; Murakoshi, K. Single molecule dynamics at a mechanically controllable break junction in solution at room temperature. J. Am. Chem. Soc. 2013, 135, 1009–1014.

143

Jeong, H.; Li, H. B.; Domulevicz, L.; Hihath, J. An on-chip break junction system for combined single-molecule conductance and Raman spectroscopies. Adv. Funct. Mater. 2020, 30, 2000615.

144

Domulevicz, L.; Jeong, H.; Paul, N. K.; Gomez-Diaz, J. S.; Hihath, J. Multidimensional characterization of single-molecule dynamics in a plasmonic nanocavity. Angew. Chem., Int. Ed. 2021, 60, 16436–16441.

145

Jiang, S.; Zhang, Y.; Zhang, R.; Hu, C. R.; Liao, M. H.; Luo, Y.; Yang, J. L.; Dong, Z. C.; Hou, J. G. Distinguishing adjacent molecules on a surface using plasmon-enhanced Raman scattering. Nat. Nanotechnol. 2015, 10, 865–869.

146

Wang, R. P.; Yang, B.; Fu, Q.; Zhang, Y.; Zhu, R.; Dong, X. R.; Zhang, Y.; Wang, B.; Yang, J. L.; Luo, Y. et al. Raman detection of bond breaking and making of a chemisorbed up-standing single molecule at single-bond level. J. Phys. Chem. Lett. 2021, 12, 1961–1968.

147

Jaculbia, R. B.; Imada, H.; Miwa, K.; Iwasa, T.; Takenaka, M.; Yang, B.; Kazuma, E.; Hayazawa, N.; Taketsugu, T.; Kim, Y. Single-molecule resonance Raman effect in a plasmonic nanocavity. Nat. Nanotechnol. 2020, 15, 105–110.

148

Chong, M. C.; Sosa-Vargas, L.; Bulou, H.; Boeglin, A.; Scheurer, F.; Mathevet, F.; Schull, G. Ordinary and hot electroluminescence from single-molecule devices: Controlling the emission color by chemical engineering. Nano Lett. 2016, 16, 6480–6484.

149

Doppagne, B.; Chong, M. C.; Lorchat, E.; Berciaud, S.; Romeo, M.; Bulou, H.; Boeglin, A.; Scheurer, F.; Schull, G. Vibronic spectroscopy with submolecular resolution from STM-induced electroluminescence. Phys. Rev. Lett. 2017, 118, 127401.

150

Van Der Molen, S. J.; Liao, J. H.; Kudernac, T.; Agustsson, J. S.; Bernard, L.; Calame, M.; Van Wees, B. J.; Feringa, B. L. Schönenberger, C. Light-controlled conductance switching of ordered metal–molecule–metal devices. Nano Lett. 2009, 9, 76–80.

151

Yang, Y.; Liu, J. Y.; Zheng, J. T.; Lu, M.; Shi, J.; Hong, W. J.; Yang, F. Z.; Tian, Z. Q. Promising electroplating solution for facile fabrication of Cu quantum point contacts. Nano Res. 2017, 10, 3314–3323.

152

Huang, C. C.; Jevric, M.; Borges, A.; Olsen, S. T.; Hamill, J. M.; Zheng, J. T.; Yang, Y.; Rudnev, A.; Baghernejad, M.; Broekmann, P. et al. Single-molecule detection of dihydroazulene photo-thermal reaction using break junction technique. Nat. Commun. 2017, 8, 15436.

153

Huang, X. Y.; Tang, C.; Li, J. Q.; Chen, L. C.; Zheng, J. T.; Zhang, P.; Le, J. B.; Li, R. H.; Li, X. H.; Liu, J. Y. et al. Electric field-induced selective catalysis of single-molecule reaction. Sci. Adv. 2019, 5, eaaw3072.

154

Prince, R. C.; Frontiera, R. R.; Potma, E. O. Stimulated Raman scattering: From bulk to nano. Chem. Rev. 2017, 117, 5070–5094.

155

Vogel, Y. B.; Darwish, N.; Ciampi, S. Spatiotemporal control of electrochemiluminescence guided by a visible light stimulus. Cell Rep. Phys. Sci. 2020, 1, 100107.

156

Dong, J. R.; Lu, Y. X.; Xu, Y.; Chen, F. F.; Yang, J. M.; Chen, Y.; Feng, J. D. Direct imaging of single-molecule electrochemical reactions in solution. Nature 2021, 596, 244–249.

Nano Research
Pages 5726-5745
Cite this article:
Xu W, Li R, Wang C, et al. Investigation of electronic excited states in single-molecule junctions. Nano Research, 2022, 15(6): 5726-5745. https://doi.org/10.1007/s12274-022-4102-3
Topics:

792

Views

7

Crossref

7

Web of Science

8

Scopus

1

CSCD

Altmetrics

Received: 29 September 2021
Revised: 29 November 2021
Accepted: 25 December 2021
Published: 24 March 2022
© Tsinghua University Press 2022
Return