AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article

Highly efficient metal-free catalyst from cellulose for hydrogen peroxide photoproduction instructed by machine learning and transient photovoltage technology

Yan Liu1Xiao Wang1Yajie Zhao1Qingyao Wu1Haodong Nie1Honglin Si1Hui Huang1( )Yang Liu1( )Mingwang Shao1( )Zhenhui Kang1,2( )
Institute of Functional Nano and Soft Materials Laboratory (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, Suzhou 215123, China
Macao Institute of Materials Science and Engineering, Macau University of Science and Technology, Taipa, Macau 999078, China
Show Author Information

Graphical Abstract

Metal-free photocatalyst from cellulose shows the high photocatalytic activity and anti-poisoning properties for the photoproduction of H2O2 instructed by transient photovoltage technology and machine learning.

Abstract

Great attention has been paid to green procedures and technologies for the design of environmental catalytic systems. Biomass-derived catalysts represent one of the greener alternatives for green catalysis. Photocatalytic production of hydrogen peroxide (H2O2) from O2 and H2O is an ideal green way and has attracted widespread attention. Here, we show a metal-free photocatalyst from cellulose, which has a high photocatalytic activity for the photoproduction of H2O2 with the reaction rate up to 2,093 μmol/(h·g) and the apparent quantum efficiency of 2.33%. Importantly, a machine learning model was constructed to guide the synthesis of this metal-free photocatalyst. With the help of transient photovoltage (TPV) tests, we optimized their fabrication and catalytic activity, and clearly showed that the formation of carbon dots (CDs) facilitates the generation, separation, and transfer of photo-induced charges on the catalyst surface. This work provides a green way for the highly efficient metal-free photocatalyst design and study from biomass materials with the machine learning and TPV technology.

Electronic Supplementary Material

Download File(s)
12274_2022_4111_MOESM1_ESM.pdf (2.4 MB)

References

1

Melchionna, M.; Fornasiero, P.; Prato, M. The rise of hydrogen peroxide as the main product by metal-free catalysis in oxygen reductions. Adv. Mater. 2019, 31, e1802920.

2

Xia, C.; Xia, Y.; Zhu, P.; Fan, L.; Wang, H. T. Direct electrosynthesis of pure aqueous H2O2 solutions up to 20% by weight using a solid electrolyte. Science 2019, 366, 226–231.

3

Huo, X. Q.; Yang, Y.; Niu, Q. Y.; Zhu, Y.; Zeng, G. M.; Lai, C.; Yi, H.; Li, M. F.; An, Z. W.; Huang, D. L. et al. A direct Z-scheme oxygen vacant BWO/oxygen-enriched graphitic carbon nitride polymer heterojunction with enhanced photocatalytic activity. Chem. Eng. J. 2021, 403, 126363.

4

Fellinger, T. P.; Hasché, F.; Strasser, P.; Antonietti, M. Mesoporous nitrogen-doped carbon for the electrocatalytic synthesis of hydrogen peroxide. J. Am. Chem. Soc. 2012, 134, 4072–4075.

5

Freakley, S. J.; He, Q.; Harrhy, J. H.; Lu, L.; Crole, D. A.; Morgan, D. J.; Ntainjua, E. N.; Edwards, J. K.; Carley, A. F.; Borisevich, A. Y. et al. Palladium-tin catalysts for the direct synthesis of H2O2 with high selectivity. Science 2016, 351, 965–968.

6

Suk, M.; Chung, M. W.; Han, M. H.; Oh, H. S.; Choi, C. H. Selective H2O2 production on surface-oxidized metal-nitrogen-carbon electrocatalysts. Catal. Today 2021, 359, 99–105.

7

Jiang, K.; Zhao, J. J.; Wang, H. T. Catalyst design for electrochemical oxygen reduction toward hydrogen peroxide. Adv. Funct. Mater. 2020, 30, 2003321.

8

Ding, Z. Y.; Chen, L. P.; Wang, D. D.; Zhou, H.; Zhou, L.; Zhu, X.; Jiang, L.; Feng, X. J. Oxygen-tolerant hydrogen peroxide reduction catalysts for reliable noninvasive bioassays. Small 2019, 15, 1903320.

9

Shiraishi, Y.; Kanazawa, S.; Kofuji, Y.; Sakamoto, H.; Ichikawa, S.; Tanaka, S.; Hirai T. Sunlight-driven hydrogen peroxide production from water and molecular oxygen by metal-free photocatalysts. Angew. Chem., Int. Ed. 2014, 53, 13454–13459.

10

Feng, L. W.; Li, B. D.; Xiao, Y. Q.; Li, L. J.; Zhang, Y. Q.; Zhao, Q. N.; Zuo, G. F.; Meng, X. G.; Roy, V. A. L. Au modified Bi2O3-TiO2 hybrid for photocatalytic synthesis of hydrogen peroxide. Catal. Commun. 2021, 155, 106315.

11

Liu, J. L.; Zou, Y. S.; Jin, B. J.; Zhang, K.; Park, J. H. Hydrogen peroxide production from solar water oxidation. ACS Energy Lett. 2019, 4, 3018–3027.

12

Limpachanangkul, P.; Liu, L. C.; Hunsom, M.; Chalermsinsuwan, B. Low energy photocatalytic glycerol conversion to high valuable products via Bi2O3 polymorphs in the presence of H2O2. Energy Rep. 2020, 6, 95–101.

13

Zuo, G. F.; Zhang, Y. Q.; Liu, S. S.; Guo, Z. L.; Zhao, Q. N.; Saianand, G.; Feng, L. W.; Li, L. J.; Li, W. Z.; Zhang, N. et al. Aβ-cyclodextrin modified graphitic carbon nitride with Au Co-catalyst for efficient photocatalytic hydrogen peroxide production. Nanomaterials 2020, 10, 1969.

14

Liu, Y.; Zhao, Y. J.; Sun, Y.; Cao, J. J.; Wang, H.; Wang, X.; Huang, H.; Shao, M. W.; Liu, Y.; Kang, Z. H. A 4e–2e cascaded pathway for highly efficient production of H2 and H2O2 from water photo-splitting at normal pressure. Appl. Catal. B:Environ. 2020, 270, 118875.

15

Jiang, K.; Back, S.; Akey, A. J.; Xia, C.; Hu, Y. F.; Liang, W. T.; Schaak, D.; Stavitski, E.; Nørskov, J. K.; Siahrostami, S. et al. Highly selective oxygen reduction to hydrogen peroxide on transition metal single atom coordination. Nat. Commun. 2019, 10, 3997.

16

Gao, J. J.; Yang, H. B.; Huang, X.; Hung, S. F.; Cai, W. Z.; Jia, C. M.; Miao, S.; Chen, H. M.; Yang, X. F.; Huang, Y. Q. et al. Enabling direct H2O2 production in acidic media through rational design of transition metal single atom catalyst. Chem 2020, 6, 658–674.

17

Liang, X. C.; Fu, Y.; Chang, J. Sustainable production of methyl levulinate from biomass in ionic liquid-methanol system with biomass-based catalyst. Fuel 2020, 259, 116246.

18

Hamza, M.; Ayoub, M.; Shamsuddin, R. B.; Mukhtar, A.; Saqib, S.; Zahid, I.; Ameen, M.; Ullah, S.; Al-Sehemi, A. G.; Ibrahim, M. A review on the waste biomass derived catalysts for biodiesel production. Environ. Technol. Innov. 2021, 21, 101200.

19

Mateo, D.; García-Mulero, A.; Albero, J.; García, H. N-doped defective graphene decorated by strontium titanate as efficient photocatalyst for overall water splitting. Appl. Catal. B:Environ. 2019, 252, 111–119.

20

Liang, H. W.; Wu, Z. Y.; Chen, L. F.; Li, C.; Yu, S. H. Bacterial cellulose derived nitrogen-doped carbon nanofiber aerogel: An efficient metal-free oxygen reduction electrocatalyst for zinc-air battery. Nano Energy 2015, 11, 366–376.

21

Xie, X. Y.; Li, S.; Qi, K. M.; Wang, Z. W. Photoinduced synthesis of green photocatalyst Fe3O4/BiOBr/CQDs derived from corncob biomass for carbamazepine degradation: The role of selectively more CQDs decoration and Z-scheme structure. Chem. Eng. J. 2021, 420, 129705.

22

Yao, X.; Ma, C. C.; Huang, H.; Zhu, Z.; Dong, H. J.; Li, C. X.; Zhang, W. L.; Yan, Y. S.; Liu, Y. Solvothermal-assisted synthesis of biomass carbon quantum dots/bismuth oxyiodide microflower for enhanced photocatalytic activity. Nano 2018, 13, 1850031.

23

Liu, W. G.; Chen, Y. J.; Qi, H. F.; Zhang, L. L.; Yan, W. S.; Liu, X. Y.; Yang, X. F.; Miao, S.; Wang, W. T.; Liu, C. G. et al. A durable nickel single-atom catalyst for hydrogenation reactions and cellulose valorization under harsh conditions. Angew. Chem., Int. Ed. 2018, 57, 7071–7075.

24

Zhu, Z.; Ma, C. C.; Yu, K. S.; Lu, Z. Y.; Liu, Z.; Huo, P. W.; Xu, T.; Yan, Y. S. Synthesis Ce-doped biomass carbon-based g-C3N4 via plant growing guide and temperature-programmed technique for degrading 2-mercaptobenzothiazole. Appl. Catal. B:Environ. 2020, 268, 118432.

25

Ma, W.; Wang, N.; Lu, Y.; Lu, Z. Y.; Tang, X.; Li, S. T. Synthesis of magnetic biomass carbon-based Bi2O3 photocatalyst and mechanism insight by a facile microwave and deposition method. New J. Chem. 2019, 43, 2888–2898.

26

Zhao, C.; Ran, F. L.; Dai, L.; Li, C. Y.; Zheng, C. Y.; Si, C. L. Cellulose-assisted construction of high surface area Z-scheme C-doped g-C3N4/WO3 for improved tetracycline degradation. Carbohydr. Polym. 2021, 255, 117343.

27

Wei, J.; Liang, Y.; Hu, Y. X.; Kong, B.; Simon, G. P.; Zhang, J.; Jiang, S. P.; Wang, H. T. A versatile iron-tannin-framework ink coating strategy to fabricate biomass-derived iron carbide/Fe-N-carbon catalysts for efficient oxygen reduction. Angew. Chem., Int. Ed. 2016, 55, 1355–1359.

28

Zhu, M. M.; Zhou, Y. J.; Sun, Y.; Zhu, C.; Hu, L. L.; Gao, J.; Huang, H.; Liu, Y.; Kang, Z. H. Cobalt phosphide/carbon dots composite as an efficient electrocatalyst for oxygen evolution reaction. Dalton Trans. 2018, 47, 5459–5464.

29

Guo, S. J.; Zhao, S. Q.; Wu, X. Q.; Li, H.; Zhou, Y. J.; Zhu, C.; Yang, N. J.; Jiang, X.; Gao, J.; Bai, L. et al. A Co3O4-CDots-C3N4 three component electrocatalyst design concept for efficient and tunable CO2 reduction to syngas. Nat. Commun. 2017, 8, 1828.

30

Zhu, C.; Liu, C. A.; Fu, Y. J.; Gao, J.; Huang, H.; Liu, Y.; Kang, Z. H. Construction of CDs/CdS photocatalysts for stable and efficient hydrogen production in water and seawater. Appl. Catal. B:Environ. 2019, 242, 178–185.

31

Jamila, G. S.; Sajjad, S.; Leghari, S. A. K.; Long, M. C. Nitrogen doped carbon quantum dots and GO modified WO3 nanosheets combination as an effective visible photo catalyst. J. Hazard. Mater. 2020, 382, 121087.

32

Kütahya, C.; Wang, P.; Li, S. J.; Liu, S. X.; Li, J.; Chen, Z. J.; Strehmel, B. Carbon dots as promising green photocatalyst for free radical and ATRP-based radical photopolymerization with blue LEDs. Angew. Chem., Int. Ed. 2020, 59, 3166–3171.

33

Li, Y.; Zhao, Y. J.; Nie, H. D.; Wei, K. Q.; Cao, J. J.; Huang, H.; Shao, M. W.; Liu, Y.; Kang, Z. H. Interface photo-charge kinetics regulation by carbon dots for efficient hydrogen peroxide production. J. Mater. Chem. A 2021, 9, 515–522.

34

Liu, Y.; Zhao, Y. J.; Wu, Q. Y.; Wang, X.; Nie, H. D.; Zhou, Y. J.; Huang, H.; Shao, M. W.; Liu, Y.; Kang, Z. H. Charge storage of carbon dot enhances photo-production of H2 and H2O2 over Ni2P/carbon dot catalyst under normal pressure. Chem. Eng. J. 2021, 409, 128184.

35

Wu, Q. Y.; Cao, J. J.; Wang, X.; Liu, Y.; Zhao, Y. J.; Wang, H.; Liu, Y.; Huang, H.; Liao, F.; Shao, M. W. et al. A metal-free photocatalyst for highly efficient hydrogen peroxide photoproduction in real seawater. Nat. Commun. 2021, 12, 483.

36

Ohyama, J.; Kinoshita, T.; Funada, E.; Yoshida, H.; Machida, M.; Nishimura, S.; Uno, T.; Fujima, J.; Miyazato, I.; Takahashi, L. et al. Direct design of active catalysts for low temperature oxidative coupling of methane via machine learning and data mining. Catal. Sci. Technol. 2021, 11, 524–530.

37

Takahashi, K.; Miyazato, I.; Nishimura, S.; Ohyama, J. Unveiling hidden catalysts for the oxidative coupling of methane based on combining machine learning with literature data. ChemCatChem. 2018, 10, 3135.

38

Sun, M. Z.; Dougherty, A. W.; Huang, B.; Li, Y. L.; Yan, C. H. Accelerating atomic catalyst discovery by theoretical calculations-machine learning strategy. Adv. Energy Mater. 2020, 10, 1903949.

39

Artrith, N.; Lin, Z. X.; Chen, J. G. Predicting the activity and selectivity of bimetallic metal catalysts for ethanol reforming using machine learning. ACS Catal. 2020, 10, 9438–9444.

40

Zahrt, A. F.; Henle, J. J.; Rose, B. T.; Wang, Y.; Darrow, W. T.; Denmark, S. E. Prediction of higher-selectivity catalysts by computer-driven workflow and machine learning. Science 2019, 363, eaau5631.

41

Gu, X. Q.; Chen, Z. M.; Li, Y.; Wu, J.; Wang, X.; Huang, H.; Liu, Y.; Dong, B.; Shao, M. W.; Kang, Z. H. Polyaniline/carbon dots composite as a highly efficient metal-free dual-functional photoassisted electrocatalyst for overall water splitting. ACS Appl. Mater. Interfaces 2021, 13, 24814–24823.

42

Zhao, Y. J.; Liu, Y.; Wang, Z. Z.; Ma, Y. R.; Zhou, Y. J.; Shi, X. F.; Wu, Q. Y.; Wang, X.; Shao, M. W.; Huang, H. et al. Carbon nitride assisted 2D conductive metal-organic frameworks composite photocatalyst for efficient visible light-driven H2O2 production. Appl. Catal. B:Environ. 2021, 289, 120035.

43
Jiang, W. S.; Zhao, Y. J.; Zong, X. P.; Nie, H. D.; Niu, L. J.; An, L.; Qu, D.; Wang, X. Y.; Kang, Z. H.; Sun, Z. C. Photocatalyst for high-performance H2 production: Ga-doped polymeric carbon nitride. Angew. Chem., Int. Ed. 2021, 60, 6124–6129.
44

Li, F. H.; Liu, Y. H.; Mao, B. D.; Li, L. H.; Huang, H.; Zhang, D. Q.; Dong, W. X.; Kang, Z. H,; Shi, W. D. Carbon-dots-mediated highly efficient hole transfer in I-III-VI quantum dots for photocatalytic hydrogen production. Appl. Catal. B:Environ. 2021, 292, 120154.

45

Nie, H. D.; Wei, K. Q.; Li, Y.; Liu, Y.; Zhao, Y. J.; Huang, H.; Shao, M. W.; Liu, Y.; Kang, Z. H. Carbon dots/Bi2WO6 composite with compensatory photo-electronic effect for overall water photo-splitting at normal pressure. Chin. Chem. Lett. 2021, 32, 2283–2286.

Nano Research
Pages 4000-4007
Cite this article:
Liu Y, Wang X, Zhao Y, et al. Highly efficient metal-free catalyst from cellulose for hydrogen peroxide photoproduction instructed by machine learning and transient photovoltage technology. Nano Research, 2022, 15(5): 4000-4007. https://doi.org/10.1007/s12274-022-4111-2
Topics:

1303

Views

32

Crossref

33

Web of Science

31

Scopus

4

CSCD

Altmetrics

Received: 23 November 2021
Revised: 23 December 2021
Accepted: 27 December 2021
Published: 21 February 2022
© Tsinghua University Press 2022
Return