Article Link
Collect
Submit Manuscript
Show Outline
Outline
Graphical Abstract
Abstract
Keywords
Electronic Supplementary Material
References
Show full outline
Hide outline
Research Article

Iodine ion modification enables Ag nanowire film with improved carrier transport properties and stability as high-performance transparent conductor

Jianfang Liu1Dongmei Deng1Yongjie Ge2Yaomengli Xu1Moxia Li1Bingwu Liu1Xidong Duan1 ()Yongchun Fu1()Jiawen Hu1()
Hunan Key Laboratory of Two-Dimensional Materials, Advanced Catalytic Engineering Research Center of the Ministry of Education, and College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, China
College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou 325035, China
Show Author Information

Graphical Abstract

View original image Download original image
Replacing the long-chain polyvinylpyrrolidone (PVP) layer wrapped on Ag nanowires thin filmwith an ultrathin, dense I ion layer can largely improve the film’s carrier transport properties andits long-term stability, making it an ideal electronic component for, e.g., high-performancetransparent heater and pressure sensor.

Abstract

Ag nanowire (NW) film is the promising next generation transparent conductor. However, the residual long-chain polyvinylpyrrolidone (PVP, introduced during the synthesis of Ag NWs) layer greatly deteriorates the carrier transport capability of the Ag NW film and as well its long-term stability. Here, we report a one-step I ion modification strategy to completely replace the PVP layer with an ultrathin, dense layer of I ions, which not only greatly diminishes the resistance of the Ag NW film itself and that at interface of the Ag NW film and a functional layer (e.g., a current collect electrode) but also effectively isolates the approaching of corrosive species. Consequently, this strategy can simultaneously improve the carrier transport properties of the Ag NW film and its long-term stability, making it an ideal electric component in diverse devices. For example, the transparent heater and pressure sensor made from the I-wrapped Ag NW film, relative to their counterparts made from the PVP-wrapped Ag NW film, deliver much improved heating performance and pressure sensing performance, respectively. These results suggest a facile post treatment approach for thin Ag NW film with improved carrier transport properties and long-term stability, thereby greatly facilitating its downstream applications.

Electronic Supplementary Material

Download File(s)
12274_2022_4107_MOESM1_ESM.pdf (1.7 MB)

References

1

Kim, S. J.; Phung, T. H.; Kim, S.; Rahman, M. K.; Kwon, K. S. Low-cost fabrication method for thin, flexible, and transparent touch screen sensors. Adv. Mater. Technol. 2020, 5, 2000441.

2

Lee, S.; Bae, H. W.; Lampande, R.; Yang, H. I.; Oh, J. S.; Kwon, J. H. Ultrathin Ag transparent conducting electrode structure for next-generation optoelectronic applications. ACS Appl. Electron. Mater. 2020, 2, 1538–1544.

3

Zhang, Y. K.; Ng, S. W.; Lu, X.; Zheng, Z. J. Solution-processed transparent electrodes for emerging thin-film solar cells. Chem. Rev. 2020, 120, 2049–2122.

4

Angmo, D.; Krebs, F. C. Flexible ITO-free polymer solar cells. J. Appl. Polym. Sci. 2013, 129, 1–14.

5

Wu, Z. C.; Chen, Z. H.; Du, X.; Logan, J. M.; Sippel, J.; Nikolou, M.; Kamaras, K.; Reynolds, J. R.; Tanner, D. B.; Hebard, A. F. et al. Transparent, conductive carbon nanotube films. Science 2004, 305, 1273–1276.

6

Lee, D. W.; Hong, T. K.; Kang, D. W. O.; Lee, J.; Heo, M.; Kim, J. Y.; Kim, B. S.; Shin, H. S. Highly controllable transparent and conducting thin films using layer-by-layer assembly of oppositely charged reduced graphene oxides. J. Mater. Chem. 2011, 21, 3438–3442.

7

Moon, I. K.; Lee, J.; Ruoff, R. S.; Lee, H. Reduced graphene oxide by chemical graphitization. Nat. Commun. 2010, 1, 73.

8

Hu, L. B.; Kim, H. S.; Lee, J. Y.; Peumans, P.; Cui, Y. Scalable coating and properties of transparent, flexible, silver nanowire electrodes. ACS Nano 2010, 4, 2955–2963.

9

Liu, G. Z.; Wang, J.; Ge, Y. H.; Wang, Y. J.; Lu, S. Q.; Zhao, Y.; Tang, Y.; Soomro, A. M.; Hong, Q. M.; Yang, X. D. et al. Cu nanowires passivated with hexagonal boron nitride: An ultrastable, selectively transparent conductor. ACS Nano 2020, 14, 6761–6773.

10

Liu, C. H.; Yu, X. Silver nanowire-based transparent, flexible, and conductive thin film. Nanoscale Res. Lett. 2011, 6, 75.

11

Sun, Y. G.; Mayers, B.; Herricks, T.; Xia, Y. N. Polyol synthesis of uniform silver nanowires: A plausible growth mechanism and the supporting evidence. Nano Lett. 2003, 3, 955–960.

12

Jharimune, S.; Pfukwa, R.; Chen, Z. F.; Anderson, J.; Klumperman, B.; Rioux, R. M. Chemical identity of poly (N-vinylpyrrolidone) end groups impact shape evolution during the synthesis of Ag nanostructures. J. Am. Chem. Soc. 2021, 143, 184–195.

13

Hwang, J.; Shim, Y.; Yoon, S. M.; Lee, S. H.; Park, S. H. Influence of polyvinylpyrrolidone (PVP) capping layer on silver nanowire networks: Theoretical and experimental studies. RSC Adv. 2016, 6, 30972–30977.

14

Ge, Y. J.; Duan, X. D.; Zhang, M.; Mei, L.; Hu, J. W.; Hu, W.; Duan, X. F. Direct room temperature welding and chemical protection of silver nanowire thin films for high performance transparent conductors. J. Am. Chem. Soc. 2018, 140, 193–199.

15

Ge, Y. J.; Liu, J. F.; Liu, X. J.; Hu, J. W.; Duan, X. D.; Duan, X. F. Rapid electrochemical cleaning silver nanowire thin films for high-performance transparent conductors. J. Am. Chem. Soc. 2019, 141, 12251–12257.

16

Liu, J. F.; Ge, Y. J.; Zhang, D. M.; Han, M.; Li, M. X.; Zhang, M.; Duan, X. D.; Yang, Z. L.; Hu, J. W. Plasma cleaning and self-limited welding of silver nanowire films for flexible transparent conductors. ACS Appl. Nano Mater. 2021, 4, 1664–1671.

17

Cui, Z.; Poblete, F. R.; Zhu, Y. Tailoring the temperature coefficient of resistance of silver nanowire nanocomposites and their application as stretchable temperature sensors. ACS Appl. Mater. Interfaces 2019, 11, 17836–17842.

18

Chung, W. H.; Jang, Y. R.; Hwang, Y. T.; Kim, S. H.; Kim, H. S. The surface plasmonic welding of silver nanowires via intense pulsed light irradiation combined with NIR for flexible transparent conductive film. Nanoscale 2020, 12, 17725–17737.

19

Liu, Y.; Zhang, J. M.; Gao, H.; Wang, Y.; Liu, Q. X.; Huang, S. Y.; Guo, C. F.; Ren, Z. F. Capillary-force-induced cold welding in silver-nanowire-based flexible transparent electrodes. Nano Lett. 2017, 17, 1090–1096.

20

Kang, H.; Song, S. J.; Sul, Y. E.; An, B. S.; Yin, Z. X.; Choi, Y.; Pu, L.; Yang, C. W.; Kim, Y. S.; Cho, S. M. et al. Epitaxial-growth-induced junction welding of silver nanowire network electrodes. ACS Nano 2018, 12, 4894–4902.

21

Luo, B. B.; Fang, Y. S.; Li, J.; Huang, Z.; Hu, B.; Zhou, J. Improved stability of metal nanowires via electron beam irradiation induced surface passivation. ACS Appl. Mater. Interfaces 2019, 11, 12195–12201.

22

Manikandan, A.; Lee, L.; Wang, Y. C.; Chen, C. W.; Chen, Y. Z.; Medina, H.; Tseng, J. Y.; Wang, Z. M.; Chueh, Y. L. Graphene-coated copper nanowire networks as a highly stable transparent electrode in harsh environments toward efficient electrocatalytic hydrogen evolution reactions. J. Mater. Chem. A 2017, 5, 13320–13328.

23

Ahn, Y.; Jeong, Y.; Lee, Y. Improved thermal oxidation stability of solution-processable silver nanowire transparent electrode by reduced graphene oxide. ACS Appl. Mater. Interfaces 2012, 4, 6410–6414.

24

Zhu, Y. Z.; Kim, S.; Ma, X. Z.; Byrley, P.; Yu, N.; Liu, Q. S.; Sun, X. M.; Xu, D.; Peng, S. S.; Hartel, M. C. et al. Ultrathin-shell epitaxial Ag@Au core–shell nanowires for high-performance and chemically-stable electronic, optical, and mechanical devices. Nano Res. 2021, 14, 4294–4303.

25

Eom, H.; Lee, J.; Pichitpajongkit, A.; Amjadi, M.; Jeong, J. H.; Lee, E.; Lee, J. Y.; Park, I. Ag@Ni core–shell nanowire network for robust transparent electrodes against oxidation and sulfurization. Small 2014, 10, 4171–4181.

26

Zhao, Y.; Wang, X. J.; Yang, S. Z.; Kuttner, E.; Taylor, A. A.; Salemmilani, R.; Liu, X.; Moskovits, M.; Wu, B. H.; Dehestani, A. et al. Protecting the nanoscale properties of Ag nanowires with a solution-grown SnO2 monolayer as corrosion inhibitor. J. Am. Chem. Soc. 2019, 141, 13977–13986.

27

Sohn, H.; Kim, S.; Shin, W.; Lee, J. M.; Lee, H.; Yun, D. J.; Moon, K. S.; Han, I. T.; Kwak, C.; Hwang, S. J. Novel flexible transparent conductive films with enhanced chemical and electromechanical sustainability: TiO2 nanosheet-Ag nanowire hybrid. ACS Appl. Mater. Interfaces 2018, 10, 2688–2700.

28

Su, D. Y.; Hsu, C. C.; Lai, W. H.; Tsai, F. Y. Fabrication, mechanisms, and properties of high-performance flexible transparent conductive gas-barrier films based on Ag nanowires and atomic layer deposition. ACS Appl. Mater. Interfaces 2019, 11, 34212–34221.

29

Madeira, A.; Plissonneau, M.; Servant, L.; Goldthorpe, I. A. Tréguer-Delapierre, M. Increasing silver nanowire network stability through small molecule passivation. Nanomaterials (Basel) 2019, 9, 899.

30

Liu, G. S.; Xu, Y. W.; Kong, Y. F.; Wang, L.; Wang, J.; Xie, X.; Luo, Y. H.; Yang, B. R. Comprehensive stability improvement of silver nanowire networks via self-assembled mercapto inhibitors. ACS Appl. Mater. Interfaces 2018, 10, 37699–37708.

31

Yang, K. C.; Sung, D. I.; Shin, Y. J.; Yeom, G. Y. Highly oxidation-resistant silver nanowires by CxFy polymers using plasma treatment. Nanotechnology 2019, 30, 285702.

32

Ning, Z. J.; Voznyy, O.; Pan, J.; Hoogland, S.; Adinolfi, V.; Xu, J. X.; Li, M.; Kirmani, A. R.; Sun, J. P.; Minor, J. et al. Air-stable n-type colloidal quantum dot solids. Nat. Mater. 2014, 13, 822–828.

33

Chu, X. K.; Wang, K.; Tao, J. Q.; Li, S. X.; Ji, S. L.; Ye, C. H. Tackling the stability issues of silver nanowire transparent conductive films through FeCl3 dilute solution treatment. Nanomaterials (Basel) 2019, 9, 533.

34

Genlik, S. P.; Tigan, D.; Kocak, Y.; Ercan, K. E.; Cicek, M. O.; Tunca, S.; Koylan, S.; Coskun, S.; Ozensoy, E.; Unalan, H. E. All-solution-processed, oxidation-resistant copper nanowire networks for optoelectronic applications with year-long stability. ACS Appl. Mater. Interfaces 2020, 12, 45136–45144.

35

Al-Saidi, W. A.; Feng, H. J.; Fichthorn, K. A. Adsorption of polyvinylpyrrolidone on Ag surfaces: Insight into a structure-directing agent. Nano Lett. 2012, 12, 997–1001.

36

Mao, H. B.; Feng, J. Y.; Ma, X.; Wu, C.; Zhao, X. J. One-dimensional silver nanowires synthesized by self-seeding polyol process. J. Nanopart. Res. 2012, 14, 887.

37

Dai, W. L.; Cao, Y.; Deng, J. F.; Liao, Y. Y.; Hong, B. F. The role of iodide promoter in selective oxidation of methanol to formaldehyde. Catal. Lett. 1999, 63, 49–57.

38

Hsieh, Y. C.; Betancourt, L. E.; Senanayake, S. D.; Hu, E. Y.; Zhang, Y.; Xu, W. Q.; Polyansky, D. E. Modification of CO2 reduction activity of nanostructured silver electrocatalysts by surface halide anions. ACS Appl. Energy Mater. 2019, 2, 102–109.

39

Han, M.; Ge, Y. J.; Liu, J. F.; Cao, Z. Z.; Li, M. X.; Duan, X. D.; Hu, J. W. Mixed polyvinyl pyrrolidone hydrogel-mediated synthesis of high-quality Ag nanowires for high-performance transparent conductors. J. Mater. Chem. A 2020, 8, 21062–21069.

40

Wang, D. M.; Hua, H. M.; Liu, Y.; Tang, H. R.; Li, Y. X. Single Ag nanowire electrodes and single Pt@Ag nanowire electrodes: Fabrication, electrocatalysis, and surface-enhanced Raman scattering applications. Anal. Chem. 2019, 91, 4291–4295.

41

Wojclechowski, M.; Go, W.; Osteryoung, J. Square-wave anodic stripping analysis in the presence of dissolved oxygen. Anal. Chem. 1985, 57, 155–158.

42

Yokota, Y.; Wong, R. A.; Hong, M. S.; Hayazawa, N.; Kim, Y. Monatomic iodine dielectric layer for multimodal optical spectroscopy of dye molecules on metal surfaces. J. Am. Chem. Soc. 2021, 143, 15205–15214.

43

Elechiguerra, J. L.; Larios-Lopez, L.; Liu, C.; Garcia-Gutierrez, D.; Camacho-Bragado, A.; Yacaman, M. J. Corrosion at the nanoscale: The case of silver nanowires and nanoparticles. Chem. Mater. 2005, 17, 6042–6052.

44

Yue, Y.; Liu, N. S.; Liu, W. J.; Li, M.; Ma, Y. N.; Luo, C.; Wang, S. L.; Rao, J. Y.; Hu, X. K.; Su, J. et al. 3D hybrid porous Mxene-sponge network and its application in piezoresistive sensor. Nano Energy 2018, 50, 79–87.

45

Zheng, Y. J.; Yin, R.; Zhao, Y.; Liu, H.; Zhang, D. B.; Shi, X. Z.; Zhang, B.; Liu, C. T.; Shen, C. Y. Conductive MXene/cotton fabric based pressure sensor with both high sensitivity and wide sensing range for human motion detection and e-skin. Chem. Eng. J. 2021, 420, 127720.

Nano Research
Pages 5410-5417
Cite this article:
Liu J, Deng D, Ge Y, et al. Iodine ion modification enables Ag nanowire film with improved carrier transport properties and stability as high-performance transparent conductor. Nano Research, 2022, 15(6): 5410-5417. https://doi.org/10.1007/s12274-022-4107-y
Topics:
Metrics & Citations  
Article History
Copyright
Return