Discover the SciOpen Platform and Achieve Your Research Goals with Ease.
Search articles, authors, keywords, DOl and etc.
Inhibitors that target diabetes pathology-related signaling pathways have great therapeutic potential for diabetic wound healing. Metal–organic frameworks (MOFs) are increasingly popular drug delivery systems that have high loading capacity and can release their intrinsic metal ions to act as bioactive agents. In light of this, a receptor for advanced glycation end products (RAGE) inhibitor, 4-chloro-N-cyclohexyl-N-(phenylmethyl)-benzamide (FPS-ZM1), was loaded into a cobalt (Co)-based MOF (zeolitic imidazolate framework-67, ZIF-67) to fabricate FPS-ZM1 encapsulated ZIF-67 (FZ@ZIF-67) nanoparticles (NPs). As a result, FZ@ZIF-67 NPs could dually deliver Co ions and FPS-ZM1 in a controlled manner for over 14 days. Our in vitro study showed that FZ@ZIF-67 NPs not only enhanced angiogenesis by delivering Co ions but also released FPS-ZM1 to promote M2 macrophage polarization and attenuated high glucose (HG)- and/or inflammation-induced impairment of angiogenesis through RAGE inhibition. Moreover, in an in vivo study, FZ@ZIF-67 NPs markedly improved re-epithelialization, collagen deposition, neovascularization, and relieved inflammation in diabetic wounds in rats. This study not only provides a low-cost, effective, and synergistic proangiogenic bioactive agent but also demonstrates that targeting diabetes-related pathological signaling pathways is necessary to ameliorate vascularization impairment during diabetic wound healing.
Armstrong, D. G.; Boulton, A. J. M.; Bus, S. A. Diabetic foot ulcers and their recurrence. N. Engl. J. Med. 2017, 376, 2367–2375.
Schneider, C.; Stratman, S.; Kirsner, R. S. Lower extremity ulcers. Med. Clin. North Am. 2021, 105, 663–679.
Zhang, Y. Q.; Lazzarini, P. A.; McPhail, S. M.; Van Netten, J. J.; Armstrong, D. G.; Pacella, R. E. Global disability burdens of diabetes-related lower-extremity complications in 1990 and 2016. Diabetes Care 2020, 43, 964–974.
Brem, H.; Tomic-Canic, M. Cellular and molecular basis of wound healing in diabetes. J. Clin. Invest. 2007, 117, 1219–1222.
Veith, A. P.; Henderson, K.; Spencer, A.; Sligar, A. D.; Baker, A. B. Therapeutic strategies for enhancing angiogenesis in wound healing. Adv. Drug Deliv. Rev. 2019, 146, 97–125.
Desmet, C. M.; Préat, V.; Gallez, B. Nanomedicines and gene therapy for the delivery of growth factors to improve perfusion and oxygenation in wound healing. Adv. Drug Deliv. Rev. 2018, 129, 262–284.
Lee, D. E.; Ayoub, N.; Agrawal, D. K. Mesenchymal stem cells and cutaneous wound healing: Novel methods to increase cell delivery and therapeutic efficacy. Stem Cell Res. Ther. 2016, 7, 37.
Wynn, T. A.; Vannella, K. M. Macrophages in tissue repair, regeneration, and fibrosis. Immunity 2016, 44, 450–462.
Smith, T. D.; Nagalla, R. R.; Chen, E. Y.; Liu, W. F. Harnessing macrophage plasticity for tissue regeneration. Adv. Drug Deliv. Rev. 2017, 114, 193–205.
Kim, S. Y.; Nair, M. G. Macrophages in wound healing: Activation and plasticity. Immunol. Cell Biol. 2019, 97, 258–267.
Louiselle, A. E.; Niemiec, S. M.; Zgheib, C.; Liechty, K. W. Macrophage polarization and diabetic wound healing. Transl. Res. 2021, 236, 109–116.
Jiang, Y.; Zhao, W.; Xu, S.; Wei, J.; Lasaosa, F. L.; He, Y.; Mao, H.; Bolea Bailo, R. M.; Kong, D.; Gu, Z. Bioinspired design of mannose-decorated globular lysine dendrimers promotes diabetic wound healing by orchestrating appropriate macrophage polarization. Biomaterials 2022, 280, 121323.
Wolf, S. J.; Melvin, W. J.; Gallagher, K. Macrophage-mediated inflammation in diabetic wound repair. Semin. Cell Dev. Biol. 2021, 119, 111–118.
Gan, J. J.; Liu, C. Y.; Li, H. L.; Wang, S. C; Wang, Z. Z.; Kang, Z. Q.; Huang, Z.; Zhang, J. F.; Wang, C. M.; Lv, D. L. et al. Accelerated wound healing in diabetes by reprogramming the macrophages with particle-induced clustering of the mannose receptors. Biomaterials 2019, 219, 119340.
Ferrante, C. J.; Leibovich, S. J. Regulation of macrophage polarization and wound healing. Adv. Wound Care 2012, 1, 10–16.
Okizaki, S. I.; Ito, Y.; Hosono, K.; Oba, K.; Ohkubo, H.; Amano, H.; Shichiri, M.; Majima, M. Suppressed recruitment of alternatively activated macrophages reduces TGF-β1 and impairs wound healing in streptozotocin-induced diabetic mice. Biomed. Pharmacother. 2015, 70, 317–325.
Ndip, A.; Wilkinson, F. L.; Jude, E. B.; Boulton, A. J. M.; Alexander, M. Y. RANKL-OPG and rage modulation in vascular calcification and diabetes: Novel targets for therapy. Diabetologia 2014, 57, 2251–2260.
Yan, S. F.; Ramasamy, R.; Naka, Y.; Schmidt, A. M. Glycation, inflammation, and RAGE: A scaffold for the macrovascular complications of diabetes and beyond. Circ. Res. 2003, 93, 1159–1169.
Adamopoulos, C.; Piperi, C.; Gargalionis, A. N.; Dalagiorgou, G.; Spilioti, E.; Korkolopoulou, P.; Diamanti-Kandarakis, E.; Papavassiliou, A. G. Advanced glycation end products upregulate lysyl oxidase and endothelin-1 in human aortic endothelial cells via parallel activation of erk1/2-NF-κB and JNK-AP-1 signaling pathways. Cell. Mol. Life Sci. 2016, 73, 1685–1698.
Massey, N.; Puttachary, S.; Bhat, S. M.; Kanthasamy, A. G.; Charavaryamath, C. HMGB1-RAGE signaling plays a role in organic dust-induced microglial activation and neuroinflammation. Toxicol. Sci. 2019, 169, 579–592.
Son, M.; Porat, A.; He, M. Z.; Suurmond, J.; Santiago-Schwarz, F.; Andersson, U.; Coleman, T. R.; Volpe, B. T.; Tracey, K. J.; Al-Abed, Y. et al. C1q and HMGB1 reciprocally regulate human macrophage polarization. Blood 2016, 128, 2218–2228.
Wang, Z. W.; Zhang, J. Q.; Chen, L.; Li, J. J.; Zhang, H.; Guo, X. H. Glycine suppresses AGE/RAGE signaling pathway and subsequent oxidative stress by restoring glo1 function in the aorta of diabetic rats and in HUVECs. Oxid. Med. Cell. Longev. 2019, 2019, 4628962.
Su, C.; Liu, Y. Z.; Li, R. Z.; Wu, W.; Fawcett, J. P.; Gu, J. K. Absorption, distribution, metabolism and excretion of the biomaterials used in nanocarrier drug delivery systems. Adv. Drug Deliv. Rev. 2019, 143, 97–114.
Furukawa, H.; Cordova, K. E.; O’Keeffe, M.; Yaghi, O. M. The chemistry and applications of metal–organic frameworks. Science 2013, 341, 1230444.
Wang, X. P.; Chen, X. Z.; Alcantara, C. C. J.; Sevim, S.; Hoop, M.; Terzopoulou, A.; De Marco, C.; Hu, C. Z.; De Mello, A. J.; Falcaro, P. et al. MOFBOTS: Metal–organic framework-based biomedical microrobots. Adv. Mater. 2019, 31, 1901592.
Wang, Y.; Yan, J. H.; Wen, N. C.; Xiong, H. J.; Cai, S. D.; He, Q. Y.; Hu, Y. Q.; Peng, D. M.; Liu, Z. B.; Liu, Y. F. Metal–organic frameworks for stimuli-responsive drug delivery. Biomaterials 2020, 230, 119619.
Xu, M. R.; Hu, Y.; Ding, W. P.; Li, F. F.; Lin, J.; Wu, M.; Wu, J. J.; Wen, L. P.; Qiu, B. S.; Wei, P. F. et al. Rationally designed rapamycin-encapsulated ZIF-8 nanosystem for overcoming chemotherapy resistance. Biomaterials 2020, 258, 120308.
Zheng, H. Q.; Zhang, Y. N.; Liu, L. F.; Wan, W.; Guo, P.; Nystrom, A. M.; Zou, X. D. One-pot synthesis of metal-organic frameworks with encapsulated target molecules and their applications for controlled drug delivery. J. Am. Chem. Soc. 2016, 138, 962–968.
Zhao, H. Y.; Ye, H. S.; Zhou, J.; Tang, G. P.; Hou, Z. Y.; Bai, H. Z. Montmorillonite-enveloped zeolitic imidazolate framework as a nourishing oral nano-platform for gastrointestinal drug delivery. ACS Appl. Mater. Interfaces 2020, 12, 49431–49441.
Vasconcelos, D. M.; Santos, S. G.; Lamghari, M.; Barbosa, M. A. The two faces of metal ions: From implants rejection to tissue repair/regeneration. Biomaterials 2016, 84, 262–275.
Tanaka, T.; Kojima, I.; Ohse, T.; Ingelfinger, J. R.; Adler, S.; Fujita, T.; Nangaku, M. Cobalt promotes angiogenesis via hypoxia-inducible factor and protects tubulointerstitium in the remnant kidney model. Lab. Invest. 2005, 85, 1292–1307.
Sun, Y.; Liu, X. Z.; Zhu, Y.; Han, Y.; Shen, J. J.; Bao, B. B.; Gao, T.; Lin, J. Q.; Huang, T. L.; Xu, J. et al. Tunable and controlled release of cobalt ions from metal-organic framework hydrogel nanocomposites enhances bone regeneration. ACS Appl. Mater. Interfaces 2021, 13, 59051–59066.
Qiu, P. C.; Li, M. B.; Chen, K.; Fang, B.; Chen, P. F.; Tang, Z. B.; Lin, X. F.; Fan, S. W. Periosteal matrix-derived hydrogel promotes bone repair through an early immune regulation coupled with enhanced angio- and osteogenesis. Biomaterials 2020, 227, 119552.
Saliba, D.; Ammar, M.; Rammal, M.; Al-Ghoul, M.; Hmadeh, M. Crystal growth of ZIF-8, ZIF-67, and their mixed-metal derivatives. J. Am. Chem. Soc. 2018, 140, 1812–1823.
Zhuang, J.; Kuo, C. H.; Chou, L. Y.; Liu, D. Y.; Weerapana, E.; Tsung, C. K. Optimized metal-organic-framework nanospheres for drug delivery: Evaluation of small-molecule encapsulation. ACS Nano 2014, 8, 2812–2819.
Qian, J. F.; Sun, F. A.; Qin, L. Z. Hydrothermal synthesis of zeolitic imidazolate framework-67 (ZIF-67) nanocrystals. Mater. Lett. 2012, 82, 220–223.
Zhen, Z.; Liu, X. L.; Huang, T.; Xi, T. F.; Zheng, Y. F. Hemolysis and cytotoxicity mechanisms of biodegradable magnesium and its alloys. Mater. Sci. Eng. C 2015, 46, 202–206.
Shen, J. J.; Sun, Y.; Liu, X. Z.; Zhu, Y.; Bao, B. B.; Gao, T.; Chai, Y. M.; Xu, J.; Zheng, X. Y. EGFL6 regulates angiogenesis and osteogenesis in distraction osteogenesis via Wnt/β-catenin signaling. Stem Cell Res. Ther. 2021, 12, 415.
Erdem, J. S.; Alswady-Hoff, M.; Ervik, T. K.; Skare, Ø.; Ellingsen, D. G.; Zienolddiny, S. Cellulose nanocrystals modulate alveolar macrophage phenotype and phagocytic function. Biomaterials 2019, 203, 31–42.
Sun, Y.; Zhu, Y.; Liu, X. Z.; Chai, Y. M.; Xu, J. Morroniside attenuates high glucose-induced BMSC dysfunction by regulating the Glo1/AGE/RAGE axis. Cell Prolif. 2020, 53, e12866.
Zhu, Y.; Wang, Y. M.; Jia, Y. C.; Xu, J.; Chai, Y. M. Catalpol promotes the osteogenic differentiation of bone marrow mesenchymal stem cells via the Wnt/β-catenin pathway. Stem Cell Res. Ther. 2019, 10, 37.
Tang, Q.; Lim, T.; Wei, X. J.; Wang, Q. Y.; Xu, J. C.; Shen, L. Y.; Zhu, Z. Z.; Zhang, C. Q. A free-standing multilayer film as a novel delivery carrier of platelet lysates for potential wound-dressing applications. Biomaterials 2020, 255, 120138.
Eming, S. A.; Martin, P.; Tomic-Canic, M. Wound repair and regeneration: Mechanisms, signaling, and translation. Sci. Transl. Med. 2014, 6, 265sr6.
Nowak-Sliwinska, P.; Alitalo, K.; Allen, E.; Anisimov, A.; Aplin, A. C.; Auerbach, R.; Augustin, H. G.; Bates, D. O.; Van Beijnum, J. R.; Bender, R. H. F. et al. Consensus guidelines for the use and interpretation of angiogenesis assays. Angiogenesis 2018, 21, 425–532.
Colás-Algora, N.; García-Weber, D.; Cacho-Navas, C.; Barroso, S.; Caballero, A.; Ribas, C.; Correas, I.; Millán, J. Compensatory increase of VE-cadherin expression through ETS1 regulates endothelial barrier function in response to TNFα. Cell. Mol. Life Sci. 2020, 77, 2125–2140.
Moens, S.; Goveia, J.; Stapor, P. C.; Cantelmo, A. R.; Carmeliet, P. The multifaceted activity of VEGF in angiogenesis-implications for therapy responses. Cytokine Growth Factor Rev. 2014, 25, 473–482.
Janssens, R.; Struyf, S.; Proost, P. Pathological roles of the homeostatic chemokine CXCL12. Cytokine Growth Factor Rev. 2018, 44, 51–68.
Jha, J. C.; Ho, F.; Dan, C.; Jandeleit-Dahm, K. A causal link between oxidative stress and inflammation in cardiovascular and renal complications of diabetes. Clin. Sci. 2018, 132, 1811–1836.
Jin, X.; Yao, T. Q.; Zhou, Z. E.; Zhu, J.; Zhang, S.; Hu, W.; Shen, C. X. Advanced glycation end products enhance macrophages polarization into M1 phenotype through activating RAGE/NF-κB pathway. BioMed Res. Int. 2015, 2015, 732450.
Vanhoutte, P. M.; Shimokawa, H.; Feletou, M.; Tang, E. H. C. Endothelial dysfunction and vascular disease-a 30th anniversary update. Acta Physiol. 2017, 219, 22–96.