AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article

An intelligent serological SERS test toward early-stage hepatocellular carcinoma diagnosis through ultrasensitive nanobiosensing

Ningtao Cheng1,§Bin Lou2,§Hongyang Wang1,3,4( )
State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200127, China
Department of Laboratory Medicine, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310006, China
International Cooperation Laboratory on Signal Transduction, Eastern Hepatobiliary Surgery Hospital, Shanghai 200438, China
National Center for Liver Cancer, Shanghai 201805, China

§ Ningtao Cheng and Bin Lou contributed equally to this work.

Show Author Information

Graphical Abstract

The constructed ultrasensitive nanobiosensing, based on a bimetallic nanoensembles-functionalizedSERS substrate, could be used to directly test a compendium of HCC-relevant biomolecules. Theproposed deep learning algorithm could obtain the key biomolecular phenotypes submerged withinspectra and the created intelligentserological SERS test could concurrently stratify the normal, HCC,cirrhosis, and hepatitis B populations at a predictive accuracy of 98.75%.

Abstract

Early or very early detection of hepatocellular carcinoma (HCC) is an effective means to resolve the low cure rates, but there currently lacks a method that fulfills clinical requirements. One of the most prospective approaches to detecting early-stage HCC is directly testing a compendium of disease-relevant biomolecules contained within human serum through surface-enhanced Raman scattering (SERS) nanobiosensing and recognizing the biomolecular patterns. We report a novel Si-based bimetallic nanoensembles-functionalized SERS substrate (its analytical enhancement factor reaches 1.47 × 1012) and introduce an ultrasensitive nanobiosensing for capturing the subtle characteristic changes in SERS spectra caused by HCC, hepatitis B, or cirrhosis. Toward early diagnosis, we created an intelligent serological test with this nanobiosensing and the deep learning algorithm to gain key biomolecular phenotypes of early-stage HCC. Using clinical samples from four target populations (normal, HCC, cirrhosis, and hepatitis B), the proof-of-principle result indicates that the test yielded a predictive accuracy of 98.75% on a held-out dataset (randomly drew 4 out of 28 samples per population). On the same held-out dataset, the sensitivity and specificity of the test were both 100% for distinguishing HCC. Such a new-concept liquid biopsy could provide an opportunity for early diagnosis of HCC.

References

1

Phallen, J.; Sausen, M.; Adleff, V.; Leal, A.; Hruban, C.; White, J.; Anagnostou, V.; Fiksel, J.; Cristiano, S.; Papp, E. et al. Direct detection of early-stage cancers using circulating tumor DNA. Sci. Transl. Med. 2017, 9, eaan2415.

2

Gorgannezhad, L.; Umer, M.; Islam, M. N.; Nam-Trung, N.; Shiddiky, M. J. A. Circulating tumor DNA and liquid biopsy: Opportunities, challenges, and recent advances in detection technologies. Lab Chip 2018, 18, 1174–1196.

3

Wang, Y.; Zheng, D. L.; Tan, Q. L.; Wang, M. X.; Gu, L. Q. Nanopore-based detection of circulating microRNAs in lung cancer patients. Nat. Nanotechnol. 2011, 6, 668–674.

4

Xue, T. Y.; Liang, W. Y.; Li, Y. W.; Sun, Y. H.; Xiang, Y. J.; Zhang, Y. P.; Dai, Z. G.; Duo, Y. H.; Wu, L. M.; Qi, K. et al. Ultrasensitive detection of miRNA with an antimonene-based surface plasmon resonance sensor. Nat. Commun. 2019, 10, 28.

5

Zhurauski, P.; Arya, S. K.; Jolly, P.; Tiede, C.; Tomlinson, D. C.; Ko Ferrigno, P.; Estrela, P. Sensitive and selective Affimer-functionalised interdigitated electrode-based capacitive biosensor for Her4 protein tumour biomarker detection. Biosens. Bioelectron. 2018, 108, 1–8.

6

Wang, S.; Zhang, L. Q.; Wan, S.; Cansiz, S.; Cui, C.; Liu, Y.; Cai, R.; Hong, C. Y.; Teng, I. T.; Shi, M. L. et al. Aptasensor with expanded nucleotide using DNA nanotetrahedra for electrochemical detection of cancerous exosomes. ACS Nano 2017, 11, 3943–3949.

7

Liang, K.; Liu, F.; Fan, J.; Sun, D. L.; Liu, C.; Lyon, C. J.; Bernard, D. W.; Li, Y.; Yokoi, K.; Katz, M. H. et al. Nanoplasmonic quantification of tumour-derived extracellular vesicles in plasma microsamples for diagnosis and treatment monitoring. Nat. Biomed. Eng. 2017, 1, 0021.

8

Li, X.; Song, J.; Chen, B. L.; Wang, B.; Li, R.; Jiang, H. M.; Liu, J. F.; Li, C. Z. A label-free colorimetric assay for detection of c-Myc mRNA based on peptide nucleic acid and silver nanoparticles. Sci. Bull. 2016, 61, 276–281.

9

Ma, X. Y.; Song, S.; Kim, S.; Kwon, M. S.; Lee, H.; Park, W.; Sim, S. J. Single gold-bridged nanoprobes for identification of single point DNA mutations. Nat. Commun. 2019, 10, 836.

10

Ma, H.; Sun, X. Y.; Chen, L.; Han, X. X.; Zhao, B.; Lu, H.; He, C. Y. Antibody-free discrimination of protein biomarkers in human serum based on surface-enhanced Raman spectroscopy. Anal. Chem. 2018, 90, 12342–12346.

11

Zhang, Z.; Yang, M. S.; Yan, X.; Guo, X. Y.; Li, J.; Yang, Y.; Wei, D. Q.; Liu, L. H.; Xie, J. H.; Liu, Y. F. et al. The antibody-free recognition of cancer cells using plasmonic biosensor platforms with the anisotropic resonant metasurfaces. ACS Appl. Mater. Interfaces 2020, 12, 11388–11396.

12

Ibau, C.; Arshad, M. K. M.; Gopinath, S. C. B.; Nuzaihan, M. N. M.; Fathil, M. F. M.; Estrela, P. Gold interdigitated triple-microelectrodes for label-free prognosticative aptasensing of prostate cancer biomarker in serum. Biosens. Bioelectron. 2019, 136, 118–127.

13

Dantham, V. R.; Holler, S.; Barbre, C.; Keng, D.; Kolchenko, V.; Arnold, S. Label-free detection of single protein using a nanoplasmonic-photonic hybrid microcavity. Nano Lett. 2013, 13, 3347–3351.

14

Lin, X. M.; Cui, Y.; Xu, Y. H.; Ren, B.; Tian, Z. Q. Surface-enhanced Raman spectroscopy: Substrate-related issues. Anal. Bioanal. Chem. 2009, 394, 1729–1745.

15
Lindon, J.; Tranter, G. E.; Koppenaal, D. Encyclopedia of Spectroscopy and Spectrometry; 3rd ed. Academic Press: Oxford, 2016.
16

Huefner, A.; Kuan, W. L.; Müller, K. H.; Skepper, J. N.; Barker, R. A.; Mahajan, S. Characterization and visualization of vesicles in the endo-lysosomal pathway with surface-enhanced Raman spectroscopy and chemometrics. ACS Nano 2016, 10, 307–316.

17

Qiao, X. Z.; Su, B. S.; Liu, C.; Song, Q.; Luo, D.; Mo, G.; Wang, T. Selective surface enhanced Raman scattering for quantitative detection of lung cancer biomarkers in superparticle@MOF structure. Adv. Mater. 2018, 30, 1702275.

18
McCreery, R. L. Raman Spectroscopy for Chemical Analysis; John Wiley & Sons: New York, 2000.https://doi.org/10.1002/0471721646
19

Zhou, W.; Tian, Y. F.; Yin, B. C.; Ye, B. C. Simultaneous surface-enhanced Raman spectroscopy detection of multiplexed MicroRNA biomarkers. Anal. Chem. 2017, 89, 6120–6128.

20

Kim, S.; Kim, T. G.; Lee, S. H.; Kim, W.; Bang, A.; Moon, S. W.; Song, J.; Shin, J. H.; Yu, J. S.; Choi, S. Label-free surface-enhanced Raman spectroscopy biosensor for on-site breast cancer detection using human tears. ACS Appl. Mater. Interfaces 2020, 12, 7897–7904.

21

Kim, W.; Lee, J. C.; Shin, J. H.; Jin, K. H.; Park, H. K.; Choi, S. Instrument-free synthesizable fabrication of label-free optical biosensing paper strips for the early detection of infectious keratoconjunctivitides. Anal. Chem. 2016, 88, 5531–5537.

22

Kim, W.; Lee, S. H.; Kim, S. H.; Lee, J. C.; Moon, S. W.; Yu, J. S.; Choi, S. Highly reproducible Au-decorated ZnO nanorod array on a graphite sensor for classification of human aqueous humors. ACS Appl. Mater. Interfaces 2017, 9, 5891–5899.

23

Choi, S.; Moon, S. W.; Lee, S. H.; Kim, W.; Kim, S.; Kim, S. K.; Shin, J. H.; Park, Y. G.; Jin, K. H.; Kim, T. G. A recyclable CNC-milled microfluidic platform for colorimetric assays and label-free aged-related macular degeneration detection. Sens. Actuators B:Chem. 2019, 290, 484–492.

24

Cheng, N. T.; Fu, J.; Chen, D. J.; Chen, S. Z.; Wang, H. Y. An antibody-free liver cancer screening approach based on nanoplasmonics biosensing chips via spectrum-based deep learning. NanoImpact 2021, 21, 100296.

25

Villanueva, A. Hepatocellular Carcinoma. N. Engl. J. Med. 2019, 380, 1450–1462.

26

Chen, W. Q.; Zheng, R. S.; Baade, P. D.; Zhang, S. W.; Zeng, H. M.; Bray, F.; Jemal, A.; Yu, X. Q.; He, J. Cancer statistics in China, 2015. CA:Cancer J. Clin. 2016, 66, 115–132.

27

Cheng, N. T.; Chen, D. J.; Lou, B.; Fu, J.; Wang, H. Y. A biosensing method for the direct serological detection of liver diseases by integrating a SERS-based sensor and a CNN classifier. Biosens. Bioelectron. 2021, 186, 113246.

28

Yu, Y.; Lin, Y. T.; Xu, C. X.; Lin, K. C.; Ye, Q.; Wang, X. Y.; Xie, S. S.; Chen, R.; Lin, J. Q. Label-free detection of nasopharyngeal and liver cancer using surface-enhanced Raman spectroscopy and partial lease squares combined with support vector machine. Biomed. Opt. Express 2018, 9, 6053–6066.

29

Zhang, K.; Liu, X. J.; Man, B. Y.; Yang, C.; Zhang, C.; Liu, M.; Zhang, Y. H.; Liu, L. S.; Chen, C. S. Label-free and stable serum analysis based on Ag-NPs/PSi surface-enhanced Raman scattering for noninvasive lung cancer detection. Biomed. Opt. Express 2018, 9, 4345–4358.

30

Bai, S.; Serien, D.; Hu, A. M.; Sugioka, K. 3D microfluidic surface-enhanced Raman spectroscopy (SERS) chips fabricated by all-femtosecond-laser-processing for real-time sensing of toxic substances. Adv. Funct. Mater. 2018, 28, 1706262.

31

Le Ru, E. C.; Blackie, E.; Meyer, M.; Etchegoin, P. G. Surface enhanced Raman scattering enhancement factors: A comprehensive study. J. Phys. Chem. C 2007, 111, 13794–13803.

32

Lee, J. P.; Choi, S.; Park, S. Extremely superhydrophobic surfaces with micro- and nanostructures fabricated by copper catalytic etching. Langmuir 2011, 27, 809–814.

33

Cao, Y.; Zhou, Y. R.; Liu, F. Z.; Zhou, Y. Q.; Zhang, Y.; Liu, Y.; Guo, Y. K. Progress and mechanism of Cu assisted chemical etching of silicon in a low Cu2+ concentration region. ECS J. Solid State Sci. Technol. 2015, 4, P331–P336.

34

Toor, F.; Oh, J.; Branz, H. M. Efficient nanostructured ‘black’ silicon solar cell by copper-catalyzed metal-assisted etching. Prog. Photovoltaics 2015, 23, 1375–1380.

35

Lu, Y. T.; Barron, A. R. Anti-reflection layers fabricated by a one-step copper-assisted chemical etching with inverted pyramidal structures intermediate between texturing and nanopore-type black silicon. J. Mater. Chem. A 2014, 2, 12043–12052.

36

Wang, Y.; Yang, L. X.; Liu, Y. P.; Mei, Z. X.; Chen, W.; Li, J. Q.; Liang, H. L.; Kuznetsov, A.;, Du, X. L. Maskless inverted pyramid texturization of silicon. Sci. Rep. 2015, 5, 10843.

37

Li, J. Y.; Hung, C. H.; Chen, C. Y. Hybrid black silicon solar cells textured with the interplay of copper-induced galvanic displacement. Sci. Rep. 2017, 7, 17177.

38

Wang, Y.; Liu, Y. P.; Yang, L. X.; Chen, W.; Du, X. L.; Kuznetsov, A. Micro-structured inverted pyramid texturization of Si inspired by self-assembled Cu nanoparticles. Nanoscale 2017, 9, 907–914.

39

Zhao, S.; Yuan, G. D.; Wang, Q.; Liu, W. Q.; Wang, R.; Yang, S. H. Quasi-hydrophilic black silicon photocathodes with inverted pyramid arrays for enhanced hydrogen generation. Nanoscale 2020, 12, 316–325.

40

Ye, W. C.; Shen, C. M.; Tian, J. F.; Wang, C. M.; Bao, L. H.; Gao, H. J. Self-assembled synthesis of SERS-active silver dendrites and photoluminescence properties of a thin porous silicon layer. Electrochem. Commun. 2008, 10, 625–629.

41

Sun, Y. G.; Wang, Y. X. Monitoring of galvanic replacement reaction between silver nanowires and HAuCl4 by in situ transmission X-ray microscopy. Nano Lett. 2011, 11, 4386–4392.

42

Többens, D. M.; Stüßer, N.; Knorr, K.; Mayer, H. M.; Lampert, G. E9: The new high-resolution neutron powder diffractometer at the Berlin neutron scattering center. Mater. Sci. Forum 2001, 378–381, 288–293.

43

Su, Y.; Xu, S. T.; Zhang, J. A.; Chen, X. J.; Jiang, L. P.; Zheng, T. T.; Zhu, J. J. Plasmon near-field coupling of bimetallic nanostars and a hierarchical bimetallic SERS "Hot Field": Toward ultrasensitive simultaneous detection of multiple cardiorenal syndrome biomarkers. Anal. Chem. 2019, 91, 864–872.

44

Lin, D. D.; Wu, Z. L.; Li, S. J.; Zhao, W. Q.; Ma, C. J.; Wang, J.; Jiang, Z. M.; Zhong, Z. Y.; Zheng, Y. B.; Yang, X. J. Large-area au-nanoparticle-functionalized si nanorod arrays for spatially uniform surface-enhanced Raman spectroscopy. ACS Nano 2017, 11, 1478–1487.

45

Kim, W.; Lee, S. H.; Kim, J. H.; Ahn, Y. J.; Kim, Y. H.; Yu, J. S.; Choi, S. Paper-based surface-enhanced Raman spectroscopy for diagnosing prenatal diseases in women. ACS Nano 2018, 12, 7100–7108.

46

Cho, W. J.; Kim, Y.; Kim, J. K. Ultrahigh-density array of silver nanoclusters for SERS substrate with high sensitivity and excellent reproducibility. ACS Nano 2012, 6, 249–255.

47

Radziuk, D.; Möhwald, H. Surpassingly competitive electromagnetic field enhancement at the silica/silver interface for selective intracellular surface enhanced Raman scattering detection. ACS Nano 2015, 9, 2820–2835.

48

Harz, M.; Rösch, P.; Peschke, K. D.; Ronneberger, O.; Burkhardt, H.; Popp, J. Micro-Raman spectroscopic identification of bacterial cells of the genus Staphylococcus and dependence on their cultivation conditions. Analyst 2005, 130, 1543–1550.

49

Kim, G. A.; Seock, C. H.; Park, J. W.; An, J.; Lee, K. S.; Yang, J. E.; Lim, Y. S.; Kim, K. M.; Shim, J. H.; Lee, D. et al. Reappraisal of serum alpha-foetoprotein as a surveillance test for hepatocellular carcinoma during entecavir treatment. Liver Int. 2015, 35, 232–239.

50

European Association for the Study of the Liver. EASL Clinical Practice Guidelines: Management of hepatocellular carcinoma. J. Hepatol. 2018, 69, 182–236.

51

Jin, H. J.; Shi, Y. P.; Lv, Y. Y.; Yuan, S. X.; Ramirez, C. F. A.; Lieftink, C.; Wang, L. Q.; Wang, S. Y.; Wang, C.; Dias, M. H. et al. EGFR activation limits the response of liver cancer to lenvatinib. Nature 2021, 595, 730–734.

52

Forner, A.; Reig, M.; Bruix, J. Hepatocellular carcinoma. Lancet 2018, 391, 1301–1314.

53

Allemani, C.; Matsuda, T.; Di Carlo, V.; Harewood, R.; Matz, M.; Niksic, M.; Bonaventure, A.; Valkov, M.; Johnson, C. J.; Esteve, J. et al. Global surveillance of trends in cancer survival 2000–14 (CONCORD-3): Analysis of individual records for 37 513 025 patients diagnosed with one of 18 cancers from 322 population-based registries in 71 countries. Lancet 2018, 391, 1023–1075.

54

Kudo, M. Management of hepatocellular carcinoma in Japan as a world-leading model. Liver Cancer 2018, 7, 134–147.

55

Kudo, M.; Matsui, O.; Izumi, N.; Iijima, H.; Kadoya, M.; Imai, Y.; Okusaka, T.; Miyayama, S.; Tsuchiya, K.; Ueshima, K. et al. JSH consensus-based clinical practice guidelines for the management of hepatocellular carcinoma: 2014 update by the liver cancer study group of Japan. Liver Cancer 2014, 3, 458–468.

Nano Research
Pages 5331-5339
Cite this article:
Cheng N, Lou B, Wang H. An intelligent serological SERS test toward early-stage hepatocellular carcinoma diagnosis through ultrasensitive nanobiosensing. Nano Research, 2022, 15(6): 5331-5339. https://doi.org/10.1007/s12274-022-4114-z
Topics:

959

Views

10

Crossref

8

Web of Science

9

Scopus

0

CSCD

Altmetrics

Received: 03 December 2021
Revised: 23 December 2021
Accepted: 27 December 2021
Published: 10 March 2022
© Tsinghua University Press 2022
Return